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Optimal Quantum Measurements for Phase Estimation
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Quantum information theory is applied to practical interferometer-based phase measurements to
deduce the optimal phase measurement scheme with two optical modes. Optimal phase measurements,
given ideal input states, reveal an asymptotic 1/n decrease in phase uncertainty 50 for n the mean
photon number of the input state. In contradistinction to previous schemes for realizing the number-
phase uncertainty limit, the 1/n limit achieved here is independent of the interferometer phase shift;
prior information about the expected phase shift is not necessary to attain this limit. These results apply
more generally to su(2) and so(3) phase parameter estimation.

PACS numbers: 42.50.Dv, 42.50.Lc

The precise determination of phase shifts is an impor-
tant issue for quantum measurement theory, both for ap-
plications such as gravitational wave detection [1] and
because phase measurement sensitivity is fundamentally
limited by the complementarity between photon number
and phase [2]. In practice, phase difference measurements
are performed using interferometers and optimizing the
phase estimation has focused on adopting the ideal in-

put states [3,4]; a photon number difference measurement
of the two output fields from the interferometer yields an
asymptotic 1/n decrease in phase uncertainty 50 for par
ticular values of the phase shift. Here we determine the
optimal phase measurement scheme for two optical modes
[4,5] in arbitrary input states, using quantum parameter
estimation theory [6—8]. We determine the phase uncer-
tainty 59 for ideal input states (mean photon number n)
which reveals 1/n decrease for large n; this uncertainty is
independent of the choice of phase shift and is therefore
the ideal measurement which corresponds to interferomet-
ric phase shift measurements at the Heisenberg uncertainty
limit.

We introduce a scheme which might be realized using
a Mach-Zehnder interferometer and a suitable two-mode
input state. The two input modes are mixed at a beam
splitter and propagate along (possibly distinct) optical
paths to a fInal mixing beam splitter which produces the
two output modes. All measurements are performed on
the output modes, and we identify the particular joint
observable on the output modes which yields an optimal
determination of differential phase shifts between the two
paths of the interferometer.

The two annihilation operators for the two input modes
into an interferometer are designated a and b, respec-
tively. Using the Schwinger representation [3,9]

Jx = (atb + abt)/2, J& = (atb —abt)/2i

(ata + btb)/2 J J + J + J~ (1)

it follows that the common eigenstate of J, and J is the
two-mode Fock state

I Jp), = lj + p). Ij —p)b (2)
with eigenvalues p, and j(j + 1), respectively, where

I j + p,), is the Fock number state with j + p, photons
entering port a, and I j —p, )b is the Fock state entering
port b. Although j ~ p, must be integers, j and p, can
both be integers or both be half-odd integers. An arbitrary
pure input state can be expressed as

oo OO J

I+) = g + .Im). ln)b = g
m, n=O 2j=O p.=—j

(3)
where the sum over 2j indicates that the sum includes j
both integer and half-odd integer.

The 50/50 beam splitter and phase shift operators are
given by [3,10]

9~ = exp(~i' J /2), 2 (@) = exp(i@J,), (4)
respectively, where the ~ choice is an adjustable phase
shift, and we assume that equal and opposite phase
shifts exist in each arm of the interferometer. The
interferometer transformation is thus given by

I(P) = 9 f'(P)B = e-'~' (5)
and can be regarded as a device which induces a linear
rotation of the input state by an angle P about the J,
axis. In this paper we take the perspective of quantum
parameter estimation [11]. Our objective is to determine
the optimal measurement scheme, specified as a positive
operator-valued measure, to estimate the phase shift
parameter P.

The interferometer matrix elements are given by

J v I J + v

X (1+cosP)~" PI ~' (cos@), p, —v) —1, p, + v) —1, (6)

0031-9007/95/75(16)/2944(4)$06. 00 1995 The American Physical Society



VOLUME 75, NUMBER 16 PH YS ICAL REVIEW LETTERS 16 OcTQBER 1995

where Pi&
'

(x) are the Jacobi polynomials [12], and
(n, P)

symmetry rules produce the relations [13]

I.'.(@) = (—1)" 'I.'„(@)= ~'. .(4)
satisfies

E(0)d0 = (2j + 1) I j0)(jOId0/2~

I'(4)E(0)~(0) = E(0 + 4)

(14)

(15)
Asymptotic limits for the rotation operator matrix ele-
ments have been studied [13—15], and the area of overlap
technique produces the useful expression [15]

2 cos[(j —p, )~/2]
'rr [j(j + 1) —p, ]'~

and, for an arbitrary input state p, the probability distri-
bution over 0 is given by

P, (OI@)d0 = (2j + 1)(j0 + @Ipjl0 + y&d0/2~.

which vanishes for j —p, odd.
We now proceed to a determination of the fundamental

limit to phase shift measurements in the interferometer
[6,7, 11]. A positive operator-valued measure (POVM),
or effect, is an operator E(x) [16,17], which satisfies the
criteria (i) f dx E(x) = 1, and (ii) the spectrum of E(x)
is positive for all x. The probability density for the
corresponding measurement results is

PRO@=0)d0= [U2~ (cos 0/2)]2 d 0

(2j + 1) 27r
(17)

which is normalized such that [19]

As an example, consider the distribution for the phase
state

I j, 0 = 0). This is

P(x) = tr pE(x) (9) Pi(OI@ = 0) d0 = 1. (18)

for p the density matrix for the system.
To construct the effect for optimal estimation of the

phase shift parameter P in Eq. (5), we must first determine
the representation in which the generator J~, is a pure dif-
ferential operator. In this representation the unitary trans-
formation in Eq. (5) is a pure translation. This ensures the
resulting effect produces a shift-invariant probability den-
sity. This representation is constructed as follows. By in-
troducing the 1, eigenstates (I jp, &, j, which are analogous
to the 1, eigenstates of Eq. (2), the normalized phase state
can be written as [18]

Ij0& = (2j + 1) ' ' g e'"'Iiu&, .

The action of the unitary transformation Eq. (5) on these
states is easily seen to be a pure translation.

The overlap of two distinct phase states is given by

(2j + 1)(jOI j0 + 2@& = Uz, (cosg) = Tr l(2@)
(11)

when U, (x) is the Chebyshev polynomial of the second
kind [19]. The phase state (10) has been normalized such
that

The odd moments of sin(0/2) for the phase state distri-
bution (17) are zero as sin (0/2)P~(0) is an odd function
with respect to 0/2 for m odd. The variance with respect
to sin(0/2) is thus

a sin( )
ol

sin IP~(0) d0 =
2 ) ' 2(2j + 1)

'

(19)

which, for small 0, is approximated by

~0 = (, + 1/2)-'~'. (20)

(jOI jv&~ ——(2j + 1) ' g e '" y(jpl jv): (21)

The phase uncertainty decreases as 1/~j, and the phase
state is thus not the best input state given phase measure-
ments of the form (14).

Usually we are given states written as a superposition
of the eigenstates of J, . In that case we require the phase
state matrix elements

lim[(2j + 1)(j0'I j0&] = 2rr6(0 —0') (12)
(22)

and

The effect

lim( j0'I j0) = 1. (13)

A number of authors have suggested that the best input
states for interferometer based phase measurements have
equal Fock number states in each interferometer input
mode [3—5] corresponding to making j an integer and
v = 0. We now consider this case.
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The overlap is given by
J—1/2 i p(8+ , vr/2) Z.J(i ~l jo&, = (2j + 1)

P= J
(23)

I(j&l j0&l = j 4/J /j i
J/

p, =-j/2

2 —I /4dx cos( jOx) (1 —x ), (

and the phase distribution PJ &

i ~ 1 a . Provided that the phase spread is small com-
d to the separation o t e wopared o

he distribution is not detn-ble- caked nature of t e is ri u

can be obtaine y ad b assuming the input state j
or E . (23), obtainedThe large j asymptotic expansion for q. ,

using Eq. (8), is given by

which reduces to [19]

l(jol jo&l = 2 ' 'l(3/4)(j~) '/'Ji/4(j~), (26)

P, (el' =o) = 2j + 1 [l (3/4))' Pi/4(i 0)l'
27r 23/2 Qj0

(27)

0 is theand the phase is ri uh d t 'bution for the input state
I j ),

'

bounded function

(j~li0& =
&2,

j/2 —2i p, O

[i (J'+ 1) —(2/ )21'/4
/2 j J

(24)

hich is lotted in Fig. 1(b).
E . (26) h i fi it bThe Bessel function in q.

out 0 =0.nd all are real and symmetric about j
T ewi 0 b thewidthThe width of the overlap is estimated y e

'
even ( summed over integers) and for j

p, summed over half-odd integers). n t e imi

j, the sum (24) approaches the integral
~(j~) = joo

near Oo = 2.781, and,0 the first zero which occurs near jfor j O e
t is a roximated bytherefore, the phase uncertainty is app

40 = 2.781/j, (28)

25

/2

q

&;(i) ln&. In)b = g &;(j) I j0&,SV

j=On=O

which shows t at eh th hase uncertainty varies inversely
al POVM scheme, which corre-

e measurements, the input state j, gives
a phase uncertain yt which varies as 1 j in e

A 1 (or 1/n) asymptotic limit or a
for a hoton numbe differencedetermined previously for (a p oton num
onl as a minimum for particu ar(1 ) measurements but on y asz

hase shift parameter [3] and for e
POVM b dosame input state bubut a different choice of

[4]. Here wescillator hase state projectors . erharmonic osci a o
a1 '

as mptotic imit orp
it which is based on using optimal phase measuremity w ic is

su 2 hase state projectors.for interferometers using su p
des auum in ut state provi es aA two-mode squeezed vacu p e

a su e osition of jln&, In&b) states w icway to realize a superp
[4]. The two-modecan e inse ert d into the interferometer . e w-

as 20]s ueezed vacuum state is expressed as [

forj =sin r emo = h th ean photon number and

J
'P (j) = sech -.r(tanhr) = (i j —, 02 2/ + )

—i (30)J

2g -l/2 's with effective "tempera-a "thermal distribution of j s w
ture"

of P 0I = 0) vs 0/m for the input state
and (b) the large j asymptoticI j0), for (a) the exact solution an

expansion.
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The phase distribution for the squeezed vacuum state is

P (0(p = 0) = 7r '(j + 1/2)2 —,( j) ~(j 0~ j0),[; (32)

therefore, the two-mode squeezed vacuum serves as
a source of product states t~n), [n)b) with a thermal
distribution of n values. Unfortunately, the thermal
distribution (30) is heavily weighted with undesirable low
n input states making the squeezed vacuum source an
"energy-expensive" procedure for realizing a 1/n limit for
reducing phase uncertainty 58.
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