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Abstract—The Stokes and Hadamard-Rybchinsky formulas are generalized, making it possible to take into 
account the temperature dependence of viscosity in a wide range of temperatures and to calculate the force of 
resistance to motion and velocity of gravitational fall at arbitrary temperature differences between the particle 
surface and a remote region.

Determining the granulometric composition of 
disperse systems via their sedimentation is one of the 
most practicable and widely used methods of disper­
sion analysis [1]. In cleaning of liquids to remove 
contaminating particles and dressing of minerals, it is 
important to accelerate sedimentation. This is com­
monly achieved in various ways, depending on the 
kind of particles and their environment. Sedimen- 
tometry is based on the relationship between the 
velocity of particle motion in a viscous medium and 
the particle size. The velocity of particle motion can 
be markedly raised by heating the particle surface, 
since the viscosity of a fluid decreases exponentially 
with increasing temperature. Of practical and theoreti­
cal interest in this regard is description of the gravita­
tional motion of a heated particle in a viscous fluid.

Let us consider the gravitational motion of a uni­
formly heated hydrosol particle in another, viscous 
incompressible fluid, which is immiscible with the 
former and fills the entire space. At infinity, the fluid 
is at rest. By heated (cooled) particle is understood 
a particle whose surface temperature differs from that 
at a distance from the particle. The temperature differ­
ence between the particle and the viscous fluid can be 
maintained steadily via, e.g., heat release in chemical 
reactions at the particle surface, radioactive decay of 
the drop substance, external irradiation, etc. In par­
ticular, if a flux of electromagnetic radiation (wave­
length a(). intensity 70) is incident on the drop, then 
the energy absorbed by the drop is nR21{)K,d. where 
R is the drop radius and K,d is the absorption factor 
[2]. If the heat conductivity of the drop much exceeds 
that of the external medium and A() »  R. then the 
absorbed energy is evenly distributed over the drop 
surface and, consequently, the drop can be considered 
uniformly heated.

The heated particle surface affects the heat-transfer 
properties of the ambient fluid and, in the end, the 
distribution of the velocity and pressure fields in the 
vicinity of the particle.

In contrast to previous investigations [3-7], the 
present study generalizes the Stokes and Hadamard- 
Rybchinsky formulas to the case of uniformly heated 
spherical drop in a viscous incompressible fluid at 
arbitrary temperature difference between the particle 
surface and remote region with account of the tem­
perature dependence of viscosity.

Of all fluid transfer parameters, the viscosity 
coefficient depends on temperature most strongly [8]. 
To take into account the temperature dependence 
of the dynamic viscosity, we use a formula that de­
scribes changes in the viscosity of a fluid in wide 
range of temperatures with any required accuracy (at 
Fn = 0 this formula can be reduced to the known 
Reynolds relation [8]):

oo

M-e = 0̂0 [1 + E w .  -  !)"] exP \-MTJT00 -  1)], (1)
n  =  1

where A and Fn are constants, |ax = |ac(7x ). and 7X is 
the fluid temperature far away from the particle.

Hereinafter the indices e and i refer, respectively, 
to viscous fluid and heated particle; index oo denotes 
fluid parameters at infinity in an unperturbed flow; 
and index s refers to values of physical quantities 
at average surface temperature Ts.

It is known that the fluid viscosity decreases 
exponentially with increasing temperature [8]. An 
analysis of the available semiempirical formulas dem­
onstrated that expression (1) describes the variation of
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viscosity in a wide temperature range in the best way, 
with any required accuracy. For example, we have 
A = 5.779, Fj = -2.318, F2 = 9.118 for water in the 
temperature range 0-90°C, with relative error not 
exceeding 2% (7X = 273 K).

It is assumed that the densities, heat conductivities, 
and specific heats of the fluid and particle are con­
stant, the heat conductivity coefficient of the particle 
much exceeds that of the medium, and particle mo­
tion is rather slow (small particles by Reynolds and 
Peclet).

It is convenient to introduce a reference system 
associated with the center of a moving particle (the 
problem is reduced to analysis of how an infinite 
plane-parallel flow, whose velocity is to be deter­
mined, moves past a particle). The distributions of 
velocity and temperature is axially symmetric with 
respect to the 0Z axis passing through the drop center 
in the direction of the velocity vector of the incident 
flow. Therefore, the analysis uses a spherical system 
of coordinates in which radius is reckoned from the 
drop center, and angle 0, from the velocity direction 
of the incident flow.

In terms of the assumptions made, the equations 
and boundary conditions for the velocity, pressure, 
and temperature inside and outside a drop can be 
written in Stokes approximation in the spherical sys­
tem of coordinates r, 0, r| in the form [9]

VPe = ^eV2t/e + 2(V^e) W e + (Vne) x <yue), divt/e = 0,

(2)

Hi AU; = VP;, divC/j = 0, (3)

ATe = 0, (4)

r = R, If, = U[r = 0, U% = U\, Te = Ts, (5)

r -> 00, Ue -> Ux cos0er -  Ux  sin0ee, Te -> Tx , Pe -> Px ,

—>■ 0, I Uj I Ф 00, Pi ф

(6)

(7)

where |a. and A, are, respectively, the dynamic viscosity 
and heat conductivity; P is the pressure; Ur and Ut) 
are the radial and tangential components of the mass 
velocity of the fluid, U, in the spherical system of 
coordinates; Uœ = |Uœ|, Uœ is the velocity of the in­
cident flow, which is to be determined from the condi­
tion of vanishing total force acting on the particle 
(t/00 > 0 if this velocity is directed along the z axis,

and Uœ < 0 otherwise); er and eg are the unit vectors 
in the spherical system of coordinates; and 7S is the 
mean temperature of the drop surface.

Conditions (5), assuming impermeability and con­
tinuity of the normal and tangential components of the 
mass velocity and constant particle surface tempera­
ture, are taken for the particle surface. As boundary 
conditions at infinity, i.e., far away from the particle, 
are taken conditions (6), and the finiteness of the 
physical quantities characterizing the drop at r —> 0 is 
accounted for by conditions (7).

To obtain a closed problem, the boundary condi­
tions on the surface of a uniformly heated drop are 
supplemented with the condition of continuity of the 
stress tensor components (normal and tangential) on 
the drop surface [9]:

d l ß r  d u lr

-P e + 2(j,e—— = -P { + 2(X;-
dr

1 dUt dU% U%\

\ r  39 dr
Mi

r

dr

1 dill dui и {Л

(8)

\ r  39 dr
■ (9)

r /

The boundary conditions (5)-(9) make it possible 
to separate variables and reduce the system for per­
turbed quantities to a system of ordinary differential 
equations. Solving Eqs. (2)-(4) with boundary condi­
tions (5)-(9) gives the distribution of velocities, pres­
sures, and temperature in the fluid and the drop. After 
these distributions are found, we can calculate the 
force acting on a uniformly heated drop and the 
velocity of its drift.

At Reœ = TLfA U J \ iao «  1, the incident flow exerts 
only perturbing influence, and, therefore, the solution 
to the equations of hydrodynamics and heat transfer is 
to be sought for as an expansion in the Reynolds 
number Reœ. In determining the force acting on a uni­
formly heated drop and its drift velocity, we restrict 
the consideration to corrections of the first order of 
smallness. To find these corrections, it is necessary 
to know the fields of velocity, pressure, and tempera­
ture in the vicinity of the particle. The general solu­
tion to the heat conduction equation (4), satisfying 
the relevant boundary conditions, has the form

te = 1 + j/y ,  У = (Ts -  T J /T K (10)

where y is a dimensionless parameter characterizing 
the temperature difference between the particle surface 
and remote region; tc = Te/T(X), y  = r/R.
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Substituting (10) in (1), we obtain

oo
Me = M l  + E F „ ( f / / ) ] e x p M y / j ) .  (11)

n  =  1

Formula (11) is further used for determining the 
velocity and pressure fields in the vicinity of a uni­
formly heated drop.

Since the viscosity depends only on the coordi­
nate y, the equations of hydrodynamics are solved by 
separation of variables, with the velocity and pressure 
fields expanded in Legendre and Gegenbauer poly­
nomials [10]. In particular, the following expres­
sions were derived for the components of the mass 
velocity U:

lfr (y,Q) = Ux  cos0 [l + A & t y )  + A 2G2m  (12)

U§(y,0) = - U r s i n e  [1 + A f o t y )  + A 2G4( y ) l  (13) 

t 4 (y ,0 )  = Ux  cos 0 (A 3 + A 4V2), t4(y,0)

where

= - [ / „ s in © ^  + 2A4y2), (14)

G.iy) = - y - ^ A ^ K n  + i V r 1,
n  =  0

G\ = dGj /Ay, G\ = dG2/dy,

G2(y) = -y-1 Z  4 2)[(« + 1 )ynT l
n  =  0

oo

-  «y-3 Z  [(” + 3)lny_1 -  1]A W[(h + 3)2/ T \
n  =  0

aW  = [n(n + 5)] 1 2  {(« + 4 -  ^)[a[1}(« + 5 -  A:) -  a[2)]
/fc = 1

+ ô V aW * (» > 1). (15)

G3(y) = Gj(y) + O.SyG1!, G4(y) = G2(y) + 0.5yG^,

n

Â 2) = [(» + 3)(h -  2)]-1[ - 6 4 V  + Z ( ( «  + 2 -  *)
k =  1

n

x [a^(w  + 3 -  &) -  a^2)] + a^}y^A^2l  k + a  ^  [(2« + 5
k  =  0

-  2Jc)a^ -  a f> \yk6 $ l k _ 2 (n > 3). (16)

In calculating the coefficients A(J  by means
of recurrence formulas (15) and (16), account should 
be taken that

4 1) = -3, Â 2-* = -1, = -1, 4 1) = af?) = -1,

a [)2) = 4, af,3) = -4, a ®  = Fn, a ^  = (4 -  ri)Fn + AFn _ h

af3) = 2AFn _ 1 -  2(2 + n)AF„, a™ = A n/n\,

a  = -y{6y2a ^  -  [3 (4 a^  -  a^2)) + a^]A ^2)

+ [2(30$) -  a ^ )  + a^]y}/15,

Â 2) = -y [6 a ^  + 2 (3 a ^  -  a ^ )  + af>]/4.

The integration constants A \-A4. appearing in 
Eqs. (12)—(14), are found upon their substitution in 
the corresponding boundary conditions on the drop 
surface. With this done, the force acting upon the par­
ticle is found by integration of the stress tensor over 
its surface [9] and has the following form:

F = - 4nR (x̂ C/ ^ 2  exp {-̂ 4y}n.
where

A 2 = -(7V3 + iV4 n|/3M?)/A, A

(17)

n a

N,

y=i

= 2 G\ + G1/,
y = i

I ^IK  a. n \= G2(2G\ + Gf) -  Gj(2G^ + G2),

= G,Gl2 -  G2G\, No = GÎ,

The index s denotes the values of the physical 
quantities for the mean surface temperature of a uni­
formly heated drop, Ts; nz is the unit vector in the 
direction of the z axis.

It is noteworthy that the force F is calculated on 
the assumption of a uniform drop motion, which is 
only possible if the total force acting upon the particle 
is zero. Since the force (17) is proportional to the 
velocity and vanishes together with the latter, then, for 
uniform motion of a heated drop to occur, it is neces­
sary to assume the presence of a certain extraneous 
force counterbalancing the force (17).

Substituting the explicit form of coefficient A2 
in (17), we obtain the expression

F = 6iiR\ix Ua/ n ,H Z> (18)
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^  = 2  exp {-Aj[N3 + Â4 ^ / (3 ^ ) ]} / [3 (^  +

Let us consider as an example the gravitational fall 
of a uniformly heated drop. A spherical drop falling 
under the action of gravitational force in a viscous 
medium ultimately starts to move at a constant veloc­
ity at which the action of the gravitational force is 
counterbalanced by hydrodynamic forces. The gravita­
tional force acting upon a particle is given, with ac­
count of the buoyancy force, by

F = (Pi -  pe)gT 3̂nzx4/3, (19)

where g is the gravitational acceleration.
Equating expressions (18) and (19), we obtain the 

fall velocity of a uniformly heated spherical particle 
(analog of the Hadamard-Rybchinsky formula):

U = hp nz, (20)

where

= -Rl
P i  P e

M-oo/ li

If |o,g/|j| ^  0 in expressions (18) and (20), then we 
obtain a formula for the resistance force and the veloc­
ity of gravitational fall of a solid uniformly heated 
particle (analog of the Stokes formula).

Thus, formulas (18) and (20) allow evaluation of 
the force acting upon a uniformly heated drop and the 
velocity of its gravitational fall with account of the 
temperature dependence of viscosity, represented as 
an exponential-power series at arbitrary temperature 
differences between the particle surface and a remote 
region.

In the case when the drop surface is heated to a 
relatively low extent, i.e., the mean surface tempera­
ture differs only slightly from the temperature of the 
ambient at infinity [y = (7's -  7X)/7X 0], the tem­
perature dependence of the dynamic viscosity coef­
ficient can be neglected and G\ = 1, (i\ = -3. G1/  = 
12, G2 = 1, G\ = -1, G?,1 = 2 ,N x = 2, N2 = 6,N 3 = 3, 
and N4 = 6. In this case, formulas (18) and (20) are 
transformed into the known expression for a sphere
[9, 1 0 ].

Mention should be made of some problems con­
cerning the motion of a uniformly heated spherical 
drop, whose solutions can be found directly from the 
results obtained here. Let us consider motion of a 
particle containing uniformly distributed heat sources

Fig. 1. Contribution to the resistance force, ® =
I y -  273 K ’ vs' mean temperature Ts o f the mer­

cury drop surface.

(drains) with constant power and density q^, i.e., the 
motion of a particle with uniform internal heat release. 
In this case, it is necessary to supplement Eqs. (2)-(4) 
with an equation describing the distribution of tem­
perature within the drop (A'/\ = q j k x) and to take into 
account the equality of temperatures and heat fluxes in 
the boundary conditions. Then the mean surface tem­
perature of a uniformly heated drop is given by the 
relation

TJTX = 1 + qiR2/ (K T J . (21)

It is noteworthy that, in formulating the problem, 
the boundary condition (8) for normal stresses, un­
necessary in analyzing the flow around a uniformly 
heated drop, was left out. It can be shown that, upon 
substitution of the obtained solution for velocity and 
pressure components, the given boundary condition 
reduces to identity. This means that, in the approxima­
tion employed, the drop remains strictly spherical and 
its shape should be analyzed in terms of higher-order 
approximations.

To illustrate the contribution of particle surface 
heating to the resistance force and the fall velocity 
of a drop, i.e., to take into account the temperature 
dependence of viscosity, represented by formula (1), 
Figs. 1 and 2 show curves relating the values ® =

| f  = 2 7 3  K ^*1 _  T = 273 K
for large mercury drops with radius R = 2 x 10-5 m, 
moving in water at 7X = 273 K. The curve ®* is 
plotted using the formula for small relative tempera­
ture differences (y —» 0) [9, 10], but with the molecu­
lar transfer coefficients taken for 7C = Ts. As seen 
from the presented curves, the drop surface heating
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Fig. 2. Fall velocity of mercury drop, = h^/h^ ^ _2?3 K,
vs. the mean temperature Ts of the mercury drop surface.

strongly affects the resistance force and the velocity of
gravitational fall of the drop. This result can be used
in practice for accelerating the sedimentation process
[11]. Let us consider selective sedimentation of coal
particles in a water flow with temperature of 20°C in
a rectangular chamber with length L = 100 cm, width
d = 80 cm, and height h = 5 cm. In the absence of
heating, the particle velocity in this chamber is
1.109 x 10-2 cms-1. To this velocity corresponds
the volumetric flow rate of cleaned water 0  = 

3 —10.319m h [11]. The formulas derived in the pres­
ent study yield Q = 0.356 m3 s-1, which corresponds 
to sedimentation accelerated by a factor of 1.12, and, 
with the particle surface heated to 50°C, we obtain 
Q = 0.588 m3 s-1, which already gives an acceleration 
by a factor of 1.84. Consequently, the use of the 
derived formulas enables acceleration of particle 
sedimentation.

CONCLUSIONS

(1) An analytical solution of the problem of a fluid 
flow around a uniformly heated particle at small 
Reynolds numbers is described. In solving the hydro­

dynamics equations, account is taken of the tempera­
ture dependence of dynamic viscosity, represented as 
an exponential-power-law series. The Stokes and 
Hadamard-Rybchinsky formulas are generalized, 
which makes it possible to calculate the resistance 
force and the velocity of gravitational fall at arbitrary 
temperature differences between the particle surface 
and a remote region. It is shown that particle surface 
heating markedly affects the resistance force.

(2) The results obtained can be used in evaluating 
the settling velocity of spherical hydrosol particles 
in channels, in designing experimental installations in 
which a directed motion of hydrosol particles is to be 
ensured, in developing methods for fine cleaning of 
fluids to remove hydrosol particles, etc.
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