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Quantum Zeno effect induced by quantum-nondemolition
measurement of photon number
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Measurements performed on a system will alter the dynamics of that system, and in the strong-
measurement limit, can theoretically freeze the free evolution completely. This is the quantum Zeno
effect. We utilize quantum-nondemolition photon-counting techniques to realize the Zeno effect on
the evolution of either a two-level haynes-Cummings atom interacting with a resonant cavity mode,
or on two electromagnetic modes configured as a multilevel parametric frequency converter. These
systems interact with another electromagnetic cavity mode via a quadratic coupling system based on
four-wave mixing and constructed so as to be a nondemolition measurement of the photon number.
This mode is then coupled to the environment through the cavity mirrors. This measurement is
shown to be a measurement of system populations, which generates the desired Zeno effect and in
the strong-measurement limit will freeze the free dynamics of the system.

PACS number(s): 42.50.Md, 03.65.Bz

I. INTRODUCTION

Unlike classical mechanics, measurements are given a
special status in quantum mechanics; it cannot be as-
sumed that the effect of measurement on the system can
be made arbitrarily small. This is a direct result of the
noncommutativity of the operators that represent the
physical variables in quantum mechanics. From the very
earliest days of quantum mechanics it was necessary to
supplement quantum theory with additional postulates,
generally referred to as projection postulates, which de-
scribe the effect of measurement. The essential feature
of these postulates is their nonunitary character. The
projection postulates describe a very general, highly ide-
alized class of measurements, corresponding to instan-
taneous, arbitrarily accurate readouts. The probability
distributions for such measurements are given directly by
projecting the quantum state of t,he system onto the ap-
propriate eigenstates of t,he operator corresponding to the
measured quantity, without any reference to the details
of the measurement scheme. This degree of generality
suggests that such measurements should be seen more as
part of the interpretation of quantum theory than as a
realistic description of the measurement process.

It has been known for some time that such idealized
measurements can dramatically alter the free dynamics
of systems with a discrete spectrum [I, 2]. In particular
a two-level system undergoing coherent oscillations be-
tween the two st;ates, subjected to a sequence of projec-
tive measurements, can be frozen in the initial state [3],
the so-called quantum Zeno effect. This extreme result
is a direct consequence of t,he extreme idealization such
projective measurements embody; real measurements are
neither instantaneous nor arbitrarily accurate. Recently
the theory of measurement has been supplemented by
mathematical results which enable these restrictive as-
sumptions to be discarded[4 —6]. In particular it is now

possible to describe a more general class of measurements
which are not arbitrarily accurate. In Ref. [3] one of us
showed that the effect of a sequence of inaccurate, instan-
taneous measurements on the two-level system could be
described by a Markov master equation for the system
state. In an appropriate limit, defining an efficient mea-
surement, the initial-state occupation probability decays
exponentially linearly in time with a very slow rate. This
is a manifestation of the quantum Zeno effect in a more
realistic way.

There has only been one attempt to verify the quan-
tum Zeno effect [7]. The main difficulty to be overcome in
searching for an experimental realization of the quantum
Zeno effect is arranging for the measurement time scales
to be much shorter than the time scales of any other
nonunitary effect such as dissipation. Recently we pro-
posed a scheme based on Rydberg atoms in a microwave
cavity which may provide just this situation [8]. In this
paper we discuss two other quantum-optical models, a
parametric frequency conversion model and a Jaynes-
Cummings model, which offer some hope of experimental
realization. In addition the parametric frequency conver-
sion model requires more than two levels to describe the
free dynamics. We thus are provided with the opportu-
nity of studying how the quantum Zeno effect is manifest
in multilevel systems. Aspects of the Zeno effect in mul-
tilevel systems were recently discussed by Peres [9].

In the haynes-Cummings model we assume that the
atom is initially prepared in the excited state and the
field in the vacuum state. The coupling between the
atom and the field is such that the atom periodically
emits one photon into and absorbs one photon from the
cavity mode. The objective is to monitor the initial state
of the atom by watching for this photon to appear in the
cavity mode. If the Zeno effect occurs the probability
of finding the photon in the cavity mode should become
a very slowly increasing function of time. In the para-
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metric frequency conversion model we prepare one mode
in a vacuum state and the other mode in an Nz photon
number eigenstate. As the evolution proceeds these Nz
photons are exchanged between each of the two interact-
ing modes. We monitor the initial state by measuring th..
photon number in the initially unexcited cavity mode.

In studying the effect of measurement on free dynam-
ics it is useful to reduce the effect of measurement to
the least possible disturbance permitted by quantum me-
chanics. In this respect quantum nondemolition measure-
ments seem particularly interesting. It is the purpose of
an ideal quantum nondemolition measurement to yield a
determinate sequence of measured results [10]. For this
to be possible it is essential that an initial accurate mea-
surement of some physical quantity does not feed noise
into the system in such a way that it is coupled back into
the measured variable. Such a situation would produce
a subsequent measurement result which could not be re-
lated in a deterministic way to the initial result. Vari-
ables which avoid this noise feedback are referred to as
quantum-nondemolition (QND) variables. Constants of
motion are of course QND variables, provided such vari-
ables remain constants of the motion in the presence of
the interaction with the measuring device. This latter cri-
terion is referred to as back-action evasion. In this paper
we will consider QND measurements of photon number
of an intracavity mode. Such measurements do not lead
to any systematic damping in the system but do drive
diffusion processes in dynamical variables which do not
commute with the photon number, such as phase. We
will use a QND measurement of the photon number in
an optical cavity to monitor the evolution of a system
away from the initial state.

- = —,'(II)(21+ 12)(ll),

(II)&2[ —l2) (I I)

o. = —,'(12) (21 —II) (Il)

(2 2)

For the second rotation system we consider the cou-
pling of two electromagnetic field modes in a nonlinear
crystal. To obtain this interaction we might configure
a second-order susceptibility as a parametric frequency
converter [11,12]. We have

h]c
Hbg = (atb+ ab').

2
(2 3)

Here b is the same cavity mode given above, but the
two-level atom is replaced by a further cavity mode with
annihilation operator a. The coupling constant, K is pro-
portional to the second-order susceptibility.

A simple way to describe the dynamics of the two-
mode parametric frequency converter is to introduce the
Hermitian operators [14, 15]

J = -'(atb+ abt),

J = (atb —aha)5'

J = -'(ata —btb).

(2.4)

Np (Np'-2 2" (2.5)

These operators satisfy the usual su(2) Lie algebra of
[J~, Js] = iJ„ together with the cyclic permutations of
z, y, and z. The Casimir invariant for this group is

II. FREE DYNAMICS

h]c
Hgg = (ho++ bto ),2

(2.1)

where b (bt) are the annihilation (creation) operators of
the b-mode cavity field, and ~ is the dipole coupling
strength of the atom-field interaction. The cr's are the
usual operators of the su(2) Lie algebra defined by

We consider two quantum-optical models, one based on
the nondegenerate parametric frequency convertor [11,
12], the other on the Jaynes-Cummings model [13].The
first of these models describes the interaction of two in-
tracavity field modes via a second-order nonlinear suscep-
tibilty. The second describes the interaction between a
single cavity mode and a two-level atom, in the rotating-
wave and dipole approximation. As we shall show it is
possible to describe the free dynamics of both these sys-
tems in terms of the precession of an abstract angular
momentum vector, and we thus refer to both systems
collectively as the rotation system.

We consider first a Jaynes-Curnrnings two-level atom
interacting with a cavity of the radiation field described
by [13]

where N& is the total number of photons in the a and b

modes,

Np
——ata+ btb. (2.6)

It is also of interest to note that the photon number
operator for the b mode can be written in terms of these
angular momentum operators. We have

nb = 2(Np —2J, ). (2.7)

Using the above notation we can write the Hamiltonian
of the rotational systems as

(2.8)

where we write JC to refer to the Jaynes-Cummings two-
level atom model, and FC to refer to the frequency con-
verter model.

We can readily show for the frequency converter model
that the operator N& (the total photon number occu-
pancy of both modes) is a constant of motion as it com-
mutes with the above Hamiltonian. For the Jaynes-
Cummings model the equivalent conserved quantity is
given in terms of the operator 0', + ny.

For the Jaynes-Cummings two-level atom with one
photon (Nz —1), the basis states are given by the usual



5230

he precession of the a g
= xthe

omentum ababout the J

momentu

axis.

is in the va

nitial st t

ec recurr

—40

f
es one corn le

e angular
e initial

u ion. No
um vector

e initial st t

. A
t earance of t

important io

monitor th

p
e ect in such systems. T

i ia state on
t,h be mode.

S1 p» ei en
above Ha

g nstates of th
amiltonian

e o, op
h.

n therefore th
asis vectors,

—-mode syste

M. J N ANDD G- 3. MII.BURN

= 1-,).~. 1o)b

(2 9)
—2)a~am I1}b

The numbe

er system fo
ny eatures w'

or
n w' e

we plot thIn Fig. 1w h

e &
—land%, =

he initial sta
he probabili

h s ". e scaled t'
e system

tion b

ime for tw

p t er inside t
y co ert

as' he eigenst
„/2 and

number sta
m = 0, 1, 2, . . . , 2j
des a and I5 this is

III. MEAS UREMENT MODEL

tes of mo

Ij, j —m) =—l2j —mj —m), I3 lm)b. (2.10)

We prepare the fre
od i thm

'
e vacuum

converter s

p p otons:
e a mode'

i the 6

e in a numb

I@IN

e ber state

}o,b—= lj j (2.11)~) IO)b.)

e ree dynamics of th't is system isis described by a

0.8

0.6

0,4

O.R

0.0 0 10 15
t

FIG. S. Thh -evolution lhe free-

, and t e case N , =40

uency converter

requency can-

), . H esetz = l.
=( II, ).

n in the in

tot —IIIolot + IIQND + +dRMp 2

where H,,ot describes the fr
describe th evasion to

bes 'h o P g
o the cavity

e etector

the above it
itor th

e s iscusse

we c
represent, th

number me

s st
t, }li

sc

pe the rot t
ird fiel

we cou l

ment

. ..f.

a ion

plays the

q
'c coupling

t stage of the me
th "d

However this is s a m

m er in the other

is is still not a m
l

e

pe the dete t
Th is cou l

-mode

course we do

phng to th m
y th output rn e o

e ector mode. H

ynamics of the s sy em alon

reduc
ain an effec

'
step in the calcul-

e appearanc

q

oft

ge that we s
r e
e see

th

a amiltonia

asured

ter actionn picture is



QUANTUM XENO EFFECT INDUCED BY QUANTUM-. . . 5231

We introduce a QND-type coupling between the b

mode and a third cavity mode, with annihilation opera-
tor c. The coupling is via a third-order susceptibility. In
the interaction picture we have

hg
HctND = b b(c+ c ),2

(3.2)

where we choose g to be real. This could be realized
as a four-wave-mixing interaction with one of the modes
treated classically [16—18], in which case g is proportional
to the third-order nonlinear susceptibility.

The above Hamiltonians when combined give a com-
plicated but still straightforward unitary evolution, and
thus do not describe a measurement. We now need to
couple the detector mode c to the many-mode field ex-
ternal to the cavity. Ordinary photon-counting measure-
ments are made directly on the field which leaves the
cavity. The detector mode and external field comprise
the total measuring device. We shall return to this point
in Sec. IV. The interaction between the detector field and
the external field is described by the interaction Hamil-
tonian

where ln„(t)), denote coherent states of the c mode with

~ (t) = (I —c "") (3 7)

(a) I2)
IE

Here we see that the c mode has been driven into a
superposition of coherent states. In turn, the damping of
the c mode has introduced the exponential factor depen-
dent on (n —m)~ which will damp the coherences of the
b mode density matrix in the number basis. This result
is typical of measurement schemes which destroy coher-
ences and leave the system in a mixture of states in the
measurement pointer basis, in this case the b mode num-

ber states. In the limit yt )& 1 the coherence decay is

exponential with the decay rate given by g (n —m)2/2p.
This would seem to indicate that a good measurement
corresponds to having y~t/y very large where t is the
measurement time. Indeed in the Appendix we show that
in this limit the signal-to-noise ratio for the measurement

Hdamp = cI' + c I'f (3.3)

where I' are bath operators describing the many-mode
external field. In Fig. 2 we give a diagrammatic repre-
sentation of the system-detector-environment complex.

We are now in a position to write down the evolution
equation for the state of the system and detector. To
do this we use standard techniques [19] to eliminate the
dynamics of the external field, yielding a master equation

QND

g A A

p = [H«q, p] —ty[hyX„p] + —(2cpc —n, p —ph, ),

p~. (o) = ) .p, ln) ~(~l Io).(oI
n, m

and obtained for the density matrix at time t,

(3.5)

pq, (t) = ) p„exp (n —m—) I
1 ———e

72

@
l~ (t)).(~ (t)l
(~-(t) l~-(t)). ' (3.6)

(3 4)

where n, is the number operator for the c mode and
X, = &(c+ ct) is the quadrature phase operator for the
c mode. Here we have treated the dissipation resulting
from the coupling of the c mode to the environment under
the Markov approximation.

To describe the dominant; eH'ect of the coupling to
the measuring device we first consider the case in which
~ = 0, i.e. , we turn oA' the free dynamics. The solu-
tion to the master equation in this case was obtained by
Walls, Collet, and Milburn [16]. When e = 0 then ng

is a constant of the motion as there is no mechanism to
shift photons from the a to the 6 mode. They considered
an initial state with the b mode prepared in an arbitrary
state and the c mode prepared in a vacuum,

(b)

FC

QND

FIG. 2. The schematic experimental arrangement is
shown for the Jaynes-Cummings two-level atom system (a),
and for the two-mode frequency converter system (b). In (a)
the two-level atom is tuned to the cavity mode b In (b).
the cavity supports two modes u and b interacting through a
second-order susceptibility so as to be configured as a para-
metric frequency converter (shown as FC). In both systems
then, mode b is coupled to another electromagnetic cavity
mo de, c via a quadratic coupling system based on four-wave
mixing and constructed so as to be a nondemolition measure-
ment of the quadrature phase (shown as QND). Photon num-
ber counting is then performed on this third mode c (shown
as PD).
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is very good. For yt )& 1 with large damping rate a good
measurement means that g2t )& 2p. As well, for large y
we are motivated to consider the possibility of adiabat-
ically eliminating the detector mode from the dynamics
and obtaining an evolution equation for the system alone.

When It E 0 the above analysis suggests the mecha-
nism by which the Xeno effect is manifest. The damping
of the c mode rapidly eliminates the off-diagonal coher-
ences in the photon number distribution and it is pre-
cisely these coherences that need to "build up" in order
for the unitary rotation of the free evolution part of the
system to occur.

IV. ADIABATIC ELIMINATION
OF THE DETECTOR MODE

where po, p~, p&, and p~ are operators with respect to
either the a and b modes in the frequency converter case,
or to the b mode and o operators in the two-level atom
case. We also note that the reduced density operator for
the a and b modes is

prot —trc(ptot) —po + p2 ~ (4 2)

In this section we treat the large-damping limit (yt »
1). In this limit we make an ansatz for the state of the
c mode, and by adiabatically eliminating this mode ob-
tain a reduced master equation for the evolution of the
remaining system —the two-level atom and b mode in the
Jaynes-Cummings case, or the a and b modes in the fre-

quency converter case.
We are interested in the large-damping regime on the

c mode where we are rapidly and destructively counting
all the photons that are generated in the c mode. We
expect, based on this, that the c mode is never able to
evolve very far away from the vacuum. This provides the
basis of the adiabatic method we are going to consider.
There are various schemes to do this and we choose to
follow the method used by Mortimer and Risken [20].

For large p the c mode is heavily damped and remains
close to the vacuum state lo), (ol. A photon number ex-
pansion of Eq. (3.6) indicates that this is readily satisfied
in the limit y && y. In what follows we allow for small
deviations from the vacuum in setting

pt. t = pop lo), (ol+ p, g II),(ol+ pt g lo), (ll+ P2eli). {Il,
(4.1)

To obtain these equations we discarded all terms involv-

ing the matrix elements l0), {'2l and l'2), (ol. Here we see
the essence of the adiabatic approximation in that for
large y, p~ and p& are heavily damped.

Using Eq. (4.2) we have for the reduced density oper-
ator

proc = 2X-
~

[H-t P.ot] — [&—b P+l2
(4.4)

where p+ ——pq + p& . The adiabatic approximation

is made by setting p&
——

p&
——0. This approximation

amounts to a slaving of the fast variables for large damp-
ing (pt )& 1) to the slow ones. If we substitute these
results into Eqs. (4.3) we obtain

~ = F(i+) = (i++'r [H-~, i+I),

where

(4 5)

'x-A= [nb —p—b]
7

(4.6)

and p = 2(hy) ~. We invert this equation to obtain

p+=F '(A)
—A tp[Hrot i A] p [Hrot ~ [Hrot ~ A]] ~ (4 7)

We expand p+ to lowest order in y/y and substitute these
results into the reduced master equation (4.4) to obtain

proc = -2-
[Hrotq prot]

2
[rtbr [rtb& prot)j ~

27
(4 8)

In this equation we see an additional g term arising. As
we have p && g, yt && 1 and y2t && y this allows the good
measurement limit. For the frequency converter we can
write ny in terms of J, and obtain

PFc —'"[J* PFc] —rfJ., [~., PFc]] (4 9)

where I' = g2/2y is the Zeno measurement parameter.
The last term in Eqs. (4.8) and (4.9) describes the

effect of the measurement on the system in the limit of
very good measurements. This double commutator term
leads directly to the system becoming diagonalized in the
basis which diagonalizes n~. Note that the rate of decay
is the same as that given by the ~ = 0 long-time solution
given at the end of the preceding section.

When we insert Eq. (4.1) into the total system master
equation (3.4) and collect terms in lo), (ol, ll), (ol and
lO), (1l and ll), (ll we obtain

Po =
f [Hroti Po] 2

[nbp& pl~tb] + VP2)

—2 2X - - 'y

P =
I- [H ot p&]

2
[rtbpo P2 b] 2»h

(4 3)

6 i =
&

[H.ot, p ] —
2

[nbp2 —p»b] —
2 p~,

P2 =
&

[H-t, P2] —
2

[nbpi —pinb] —VP2

V. REDUCED SYSTEM DYNAMICS

We now consider the effect of the measurement on ei-
ther the 3aynes-Cummings two-level atom or the N, level
frequency converter system. We firstly note the equiva-
lence of both systems when N, = 2 or equivalently, when

N& ——1. In the selected basis for the Jaynes-Cummings
two-level atom, Eq. (2.9), the free evolution term has
matrix elements equivalent to J . The measurement op-
erator np has the matrix elements 2I —J, . We readily
see that for N, = 2 the master equations for both sys-
tems are identical in their respective basis states. We
first consider the frequency converter case and recover



INDUCED BY QUANTUM-. . .Q UANTUM ZEN Q EFFECT I 523345

1.o

o.g

0.6

o.p

ee Ref. [3],

(-r o o) (~)
(5.1)

magnitude o e

1-.
nl orior.
&t, the ini ia-ship between p;

ity and z(t). We have

robability for thep ypThe initial-state roba

ll to thlies equally weI' 0. This app ies

torl =Ower
to the 'mib'l't t (ii

co
see the pro a i itimes we see

he cessation o os
'

Note also t eI/N, = 2.
where e = 1.

—2. As well weits when &~ '

n obtain
,1 atom resu . , tpm we 'an„s-gnmming;

ediately
h t for the ayne

d coherences imm
npt«a

o ulatjons an catomic leve pop

pf a

the a
. t tes abPve.

e dynamic
om the bas

ent pn the
d been d»

r
t of measurem

as alrea y

The effect o
1 nt tp ours as

that pa-
mode} equi va

emplpyed in
two-le e

The apprpac
We con-

; Rf. l~]
& 2 system.

cussed in
'

ght tp the N&

t vector d
s insig

mentumsider the p
nent, s z(t) =

h components
fined to ha

atjpn of mptip
er equatipn,

ve compo
noft esec(J ) The eq a

diabaf jc mas e
z(&) = i ~ .

d f,om the a iais readily obtaine
s

I't/2(-At/2y(t) = ——e e

At/2 -At/2I't/2[ f (
A-t/2'(') = 2n'
(eAt/2 +

(5 2)

= 0 to the exponen-
e e I' theb h

' f 1

th
' 't 1pp

ntinuous mee e
'

strong, co
constrain

N system of firs -o I e

avior can be o

()The matrix elements o p
der oes( 2e the vector und g

he
'

ll decays to t e or' '
exponentia y
we have

~ -re t/j.z(t) = je

r slow exponr nential decay.
ofdf th tf g' rar later re eren

effective s rehale I' ~ , w I') 0 anfo
t "1""f'h 0

ion. We aso no e
e vector is 0,

bl d 'b d...t, ..., ,represents a sys

s be readilyo an, = s stem can e

t rmsofth g

initial state (I) is given y

(5.3)

(5.4)p*(t) = —,'+i zg)

ment termF the effect of the measurem
'

n. We plot=21 1 1 t

. Ofi i hsuremen pt arameters I'. in

I,t = (i,i —&+ &(Pli,i — +
e o coupled equationsThe first tw

JZt&(JI,2P2, I Pi, 2Pii = —xK

„—P, ,) —Js 2P, ,] —rP, ,,
= —t&[JI,2(P2, 2 —Pi, i — s, 2Pi, 2 =—

(5.5)

(5.6)

pi, i(&) =—

r h

"[2J (pi, i —p2, 2 + s,2, sir
(5.7)

si 0) =OandthusAt t=0) P22 i — 3, (o) = pi, s(O) = ps, i(
tt2(N, —1) .

)( (5.8)pl, l(t)(t=O—
21

'tial state oc-hat t e ev wa from the ini ia

factor is t e in



5234 M. J. GAGEN AND G. J. MILBURN

that we require the measurement parameter I to scale
proportionally to N, in order to obtain a Zeno effect for
large N, . This behavior is evident in the numerical re-
sults. For semiclassical systems with N, ~ oo, the Zeno
effect becomes unobservable.

In Fig. 4 we show the initial-state population p;(f) in
the large N, limit. We take N, = 10 and vary I from
0 to 2. The free evolution of the system appears as the
curve I' = O. Here we see a similar picture to t e, = 2
case. Damped oscillations occur for small I but ie ou
for large I'. In all cases it is apparent that the long time
limit of the population is tending to 1/N, , and for large
the initial state is trapped exhibiting the Zeno eA'ect. T e
choice of N, = 10 in Fig. 4 is illustrative of the system
evolution for all large X, . In particular, all oscillations

results of Eq. (5.2). We see in Fig. 5 a plot of the initial-
s a e occupt t pancy probability for systems wit

's lot all10 and 15 and for the value I' = 2K. In this p o a
oscillations have ceased, and the populations ex i i ahibit a
smooth exponential decay to their respective long-time

The dominant feature in Fig. 5 is the enhanced rate

proac we exph we expect that the initial rate of decay is propor-
see

this confirmed in Fig. 6 where we compare the rate o
decay of the initial-state occupancy probability for three

with K = 1. We do see similar initial rates of decay for
these systems. This result then indicates that the size o
the measurement parameter needed pd to roduce a given
Zeno effect, as shown in the rate of decay of the initial
state population, must scale linearly with N, .

In an experiment it will eventually be impossible to

size of I' is limited by the resolution times and accuracy of
the detector [4—6]. We therefore expect a divergence e-

tween this discrete model, which features arbitari y large
I', and the experimental behavior of large N, systems.

i.O z I I
I

I I I I
I

I I I

0.8

O.e

0.4

0.2

I0.0 0 5
i , (c),

10 15

We investigate the range of applicability for this discrete
model now.

2tThe detector operates in the limit, pt » 1 and y t »
'2y. The resolution time for the detector is the time in
which the b-mode photon coherences are destroyed and
is given by

27
&c » —.

X2
(5.9)

This detector resolution time should be substantially
shorter than typical evolution times in the system o in-
terest. We gain some insight into the typical evolution
time from the free evolution of the system. In this case
(with I' = 0) the initial-state occupancy probability is
readily found to be [14]

1.0

~ ~ ~

FIG. 5. We compare the rate of decay of the snstial-state
occupancy probability for three systems with (a) N, = 2, (b)
N, = 10, and (c) N, = 15 and for the value I' = 2r. In this

lot all oscillations have ceased, and t e p po ulations exhibit a
smooth exponential decay to their respective long-time value

of 1/N, .

0.8

0.8

O 6

0 ~

0 p

O.S

0.4

0.2 (c)

0.0 0
I t z z II z z t z I

5

~ ~FIG. 6. We compare the rate of decay of the initial-state
occupancy probability for three systems with (a) (N, , I )
(2, 2), (b) (N. , I') = (10, 20), azzd (c) (N, , I') = (15, 28). We

predict similar rates of decay for these systems given the result
I' —K (N. —1). With r. = 1 we do see roughly similar rates
of deca.y for ea,c pa.irh ~S.- I"). In each case the population
tends to 1/N ..

FIG. 4. The initial-state occupancy probability for the
case N, && 2 subject to increasingly strong measurement

0. This case only applies to the frequency converter.
For I' = 0 we recover the free evolution. For long times we

see the probability tending to the limiting value 1/N, Note.
here z = l.also the cessation of oscillations for I = 2~ where z =
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( ) - 2(N, —1)

p;(t) = cos
i

—
i&2). (5.10)

2

(N, —1)~~
(5.11)

We note that for large N, we have t ~ 0. We require
that the resolution time of the detector t, needs to be
substantially shorter than t to manifest the zeno eRect.
This requirement permits us to detect the system in some
state before it has appreciably evolved away from that
state. For this time to be much less than t we need

as shown in Fig. 1 for the N, = 2, 40 case. The initial-
state occupancy becomes an increasingly narrow peak for
large N, with a half width of pq q(t) =

2 where

est. We show a major feature of these reduced dynamics
is a loss of coherence in the b-mode photon number ba-
sis. This basis is the pointer basis of the system, and this
loss of coherence is the mechanism that enables the Zeno
eRect.

We present the dynamics of the system of interest for
various measurement regimes and for various numbers
of levels in the system. The dynamics feature a smooth
transition in the initial-state population from the usual
free evolution Rabi Bopping to an exponential decay of
probability for strong measurements. For systems with a
large number of levels (N, ) the dynamics are similar but
we must scale the measurement strength with N, in or-
der to get equivalent rates of decay. We use this scaling
to demonstrate the regime for which this discrete level
model will not adequately model real systems by consid-
ering the finite resolut;ion time of our detection process.

~ (N, —1) « 2I' . (5.12)

This gives a heuristic limit to the size of the systems N,
that we would expect to be adequately modeled by this
discrete model. The behavior shown in an experiment
beyond this limit will show the cessation of the Zeno
effect for increasing N, . For increasing N, systems will
increasingly show free-evolution-type behavior over short
times. This is in effect a semiclassical limit and thus we

expect the Zeno effect to be unobservable in this limit.

VI. CONCLUSION

In this paper we show an experimental arrangement
to demonstrate the quantum Zeno effect. We consider
two possible systems of interest. The first is a Jaynes-
Cummings two-level atom interacting with a cavity mode
with annihilation operator b. The second is an N, -level
system made from two cavity modes, with annihilation
operators a and b, interacting via a parametric interac-
tion configured as a frequency converter. For these sys-
tems there is a direct correlation between the populations
of the system of interest and the b-mode photon number.
We employ this correlation to measure the initial-state
system population.

We perform this measurement by establishing fur-
ther correlations between the 6 mode and another cavity
mode, with annihilation operator c. This interaction is
via a quadratic coupling configured so as to be a quan-
tum nondemolition measurement of the b-mode photon
number. Subsequent photon counting measurements on
the c mode are a continuous readout of the populations
of the system of interest. We calculate the c-mode pho-
ton count signal-to-noise ratio and show that it is indeed
a good measurement of the b-mode photon number, and
hence of the system populations. We show that for strong
measurements, the system populations are frozen. This
is the quantum Zeno effect.

In the strong-measurement limit, the c mode is heav-
ily damped by the photon counting and we are justified
in adiabatically eliminating the c mode. We do this by
treating the c mode as being only slightly perturbed from
the vacuum. This elimination gives a reduced master
equation describing the dynamics of the system of inter-

APPENDIX: SIG NAL- TO-NOISE RATIO

In this appendix we consider the system-detector in-
teraction with the free evolution turned off e = 0. We
make use of the results of Sec. III and perform selective
measurements on the c-mode photon number and derive
the relevant signal-to-noise ratio (SNR) of interest.

In t,he long-time limit pt )& 1 the c mode settles in a
superposition of coherent states of the form

~

—iyn/p).
(There is also a short-time non-Markovian limit yt « 1

which we do not consider here. ) Once this equilibrium
has been reached then photons are measured in the c
mode as fast as they arrive. We expect therefore a
linearly increasing photon count in the long-time limit.
These results will be demonstrated below.

For the selective measurement we quote results from
Ref. [18]. The probability of getting a readout of m pho-
tons at time t is

P(m, t) = ) ", e "Pg(n, 0)
+=0

(A1)

In the limit 7t && 1 we have

z„=2I'tn~)

where we write I' = g /2p. In the long-time limit we can
evaluate the average c-mode photon count in time t, m,
the variance in that count V(m), and the signal-to-noise
ratio of interest. We have

m = 21't(n~)g p)

V(m) = (2I't) Vg(n~) + 21't(n~) g p,

(A4)

where Vb(n~&) is the variance of n&s evaluated in the initial

where

2n2
z„=

~

t ——(e «'~ —1)(e «'~ —3)
~

. (A2)
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—2

S=
V(m)

' (A5)

b-mode state. Here we see the expected time dependence
of m in the long-time measurement limit. In the case
where the b mode is initially in a photon number state,
then Vt(nq2) = 0.

We define the c-mode photon count signal-to-noise ra-
tio (S) to be

(nb)~, p

V( ') (A6)

Here we see that the c-mode photon number readout is a
good measurement of the b-mode photon number distri-
bution. Thus, for a given time, a "good" measurement
corresponds to large I'.

For the case where the b mode is initially in a photon
number state or when (2I't)2'(nt, ) « 2I't(nt) t p we have

and therefore, for sufBciently large I' t, (2I't)~Vt(n&) &&

2I't(nq)t p we have
S; = 2I't(nt2)t p. (A7)
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