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Abstract—The motion of a uniformly heated spherical drop under gravity is theoretically studied within the 
Stokes approximation. The Stokes and Hadamard-Rybchinsky formulas are generalized so that the temperature 
dependence of the viscosity can be found in a wide temperature range. Also, the drag force and the velocity of 
gravity fall are calculated for an arbitrary temperature difference between the surface of the drop and distant 
points.

STATEMENT OF THE PROBLEM

We consider the motion of a uniformly heated 
hydrosol drop (particle) with a surface temperature Ts 
in a viscous incompressible liquid under gravity. The 
liquid occupies the entire space, does not mix with the 
drop, and is at rest at infinity. A particle is considered to 
be heated (cooled) if its surface temperature differs 
from the temperature far away from it. Uniform heating 
can be associated with heat liberation during chemical 
reactions on its surface, the radioactive decay of the 
material, external effects, etc. If, for example, the parti­
cle is subjected to a monochromatic radiation of wave­
length X0 and intensity 70, it absorbs energy nR2I0K„ 
(where R is the radius of the drop and Kn is the absorp­
tion factor [1, 2]), which is uniformly distributed over 
its volume. This statement is valid if the thermal con­
ductivity of the drop is much higher than that of the 
environment and X0 > R. All the processes in the drop- 
liquid medium system are quasi-stationary, because the 
thermal relaxation time of the system is small.

The heated surface of the drop influences the ther­
mal physical characteristics of the surrounding liquid 
and, eventually, the velocity and pressure fields in its 
neighborhood.

Unlike [3-6], the author generalizes the Stokes and 
Hadamard-Rybchinsky formulas for the case of a uni­
formly heated spherical drop steadily moving in a vis­
cous incompressible liquid. The temperature difference 
between the surface of the drop and distant sites, as well 
as the temperature dependence of the viscosity of the 
liquid, is assumed to be arbitrary.

Among all the parameters of liquid transport, the 
viscosity depends on temperature to the greatest extent, 
exponentially decreasing with growing temperature 
[7, 8]. The review of the available semi-empirical for­
mulas and experimental data shows that the tempera­
ture dependence of the liquid viscosity |iin  a wide tem­

perature range and with any desired accuracy can be 
described by the formula

n = 1

T
X N  T~'

where A and F„ are constants, |i„, = \ie(TJ), and /'„ is the 
liquid temperature far away from the particle (at Fn = 0, 
this formula reduces to the well-known Reynolds 
expression [7]). Hereafter, the subscripts e and i refer to 
the viscous liquid and heated particle, respectively; the 
subscript designates the parameters of the undis­
turbed flow at infinity; and the subscript s refers to the 
parameters taken at the mean surface temperature Ts. 
For water, A = 5.779, F1 = 2.318, and F2 = 9.118 with 
an accuracy of 2% or higher at temperatures between 
273 and 363 K (7^ = 273 K).

It is assumed that the densities, thermal conductivi­
ties, and specific heat capacities of the liquid and the 
drop are constant. The drop moves slowly (small Rey­
nolds and Peclet numbers) and retains the spherical 
shape. The latter statement is valid if the surface tension 
forces at the drop-environment interface far exceed the 
drag forces, which tend to distort the sphere. Analyti­
cally, the shape conservation condition is written as the 
inequality [9] o/R > |xe|Ue|/i?, where c  is the surface 
tension coefficient at the drop-environment interface 
and Ue is the velocity of the particle. This inequality 
holds true for most liquids.

It is appropriate to relate the frame of reference to 
the center of the moving particle (the problem is 
reduced to the analysis of an infinite parallel flow with 
a velocity U,:„ to be determined over the particle). The 
velocity and temperature distributions are symmetric 
about the ()z axis, which passes through the center of the 
particle and has the same direction as the incoming flow 
velocity. Therefore, we use the spherical coordinate
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system where the radius r is counted from the center of 
the drop and the angle 0 , from the incoming flow direc­
tion.

In the spherical coordinate system r, 0 , cp with 
regard for our assumptions, the equations and the 
boundary conditions for the velocities U, pressures P, 
and temperatures Te outside and inside the drop in the 
Stokes approximation are written in the form [5, 10]

V P e = [iev 2v e + 2(V|xe)(VUe) + (V jO

x (V x Ue) + Fg,

divUe = 0, (2)

M U,- = VP„ divU,- = 0, (3)

A Te = 0, (4)

r = ifx = u\  = o, U%= lfe , Te = Ts, (5)

u„ cos0er -  t/^sinOef

T  —► T P0 -1 ooi o

0, |UJ

(6)

(7)

-P .
d l f r

2^ " ô 7  "  ~ P i

dU\ a  
2^  + 2^ ’ (8)

M' É\ r  dQ dr r dQ a (9)or r

VELOCITY AND TEMPERATURE FIELDS.
DRIFT VELOCITY OF THE DROP

To find the rate of fall of the uniformly heated drop, 
one should know the temperature, velocity, and pres­
sure distributions in its vicinity. The general solution of 
heat conduction equation (4) that satisfies the appropri­
ate boundary conditions has the form

fe = l  + j ,  y = (Ts- T J / T „ ( 10)

where y  = r/R is the dimensionless radial coordinate, 
te = 7 /7 ':,,. and y is the dimensional parameter that char­
acterizes the temperature difference between the sur­
face of the particle and distant points.

Substituting (10) into (1) yields the expression for 
the dynamic viscosity

„.1 y
( 11)

Here, UT and Ue are the radial and tangential compo­
nents of the mass velocity U of the liquid in the spheri­
cal coordinate system; Fg is the vector of the gravita­
tional forces; (/,,, = |u<»|; is the incoming flow veloc­
ity, which is to be determined from the condition of 
vanishing the total force acting on the particle (i.e., (/,,, 
and |Fg| should be so related that the total force acting 
on the particle vanishes); er and e0 are the unit vectors 
in the spherical coordinate system; Ts is the mean sur­
face temperature of the drop; V is the del operator; A is 
Laplacian; and (VUJ is the scalar product.

Conditions (5) on the surface of the drop imply the 
impermeability and continuity conditions for the nor­
mal and tangential components of the mass velocity, 
respectively, as well as the constancy of the surface 
temperature of the particle. As the boundary conditions 
at infinity, i.e., far away from the particle, we take con­
ditions (6), and the finiteness of the physical quantities 
characterizing the particle at r — ► 0 is included by (7).

To state the problem in closed form, the boundary 
conditions on the surface of a uniformly heated drop 
must be complemented by the continuity conditions for 
the stress tensor (normal and tangential) components 
[9, 10]

Formula (11) will further be used to find the velocity 
and pressure fields near the uniformly heated drop. 
Boundary conditions (5)-(9) admit the separation of 
variables upon solving the hydrodynamic equations. 
The components of the mass velocity and pressure were 
found in the form

Ur(r, 0 )  = Ux G(r)cos©,

Ue(r, 0 ) = -U^g ir)sin0 , P(r, 0) = P0 + h(r)cosQ,

where G(r), g(r), and h(r) are arbitrary functions 
depending on the radial coordinate r.

From the continuity equation, a relation between the 
functions G(r) and g(r) were determined. Finally, all 
the parameters and relations found were substituted 
into the appropriate Stokes equations. Eventually, we 
obtained the fourth-order ordinary differential equation 
for the function G(r) that is similar to that derived in 
[11]. Its solution was sought in the form of generalized 
power series. For the components of the mass velocity 
and pressure, we found

u: (y,Q) = U „ c o s e [ l + A lGl(y) + A 2G2(y)], (12) 

U%(y, ©) = -£/,*,s in 0 [l + A xG3(y) + A 2G4(y)], (13)

P e(y,Q) = P ^  +
R

cos0[^4]G5 + A 2G6\, (14)

U\(y, 0 )  = U„cos0(^3  + A 4y 2), (15)

U'e (y, 0 )  = - t / oosin0(^43 + 2 A 4y ) ,  (16)

Pi(y,Q) = P 0+ 1 0 ^ A 4cosQ. (17)



MALAI

Here,

G i w = - i i -, G3(y) ~ Gi(y) + \yG\ ,

i (2)

G2(y) = - - Yyh < « + i > /

“X
^  „.0

(« + 3)ln~ _ 1
.(i)

/- | 2 ft ̂(n + 3) y

G5(y) = ^yG\n + y
V V o

GJ I

2+X'A
v B = o ^

G

G6(y) = \ y G f  + y 3 + 21I ^
v V o

GJ I

(1) (4) i (2) , (3) ,«o «o 1, « o = 4, a y  = -4 , 

a i1) = F„, ot̂ 2) = (4 -n )F„  + AF„_1,

a i3) = 2AFn_l -  2(2 +n)AF„, 

a(„4) = A"ln\,

a  = -Y^{6y2a 24)- [ 3 ( 4 a (11) - a f )) + a (13)]A(12)

+ [2(3a^1)- a f )) + a23)]y},

A|2) = -^ [6a(!4) + 2(3a! -  ai2)) + ai3)].

The constants of integration A ,. A2. A3, and A4. 
which enter expressions (13)—(17), are determined by 
substituting them into the corresponding boundary con­
ditions on the surface of the drop. Once they have been 
found, the force acting on the particle is found by 
integrating the stress tensor over the surface of the par­
ticle [12]:

F = |  (~Pecos© +Pncos© - P 0lsin©)

G
(S)

(20)

2? 2
Xr sin0 £/0 £/(pnz,

P = 2 M ^  P  = „ №  + 1 ^ - ^
” ^  dr ’ ,e H  dr r d e  r )

i r  / x _ r  / x , 1 r i r i r ii r m  r i r ii are the stress tensor components in the spherical coor- 
4 2' 2 15 15 15  2’ 2 ’ dinates and n_ is the unit vector directed along the z axis

of the Cartesian coordinates.
Substituting (13) and (14) into (20) and integrating 

yields

F = 4ni?|i00t /00̂42exp{-^4y}nz, (21)

(18) where

where

s„ = A F n_l - n F n~ Y J S„-kFk, F0 = l ,
k= 1

and G™ are the respective first, second, and third 
derivatives with respect of y. Also,

A(1) = -l—xn
1

n(n + 5)
^ [ ( n  + 4 - k )
k = 1

x ( a (k )(n + 5 - k ] - a (k )) + a f )] j kA(r!lk (n> 1),

Al2) = - , 1

k= 1(w + 3) (w-2)  

x {(« + 3 -  k ) a (k1} -  a ^ }  + a r i f A ^ t

6ai4V  + £ [ ( «  + 2 - * )

(19)

s A (  s ^

/
1  ̂~ s

I
A 2 = -

TVil^i = [ G & - G & ] ,

N 21 ,  = [G2(2G^ + G f ) - G 1(2G/2 + G")],

■ [(2n + 5 -  2 £ )a i1) -  o42)]y*A^*_2
k = 0

(«>3) .
^ b L ,  = -G\,

N 4| , = 1 = [2Gj + G f ].

Substituting the coefficient A2 into (21), we find the 
expression for the drag (viscous) force acting on a uni­
formly heated drop moving under gravity:

F = -6 n R VL''U„fvn„ (22)

In calculating the coefficients A ^  and Â 2), it is 
necessary to take into account that

Aq!) = -3 , Aq2) = -1 , A® = 1,



ON THE MOTION OF A UNIFORMLY HEATED DROP

Fig. 1. \|/ vs. mean surface temperature Ts.

Equating (22) to (23), we obtain the rate of fall of a 
uniformly heated spherical drop (an analog of the Had- 
amard-Rybchinsky formula):

U, = , - y p j - pU f\ T
* 9

(24)

Fig. 2. \|/j and \|/* vs. mean surface temperature Ts.

If |ig / |i  ■ — ► 0 in (22), we come to the formula for 
the drag force acting on a uniformly heated solid parti­
cle (an analog of the Stokes formula).

If the surface of the drop is heated insignificantly,
1.e., if the mean surface temperature of the drop differs 
from the environmental temperature at infinity only 
slightly [y = (7'v -  /'„)//'„ — ► 0], the temperature 
dependence of the dynamic coefficient viscosity can be
neglected. Then, G, = -1/3, G\ = 1, G f = -4 , G\n =

20, G2 = -1, G{ = 1, G" = -2, G f  = 6, N,  = 2/3, N2 =
2, N3 = -1, and Ni = -2. In this case, formula (22) turns 
to the well-known expressions for a sphere that were 
obtained by Hadamard and also by Rybchinsky and 
Stokes [10].

The effect of heating the drop on the drag force and 
the rate of fall of the drop [i.e., the effect of the temper­
ature dependence of the viscosity, formula (1)] is illus­
trated in Figs. 1 and 2. They plot, respectively, \|/ =

■ V / n | r ,  = 273 K a n d  V i  =  V f y i | r ,  = 273 K against Ts for 
large mercury drops of radius R = 2 X 10~5 m moving in 
water at /'„ = 273 K. The curve \|/f was constructed for 
small temperature differences (y — ► 0) [10], but the 
molecular transport coefficients were taken for Te = Ts. 
As follows from the curves, heating considerably 
affects both the drag force and the rate of gravity fall.

Thus, we generalized the Stokes and Hadamard- 
Rybchinsky expressions for the case of the steady-state 
motion of a uniformly heated solid spherical particle 
(drop) in an incompressible liquid under gravity at arbi­
trary temperature differences between the surface of the 
particle and distant points. In the analysis, the tempera­
ture dependence of the viscosity is represented as an 
exponential-power series.

where

A  = rex p { -^y } n 3 + n 4-
s > (  s ^

^1 + ^ 2“ 11 1  ̂-> s
I 3M-J

Ultimately, a spherical drop moving under gravity in 
a liquid with viscosity acquires a constant velocity; that 
is, the gravity force is balanced out by the hydrody­
namic forces. With regard for the buoyancy force, the 
gravity force acting on the particle is given by

F =

where g is the free-fall acceleration.

(23)
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