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Creating Metastable Schrodinger Cat States

J.J. Slosser and G. J. Milburn

Physics Department, University of gueensland, Saint Lucia, Oueensland 4072, Australia
(Received 9 November 1994)

We propose a scheme using feedback to generate a macroscopic quantum superposition of coherent
states in an optical cavity mode which experiences very little decoherence (due to dissipation).
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Ht = fitr(atabtb), (3)
Where K is proportional to the dispersive part of the
third-order nonlinear susceptibility of a Kerr medium, and
without loss of generality we assume that it is real and
positive. Clearly, ata is a constant of the motion and is

Over the last few years there has been considerable
interest in schemes which can generate macroscopi-
cally distinguishable quantum states, commonly known
as Schrodinger cats [1]. Within the field of optics
several proposals for the generation of such superposition
states in various nonlinear process [2—5] and in quantum
nondemolition measurements [6] have been made. For
example, it has been pointed out by Yurke and Stoler [3]
that, in the presence of very low dissipation, a nonlinear
system may convert a coherent state into a quantum
superposition of macroscopically distinguishable states.
Specifically, one imagines modeling a Kerr-like medium
(e.g. , optical fiber) as an anharmonic oscillator with the
Hamiltonian (fi, = 1)

H = ro(ata + 2) + tr(ata) (1)
where a ~ and a are the creation and annihilation operators
of a photon of a single mode electromagnetic field with

[a, at] = 1. If the light field is in the coherent state
crp) initially (t = 0) then at the time t = 7r /2tr (in a

frame rotating at frequency co) the state evolves into the
coherent superposition state

l~)vs = (1/~~)(e ' i'l~o) + e' i'I —~o)), (2)

where
I
cr )vs is called the Yurke-Stoler (YS) coherent

state. At times such that t = vr/tr the system evolves
to the state I

—no). This process repeats until the initial
state is reconstructed at t = 2'/tr.

The photon number distribution and interferences in
phase space of YS coherent states are known to be highly
sensitive to even a small dissipative coupling [2,7,8]. This
fact plus the smallness of the g~ ~ coupling constant K

makes the prospects of experimentally producing such
states highly questionable.

When two modes interact via a Kerr medium, one mode
(probe) can be used to perform a quantum nondemolition
(QND) measurement of the photon number of the other
mode (signal). To see this, consider the coupled signal-
probe system described by the interaction Hamiltonian (in
the interaction picture)

a QND variable for the signal. The Heisenberg equations
of motion for a and b show that if one measures the phase
shift of the probe (e.g. , via a homodyne measurement of
the probe quadrature) information on the signal photon
number may be obtained.

We take advantage of these facts in the following
system: Consider a cavity supporting two modes of
different frequencies, where the annihilation operator a
represents the system mode while the b mode is part of
the measuring apparatus (Fig. 1). The two modes are
coupled by the quadratic Hamiltonian (3). We assume
that mode b is heavily damped through an output mirror at
rate y where the output field is mixed with a strong local
oscillator field and enters a photodetector. The density
operator for both modes obeys the master equation

W = XoW —iE[b + bt, W] —itr[atab b, W]

+ (y/2) (2bWbt —btbW —Wbtb], (4)

where F is the driving field amplitude and the internal
dynamics of mode a is represented by the superoperator

local
osc.

FIG. 1. Diagram of the QND-measurement scheme for the
photon number a a. The g( ) nonlinearity of the crystal
couples the photon number of the a mode to that of the b
mode. The b mode is damped at a rate y and mixed with
a local oscillator and together with the photodetector form the
apparatus.
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Xo. We transform (4) to a displacement picture, where
mode b is displaced to a coherent state near the vacuum.
Specifically, we let b ~ b + 6 and bt ~ b~ + 6*.
When 6 = 2i—E/y, the driving term in (4) is canceled.
Assuming

~(a t a) (Xo) =E«1,
y 7

we can adiabatically eliminate mode b as in Refs. [9,10].
This gives an equation of motion for the density operator
p for mode a alone,

p = Eop —i~~6~ [ata, p]—2~z(B/2
[ata, [a a, p]].

(6)

where we have assumed perfect detector efficiency g = 1.
We now want to consider feeding back the signal

photocurrent to adjust the cavity detuning. A compre-
hensive quantum theory of feedback has been given
recently by Wiseman and Milburn [11]. Using this the-

ory, we can include the effects on mode a of feeding
back the signal photocurrent onto the cavity detuning
simply by adding the terms iy[ata, pata + atap]—
(~ /2) [ata, [ata, p]] to the master equation (6), where

g is the feedback gain. Thus,

p = —ig[(ata), p] —g [ata, [ata, p]], (9)

where we have ignored the internal dynamics of mode a
and defined ~ = 4~E/y . The above master equation
is the main result of this paper. This equation is expected
to be accurate provided the time delay in the feedback
loop is small compared with the characteristic evolution
time of the system. Notice that mode a behaves exactly
like a single mode self-interacting with a Kerr medium
with an additional phase diffusion term. The difference

The second term on the right-hand side of Eq. (6)
represents a detuning proportional to the displacement
squared and can be eliminated by suitably tuning the
cavity. The third term on the right-hand side corresponds
to a diffusion in phase and is not small when ~6~ is large.
This term represents the backaction noise of the QND
measurement.

Now we consider the homodyne measurement of the
b mode where the resulting signal photocurrent has been
shown by Wiseman and Milburn [9] to be

i(t) = P[rty(b + b ) + Qrjys(t)l, (7)

where r1 is the photodetector efficiency, g represents
Gaussian white noise, and P is proportional to the local
oscillator amplitude and is assumed real and large. The ex-
pectation value of the normalized photocurrent E[i(t)] =
(i(t)/pearl y) can be evaluated by expressing the two-
mode density operator 8' in terms of p to second order
in e [9]. This gives

4~F
E[i(t)] = —

t (pata + atap),

here is that the coupling g is not necessarily small, since
we are assuming that the driving E is quite large (so that
6 is also large).

We note that the master equation (9) describes a mode
in which amplitude, but not energy damping, takes place
(unlike an oscillator coupled to a zero-temperature bath,
for instance). Thus, the number operator at a is an exact
pointer and quantum nondemolition observable. Since the
number states ~n) are the pointer basis, we expect the
density operator to become diagonal in this basis. This
is easily seen by expressing (9) in the number state basis
and ignoring the first term on the right-hand side, we find
the solution

p„(r) = exp[ —~ (n —m) ]p„(0). (10)
We can solve Eq. (9) by expressing it in terms of

the Q function Q(n, n*; r) = (n~p(r)~n). This is a
phase-space probability density for the simultaneous mea-
surement of the operators Xi ——(a + a )/2 and X2 =
(a —at)/2i. The marginal distributions of the Q func-
tion do not equal the quantum mechanical distributions for
Xi and Xz. The Q-function marginals contain added noise
arising from the quantum backaction when two canonical
variables are measured simultaneously [12]. Using stan-
dard techniques [13],one finds the evolution equation for
the Q function

Q(a, a*;r) = ({[ig(2~n~' + 1) —y']no + c.c.)
+ [(iX —X )n'a' + c.c.]
+ 2~ la I ~ .)Q(n, n*; r), (11)

where 8 = 8/Bn
The method of solution of Eq. (11) with initial condi-

tion p(0) = ~no)(no~ is similar to the methods used in
Refs. [2,7]. Here we give the solution as

Q(n n* r) = Ao el 'f~')e(nnp)" (n" no)
0 n. m.

(12)

where Ao = exp[ —((n( + ~no~ )], f(r) = exp[2i~ X
(n —m)r] —1, and R„= ig(n —mz) —g X
(n —m) . This solution is similar to the Q-function
solution of an anharmonic oscillator coupled to a zero-
temperature bath [2]. However, there is an important
difference in the phase diffusion rate, which can be
illustrated by calculating the moments. For instance,
from the Q function (12) one can show that

whereas, for short times and small damping the damped
anharmonic oscillator model of Milburn and Holmes [2]
gives

—
I ~ol'Ã(r~) —i& —l~al't~ —c(x ~)ly~ (14)n0e

where C(gr) = 2 —exp[ —2igr]. In the latter case
the decay rate of the mode operator is proportional to
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y~no~, where y represents the coupling to the zero-
temperature bath. For a coherent state with a large initial
photon number this corresponds to a very rapid decay.
On the other hand, Eq. (13) shows a modest decay rate
independent of the photon number.

This behavior is illustrated in Fig. 2, where we show
the variance of the approximate quadrature X2 versus
time. Figure 2(a) is produced from the Q-function solu-
tion (12) with y = 0.1, whereas Fig. 2(b) is created from
the solution given by Milburn and Holmes of the anhar-
monic oscillator coupled to a zero-temperature bath [2]
with g = 0.1 and y = 0.01. The top curve in each graph
is for an initial coherent state with mean photon number
(no( = 4.0 and the bottom curve with )no( = 1.0. Each
curve represents three complete recurrences of the initial
state ~no) An. approximate YS state is seen as a steep
valley in the variance curve bordered on each side by a
sharp peak.

The top curve in Fig. 2(b) is the most telling as it shows
that no YS states are formed after the first recurrence
even though the coupling to the external bath is small

(y = 0.01). On the other hand, the top curve in Fig. 2(a),
shows that near YS states continue to form for much
longer interaction times. This behavior becomes more
pronounced as

~ no ~
increases.

Of course, every cavity exhibits some damping; how-
ever, it is not difficult to imagine a cavity with a de-
cay time much longer than the arbitrarily small feedback-
induced nonlinear response time. Using the parameters of
Fig. 2(a), one can estimate that the cavity decay constant
for mode a must be ~10 if the curves are not to be
noticeably altered.

Finally, it is important to remember that Fig. 2 was
made assuming equal nonlinear couplings ~ in order to
illustrate the differences in time scales for the decoher-
ence of the YS states. In reality the feedback-induced
nonlinear coupling ~ in Eq. (9) can be much greater than
the nonlinear coupling of a normal y~ ~ crystal. For the
experimentalists, this means that by using the feedback
scheme outlined in this paper much shorter interaction
times and interaction lengths will be required to produce
the YS coherent superpositions.

This work was in part supported by an ARC grant.
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FIG. 2. Variance of the approximate quadrature X2 versus
time for (a) the model described in this paper with g = 0.1,
and (b) an anharmonic oscillator coupled to a zero-temperature
bath with ~ = 0.1 and y = 0.01. For both graphs, the top
curve is for an initial coherent state with mean photon number
[no[ = 4.0 and the bottom curve with (no( = 1.0.
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