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Abstract—An expression has been derived allowing the drag to be estimated on a spheroidal hydrosol particle 
moving in a liquid under conditions of an arbitrary temperature difference between the particle surface and a 
separate region, which takes into account the temperature dependence of the liquid viscosity presented in the 
form of an exponential power series.

FORMULATION OF THE PROBLEM

Consider a spheroidal particle of a solid containing 
uniformly distributed constant-power heat sources 
(sinks), which is immersed in an incompressible vis­
cous liquid occupying the whole space. The motion of 
heated spheroidal particles through viscous liquid and 
gaseous media was studied in a number of papers [1-5]. 
A particle is considered heated if the average tempera­
ture of its surface is well above the ambient tempera­
ture. Heating of the particle surface may be due, for 
example, to a chemical reaction inside the particle, 
radioactive decay of the particle matter, and so on. The 
heated particle significantly influences the thermophys­
ical characteristics of a medium and may appreciably 
affect the velocity field and the pressure distribution in 
its vicinity.

The motion of nonspherical particles through liquid 
and gaseous media under conditions of small relative 
differences of temperature was considered in papers 
[6- 8].

In this paper, in the framework of the Stokes approx­
imation, an analytical expression for the hydrodynamic 
force acting on a uniformly heated spheroidal particle 
has been obtained, which takes into account the temper­
ature dependence of the liquid viscosity represented in 
the form of an exponential power series, for an arbitrary 
difference between the temperatures of the particle sur­
face and a separate region.

In the frame of reference with respect to the center 
of mass of the particle, the problem is reduced to that of 
a heated immovable oblate (prolate) spheroid placed in 
a plane-parallel flow of liquid having a velocity LL 
(parallel to the symmetry axis of the spheroid). It is 
assumed that the density, thermal conductivity, and 
thermal capacity of the liquid and the particle are con­
stant, and the thermal conductivity of the particle is 
much greater than that of the ambient liquid.

Of the parameters governing the liquid flow, only 
the dynamic viscosity coefficient strongly depends on 
temperature [9]. This dependence will be taken into 
account using the expression

M-liq = M
n = 1

( 1)

x exp<{ -A[ y -̂ -  1

(at F„ = 0 this formula is reduced to the well-known 
Reynolds relation [9]). Here A = const; |i„, = |i|iq(7'„): 
and /'„ is the liquid temperature away from the particle; 
the indices “liq” and “p” here and below refer to the 
parameters of the ambient liquid and the particle, 
respectively. It is known that the viscosity of a liquid 
drops exponentially with temperature [9]. An analysis 
of the known semiempirical formulas has shown that 
expression (1) best describes viscosity variations in a 
wide temperature range with any required accuracy.

The flow about the spheroid is presented in spheroi­
dal coordinates (e, r|, cp) with the origin at the center of 
the hydrosol particle. The curvilinear coordinates e, r|, 
and cp are related to the Cartesian coordinates by the 
following expressions [10]

x = csinhesinrjcoscp, y  = csinhesinrisincp, 
z = ccoshecosr)

(2)

or

(3)
x = ccoshesinrjcoscp, y  = ccoshesinr|sin(p, 

z = csinhecosr),

where c = Jb l -  a20 in the case of a prolate spheroid
I 2 2(a0 < bo, formulas (2)) and c = *Ja0 - b 0 for an oblate
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spheroid (a0 > b0, formulas (3)), a0 and b0 are the semi­
axes of the spheroid, and the z axis of the particle Car­
tesian coordinate system coincides with the spheroid’s 
axis of symmetry.

For small Reynolds numbers, the distributions of 
velocity Uliq, pressure and temperature 7Hq are 
described by the following set of equations [11]:

V A  q = M-iiqAlJliq + 2(V ^iqV)Uliq + [V^tliq x rotUliq]

divUliq = 0,

A Tm = 0, AT = —q J X v.

(4)

(5)

Equations (4) and (5) are solved with the following 
boundary conditions:

Uuq 0, Tx 1C| T v,liq

3 r iiq _ dTp 
q ds ds

U liq ' cosr|ee-  t/^sinrie^,

r,liq ' 7 \,  P liq

at

-Poo at e 

e —-  0.

(6)

(7)

(8)

J [ - A i q C O S T l

(9)
sinhe ,OeeCOSTl -  SHIT] \dS,

where dS = c2 cosh e sinrjt/rit/cp is a differential surface 
element, and c ee and c eri are the components of the 
stress tensor in a spheroidal coordinate system [11].

THE FIELD OF VELOCITIES 
AND THE TEMPERATURE DISTRIBUTION: 

DETERMINATION OF THE DRAG
To find the force exerted by a liquid on a heated 

spheroidal solid particle, it is necessary to know the 
temperature field around the particle. Integrating Eq. (5)

under the corresponding boundary conditions gives

tXiq = 1 + - a 0arccotÀ,

t = B + -arccotÀ
X„ c

( 10)

■ arccot k f d X - arccot k j f d K .
(11)

Here, X = sinhe; t = 777',; y = ts -  1 is a dimensionless 
parameter characterizing the heating of the particle sur­
face; ts = TJTj. and 7'v is the average surface tempera­
ture of the heated spheroid defined by the formula

a0b0 
3X ^ p’^^liq

( 12)

B = 1 X arccot Xn

Here, ee and en are the unit vectors of the spheroidal 
coordinate system, X is the thermal conductivity, IJ„ = 
|UM|, and qp is the (constant) power of the heat sources 
(sinks) per particle unit volume. Boundary conditions 
(6) allow for a zero liquid velocity condition at the par­
ticle surface, equality of the particle surface and the liq­
uid temperatures, and continuity of the heat fluxes 
through the particle surface. The particle surface is 
specified by the coordinate e0. At a large distance from
the particle (e -------► 00 ), boundary conditions (7) are
valid, and the finiteness of the physical parameters of 
the particle at e — ► 0 is taken into account in (8).

The force exerted by the flow on the particle is 
defined by the formula

X0 = sinhe0,

/  =  - 2
■j"gp(À2 + x2)dx] x = cosr).

Taking (10) into account, expression (1) takes the 
form

M-iiq = No­

where

1 + Y j F^ n°(arccot^ n
n = 1

(13)
exp{-y0arccotÀ},

Ay  
Jo = - f a 0.

Making use of the fact that the viscosity depends 
only on the radial coordinate X, we solve Eq. (4) by the 
method of the separation of variables, resolving the 
velocity and pressure fields into Legendre and Gegen- 
bauer polynomials [10]. In particular, for the compo­
nents of the mass velocity U the following expressions 
satisfying boundary conditions (7) are obtained:

t/E(e,TD = ^ - c o s r i  [c2 + A 1G1+ A 2G2\, (14)

11) = ~ ^ s i n ^ c 2 + A 1G3+ A 2G4\, (15)
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where

( i )

Gi = —i X

-  4 x
0( 2 )

^ (n+ l)X"n = 0 v y

0( i )

- J
^ 0(» + 3)V

/- _  ^  , 1 + À ^ i  ^  ^  , 1 + À ^ i
L r3 — L r l +  2 ^  'J i 5 ^ 4  — 2 2 ^  2’

0 ( 1 )  =  -  v-  ̂M

n

l— \ [ ( n  + 4 - k )n(n + 5)
k =  l

x {(« + 1 - k ) a \ l) + a[2)} + o43)]0 ^ *  (n> 1),

0 (2) =  -
1

( n - 2 ) ( n  + 3)
^ { ( «  + 2 - £ )

Lk= 1

x [ (« + l-Â r )a [1) + a[2)] + a f )} 0 ® t

3 £  (-1)* 1 ■Un -  2 k -  2)Cn_2k_2
k  = 0

(2k + 3)(2k + 5)1

~ JoCn_2 k - 3  + (n + 2k -  4)Cn_2k_4\ (n> 1),

a i3) = -2 («  + 2)C„ + 2y0C„_1 -  2(n -  2)Cn_2

fn rl
C

[ ¥ ]

k  =  0

k « - 2k- 2
(2k + 5) 6 X (-!)*

k  =  0

(£ + 2)(4£ + 5)
(2£ + 3)(2£ + 5 )U } ” - 2 k - 2

-  YoQi-2it-3 + ( n - 2 k -  4)C„_2jfc_4] (« > 1 ),

a i 4) = I [ YoAb_ 1- ( « - 1 ) ( « - 2 ) A „ _ 2] ( « > ! ) ,

Q  =
/!

/1  +  3 / 3 + 5 / 5  +  . . .  +  5 /_y — k

s  =  k - l- ^ l l  
2

1 '.I,

■ p X  [(2« - 2^ -  3)«i 1)+ -  6«:
k  =  0

I 2 2(« > 3), i / e = cVcosh £ — sin r)

©i2) = - J u C a ^  + ^ V a ^  + ô a ^ ] ,  

© f  = 1, 0q!) = -1 , 0Q2) = - 1 ,

(3 = - ^ [ { 3 ( 2 a (11) + a (12)) +  a (i3)} 0 ?  

-2 (a ^ 1) + a f )) - a 2 3)-6 a ^ 4)],

( 4 )

[ ¥ ]

i -  /j + /3 + /5 +... + 4,

k - 1 Y«o
/ 2,-1 = ( - i )

C „ + 1 2 X  (-1)"
Cn - 2 k  - 2

k  =  0

(2£ + l)(2fc + 3)(2fc + 5)’

c ( 2 k -  1)
[k/2] denotes the integer part of k/2.

The force acting on the spheroid because of viscous 
stresses is determined by integrating expression (9) 
over the spheroid surface and, taking into account (14) 
and (15), is equal to

Fz = - 4 7 t ^ ^ ^ 2e x p j - ^ a 0arccot?io|nz, (17)

where nz is the unit vector along the z axis.
Note, that expression (17) for the force was obtained 

under the assumption of uniform particle motion, 
which is only possible when the total force acting on a 

(16) particle is zero. Since force (17) is proportional to the 
velocity and becomes zero only together with it,

A0 = 1; Variation of the coefficient K with the average surface tem­
perature of the spheroid and the ratio of its semiaxes

«i2) = ( « - 2 )C „ - y0C„_1

[ ¥ ]

12 X (-1)
k  =  0

(4k + 5)Cn_2k_2 
(2k + 1 )(2k + 3)(2k  + 5)

T„ K
a0lb0

293 313 331 353

K 2.066 2.023 1.818 1.704 1.2
K 0.978 0.649 0.367 0.173 1.4
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another force has to be present to balance (17) for uni­
form motion to be possible.

The integration constants A , and A2 appearing in the 
expressions for the components of mass velocity are 
determined from the boundary conditions at the spher­
oid surface. Then, expression (17) can be represented in 
the form

where

Fz = G n a ^ K U ^ n , ,  (18)

2 G\
K  = — !--------------

6 J l + X l [ G 2G \ - G lGl2\ 

x e x p j - f a . a r c c o a l

G\ and G\ are the first derivatives of the corresponding 
functions with respect to k: and nz is the unit vector 
along the z axis.

To obtain an expression for the hydrodynamic drag 
on an aprolate spheroid it is necessary to substitute ik 
for k  and —ic for c in formula (18) (i is an imaginary 
unit).

Thus, formula (18) allows one to estimate the hydro- 
dynamic force acting on a spheroidal particle contain­
ing uniformly distributed constant-power heat sources 
(sinks). This estimation takes into account the depen­
dence of viscosity on temperature expressed in the form 
of an exponential power series for an arbitrary differ­
ence between the temperatures at the particle surface 
and away from it.

As an example, the table gives the calculation 
results of the dependence of K  on the average tempera­
ture of the spheroid surface and the ratio of spheroid 
semiaxes for granite particles of a radius R = 2 x 10~5 m 
suspended in water (71 = 293 K, A = 6.095, Fn = 0, 
n > 1).

In the limit y — ► 0 (small temperature gradients in 
the spheroid’s vicinity), a0 = R ,K=  1, and formula (18) 
transforms into the Stokes formula [10].

Let us consider the motion of a spheroidal particle in 
a gravitational field. A particle sinking under the action 
of gravitational force in a viscous liquid ultimately 
acquires a constant velocity, such that gravity is bal­
anced by hydrodynamic forces.

The gravitational force on the particle, with allow­
ance made for its buoyancy, is

Equating (18) to (19), we obtain the velocity of the 
steady fall of a nonuniformly heated spheroidal particle

I r i a A G j G i - G j G 1!
U„ = (P p-P liqW l+^3^ GI

x exp |  ~~a<} arccot X01 ■

Let us highlight some problems which can be solved 
using the results obtained. Consider the motion of a 
particle containing nonuniformly distributed heat 
sources (sinks) of density qp. In this case, the average 
temperature of the spheroid surface is defined by the 
following relation:

1 j q pdV,
T— = 1 + ■T„ 4na0XliqTa

where the integral is taken over the whole volume of the 
spheroidal particle.

Another case is that of heat sources (sinks) of con­
stant intensity 70 distributed not in the volume but over 
the particle surface. It is easy to show that the solution 
can be obtained if in the above relationships for the case 
of uniform internal heat release the following substitu­
tion is made

-Li4 b j °
. i i i  1

2ea0 1 -  e

Here, e is the spheroid’s eccentricity. It is also possible 
to consider the motion of a uniformly heated particle 
with an average surface temperature Ts. In particular, if 
an electromagnetic radiation (having the wavelength 
X0) of intensity I0 is incident on the spheroid, the 
absorbed energy is nR2fi}Kn. where R is the semimajor 
axis of the spheroid and K„ is the absorption factor [12]. 
If k 0 > R, the absorbed energy is uniformly distributed 
over the particle surface; that is, the particle can be con­
sidered uniformly heated. In this case, it is necessary to 
take that qp = 0 and T=TS in the boundary conditions (6). 
The parameter y takes the form

Y
1 t, — 1

^2arccot/Sj
(ts = TJTJ).

Fz = (9p-9x ia) g ^ c i l b 0 (19)
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