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Comment on "Quantum chaotic system in the generalized Husimi representation"
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In a recent paper [K. Zyczkowski, Phys. Rev. A 35, 3546 {1987)]the generalized Husimi distribu-

tion was used to investigate the quantum kicked rotator. It was shown that in the classically chaot-
ic region the Husimi distribution displayed a "rippled irregular shape. " It was suggested that such
behavior could be considered as a qualitative criterion for quantum chaos. In this Comment it is

suggested that such behavior is not necessarily associated with quantum chaos. The rippled irregu-
lar features may be due to quantum interference effects between superposed states.

A number of authors' have recently suggested that
the Husimi distribution may provide a useful tool for
comparing quantum and classical dynamics. Such a tool
would be especially useful in the context of quantum
chaos. In Ref. 5 a particular type of Husimi distribution,
called the Q function, was used to compare the classical
and quantum dynamics of a nonlinear oscillator. One of
the justifications for using Husimi distributions in this
context is that they may be interpreted as true joint
phase-space probability distributions for a special class of
"least disturbing" simultaneous measurement of position
and momentum. Specific models for such measurements
are given in Refs. 9 and 10.

In a recent interesting paper, Zyczkowski' used a gen-
eralization of the Husimi distribution to discuss the dy-
namics of the quantized kicked rotator. The results of
that work clearly demonstrate the considerable insight
provided by the Husimi representation in this context.
The Husimi distribution for an eigenstate of the evolution
operator was computed and shown to be peaked on the
secondary resonances of the classical standard map. In
the classically chaotic region the peaks are quite well
defined but the region between the peaks is filled with a
number of ridges and valleys or "ripples. " Zyczkowski
suggests that these ripples may be considered as one of
the qualitative criteria for quantum chaos. This claim is
not easy to justify as the assumed initial state was not
sufticiently semiclassical. In this Comment I would like
to suggest another interpretation of such ripple features.

Consider a simple harmonic oscillator with energy
eigenstates designated ~n ). Let I ~a) I be a particular
class of oscillator minimum uncertainty states with

' 1/2

Thus {~a ) I are in fact the Glauber coherent states. " If
p represents the state of an oscillator a Husimi distribu-
tion may be constructed as

Q(a)=tr(p~a)(a~) .

This particular Husimi distribution is called the Q func-
tion in quantum optics. ' It is normalized with respect to
the measure d a/tr.

Consider now an oscillator state corresponding to a
coherent superposition of two energy eigenstates,

p= —,'(~n )(n~+~m )(m~+ ~n )(m~+ {m )(n~) . (6)

In polar coordinates ( r, 8) where a =re' the Q function
for this state is

Q (r, 8)= —,
' [P„(r)+P (r)

+2[P„(r)P (r)]' cos[(n —m)8] I, (7)

where

r2
P„(r)= e

n!
The function P„(r) is sharply peaked at r =n when
n )) 1 and may be considered as a phase-space probabili-
ty density peaked on the classical tori corresponding to
the quantum state

~
n ), and distributed uniformly in

phase. If we had chosen the state to be an incoherent
mixture of the two eigenstates, i.e.,

p=-,'(tn ) (n~+ ~m ) (m
~ ),

the Q function would be

(g ) +i (2fico) '"(") Q (r, 8)=—,'[P„(r)+P (r)] . (l0)

(b,qAP ),=0,
where b, A —= A —( A ) and ( A 8 ), = ( A 8+8 A ) /2.

Thus it is clear that the "interference term" in Eq. (7) is
due to the quantum coherence between the superposed
states ~n ) and ~m ).

In Fig. I the Q function in Eq. (7) is plotted for
n —m=8. The interference fringes between the tori at
r =n and r =m are clearly visible. This example illus-
trates that ripples in the Q function need not necessarily
have any connection with chaotic dynamics but rather
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FIG. 1. Plot of the Q function against real and imaginary
parts of a, for an initial superposition of two energy eigenstates,
~n) and ~m ), with n=2, m=10. The coordinate on the left is

Im{a) and the coordinate at the bottom is Re(a). The origin is
in the center and the range for both coordinates is
—4.0( Im(a) Re(a) (4.0.

reQect an underlying quantum coherence between states
mixed by the dynamics. Similar behavior is evident in
the model of Ref. 6.

Returning now to the study of Zyczkowski, an alterna-
tive interpretation of the ripples between the peaks on the
classical resonances may be given as follows. The single

eigenstate of the evolution operator used by Zyczkowski
corresponds to two classical motions on the secondary
resonances of the classical map. ' Thus one might expect
this state to be some form of superposition state of these
two classical motions. The fact that the Q function is
doubled peaked is evidence of such a superposition. The
fact that ripples occur between the peaks indicates that
this is a quantum superposition and not a classical mix-
ture. The ripples in the Q function reflect the underlying
quantum coherence between these states. In the example
discussed above we considered the Q function for a super-
position of two classical motions with different energy.
The example of Zyczkowski corresponds to a superposi-
tion of two classical motions with the same quasienergy.
The interpretation of the ripples in the Q function is the
same, however,

It is known that quantum recurrence phenomena arise
due to the fact that unitary evolution preserves quantum
coherence between superposed states. ' In as much as
the Husimi distribution reveals quantum coherences in
the kicked rotator evolution operator eigenstates it pro-
vides indirect evidence for quasiperiodic behavior and the
nonoccurrence of chaotic behavior in the quantum dy-
namics. Further investigation of nonlinear dynamical
problems using the Husimi distribution will determine
whether this interpretation of the ripple features found
by Zyczkowski is tenable.
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