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Measuring the vibrational energy of a trapped ion

DECEMBER 1995

C. O'Helon and G. J. Milburn
Department of Physics, University of Queensland, St Luc. ia 4072, Australia

(Received 21 July 1995)

We show that an approximate quantum-nondemolition measurement of the vibrational energy of a trapped
ion in a standing wave may be made by monitoring the fluorescent intensity from a probe transition. The ac
component of the mean photocurrent signal is directly proportional to the average vibrational quantum number.
The power spectrum of the photocurrent also contains information on the vibrational energy, We show that the
phase of the vibrational motion undergoes diffusion as expected for a quantum-limited measurement of the
energy of oscillation.

PACS number(s): 32.80.Pj, 42.50.Vk

I. INTRODUCTION

A trapped and laser-cooled ion, at the node of a standing
wave, has recently been shown to be equivalent to the
Jaynes-Cummings model, one of the paradigms of quantum
optics [1]. In the Jaynes-Cummings model a simple har-
monic oscillator is coupled to a two-level system in the di-
pole and rotating-wave approximation. If the atom is inter-
acting with a single-mode cavity field, the harmonic
oscillator is the field mode. In the trapped ion configuration,
however, the harmonic oscillator corresponds to the vibra-
tional levels of the trap. Indeed there appear to be consider-
able advantages in the trapped-ion realization of the Jaynes-
Cummings model over that with a cavity field mode, as the
harmonic oscillator representing the vibrational states of the
trap is only very weakly damped and further, the strength of
the coupling between the two-level atom and the oscillator
can be made very strong simply by increasing the intensity
of the standing wave. Cirac et al. [1]have suggested that an
observation of the collapse and revival sequence of the mean
inversion in the Jaynes-Cummings model should, in the case
of a trapped ion, enable a determination of the motion of the
ion in the trap. This fascinating idea raises the question of
whether or not a quantum limited measurement of the center-
of-mass motion of a trapped ion may be made. In this paper
we give a model in which a quantum-limited measurement of
the vibrational energy of the ion in the standing wave may be
made, using a strong probe transition coupled to the two-
level system (see Fig. 1).

The basic model of a trapped-ion realization of the
Jaynes-Cummings model has been given in some detail by
Cirac et al. [1].We summarize their results here. If we as-
sume that the vibrational amplitude of the ion in the trap is
much less than the wavelength of the light, the Hamiltonian
for an ion at the node of a standing wave is

H, = fi b, o,+ 6 va t a + A, A r/X. , o

where o., and o. are the two-level inversion and polarization
operators, respectively, X& is a dimensionless position opera-
tor for the position of the ion, A is the Rabi frequency for the
transition, 5 = ~0—coL is the detuning between the standing-
wave frequency and the atom, p is the oscillation frequency
of the ion in the trap, and a, a are the lowering and raising
operators for the vibrational states of the trap. If we scale the

position of the ion in terms of the rms position fIuctuations in
the ground state of the trap, the dimensionless coupling con-
stant g is given by g= kgfi/2m ,v, where k is the wave num-
ber of the standing wave. We assume throughout this paper
that on the time scales of interest the spontaneous decay rate
from level two can be neglected. If we now assume that

v
I
a I) r/I~ la vl

with rg(&1, the Hamiltonian in the interaction picture and
rotating-wave approximation may be written

fi, yO,
H=fiBcr, + (ao~+atcr ), (3)

I2&

stx

FIG. 1. Electronic energy-level scheme for the trapped ion. The

l
1)+-+l2) transition interacts with the standing wave in the trap,

while the
l
1)~l3) transition interacts with a strong probe field.

where 6=5 —v. Typical values are p=3 MHz, y=0.07,
and 0=10 Hz [2]. We also assume that the probe field is
exactly resonant with the 1 —+3 transition.

As in Ref. [1], we assume that the two-level system
coupled to the standing wave is very strongly coupled to a
third probe level by an intense field with Rabi frequency
A„(seeFig. 1). Fluorescence on the

l I)~ l3) transition is
used to determine whether or not the atom is in level

l
1).

The probability of finding the atom in
l
1) is in turn deter-

mined by the position of the ion in the trap through the
Jaynes-Cummings interaction with the vibrational states of
the trap. This three-level scheme is the standard means of
monitoring weak transitions in trapped ions [3].It is also the
basis for a quantum-limited measurement of a two-level tran-
sition leading to the Zeno effect [4]. In this latter context the
scheme has been analyzed in some detail in Ref. [5]. Cirac
et al. consider the case of a sequence of pulses applied to the

l 1)~ l3) transition and the absence of or otherwise fiuores-
cence on the strong transition indicates if the atom is in level

l 1). The scheme thus represents a series of (approximate)
readouts of the operator P, =

l 1)(1l. As this variable is di-
rectly coupled to the vibrational states of the trap, the result-
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ing statistics can be used to infer the vibrational state of the
trapped ion. In this paper we consider a different scheme in
which the strong probe field is always applied, in order to
realize a continual quantum-limited observation of the vibra-
tional energy of the ion.

iyA
(pzia' —apiz),

i r)A
Piz=(1~ I )piz+ (Piia a Pzz)2

(12)

II. THE MEASUREMENT MODEL

Following the method in Ref. [5] we assume that the Rabi
frequency of the probe field B~ is much greater than that for
the standing wave A. Furthermore, we assume that the cou-
pling rates are such that we are in the good measurement
limit

(( 1 ((
y

pity'

(4)

where y is the spontaneous emission rate on the ~1)+-+~3)
(strong) transition. As one expects that the transition

~1)~~2) will be a weak, electric-quadrupole transition [1],
the right inequality will not be hard to satisfy. In this case the
probe system may be adiabatically eliminated, giving the fol-
lowing master equation for the two-level system of interest:

dp iyA
dt

= —i 6[a, , p] — [ao. + a f o. , p] —I [P1,[P, , p]],
(5)

where the measurement parameter I is

0P

27 (6)

The measured signal is the photocurrent produced by di-
rect detection of the fluorescent field from the

~
1)~

~
3) tran-

sition. The scattered field, due to this transition, may be writ-
ten in terms of the dipole moment operator for that transition
as [6]

(7)

where o.' = ~1)(3~. The mean photocurrent (in units of
s ') is then

pii=(far&[a a, pii]+y(2a pzza —&pit, a a))), (13)

p» ——(—itr8[aa, p»]+g(2ap»a —(p», aa ))), (14)

where

(15)

g= KI, (16)

and tA, B)=AB+BA. We can cast this in a Lindblatt-form
master equation for the density operator by defining the op-
erators A =o.+a and At=o. a~. The result is

and p2&
= p &2. The overdot denotes differentiation with re-

spect to time. These matrix elements are actually operators
on the vibrational states. The total center-of-mass state of the
ion is given by p, = p»+ p22. Similar equations for the
two-level transition were given in [1];however, the mecha-
nism for coherence destruction in that paper is different from
that given here and was attributed to phase noise on the
probe laser. Thus the coherence decay rate I (in our nota-
tion) is different.

Equations (10)—(12) show that the measurement has no
effect on the diagonal matrix elements, but causes the off-
diagonal elements to decay at the rate I . For a good mea-
surement we expect this decay to be rapid. We proceed by
adiabatically eliminating the coherence operators p&2 and

p2&, to obtain an approximate master equation that describes
the center-of-mass motion. In contrast, Cirac et al. [1] con-
sider the underdamped case in which the coherence decay
rate is less than the effective Rabi frequency on the two-level
transition.

Solving for the steady-state coherences and substituting
into the population equations we find that

E(i(t))= e(E, (t)E,+ (t))

= eyp3(t),

—i tr 6[[A,A f],p]. (17)
(8)

p= y(2A pAf —A fA p —PAtA) + y(2AtpA —AAtp —pAAt)

where e is the effective quantum efficiency and P3(t) is the
probability to find the atom in state ~3). We shall return to a
more detailed analysis of the signal and signal noise in Sec.
IV. In the remainder of this section we analyze the motion of
the trapped ion in the good measurement regime.

The effect of continuous observation on the ion is con-
tained in the last term in Eq. (5). This term tends to destroy
coherence between states ~1) and ~2), as one would expect
for a readout of the population in level ~1). This is easily
seen by calculating the partial matrix elements of p in the
atomic basis p,j= (i~ p~ j), where i,j = 1,2.

i xgB
P 1 1 (P 12 Pzl)2

We now proceed to extract the physical content of Eqs.
(13) and (14). In the eigenstates of vibrational quanta ~n),
where a ta

~ n) = n
~
n), we define the joint probability

P;(n) = (n
~ p;;~ n) to find n vibrational quanta and the atom in

state i (i =1,2). Then

dP, (n) =y((2nPz(n —1)—2n

Pi�(n)),

(18)

dPz(n) =g(2(n+ 1)P, (n+ 1)—2(n+ 1)Pz(n)). (19)

Equations (18) and (19) represent a vector valued birth-death
Markov process, in which atoms in state ~2) make a transi-
tion to state

~
1), increasing the phonon number by one, while
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atoms in state ~1) absorb a phonon, thus moving to state

~2). It is now possible to see how information about the
atomic state gives information on the phonon number. To
begin, we note an interesting constant of motion

1 1
p, (t) =—+

2[1 +n(1 —e "«')] (27)

d—[P ~ (n, t) + P2(n —l, t) ]= 0.
dt (20)

If the vibrational state of the ion is coherent, with mean
quantum number n, the initial phonon-number distribution is
Poissonian. If the atom starts in the ground state then

The probability to find the atom in state i, at time t, is given
by 1 1

p, (t) =—+—exp[ —n(1 —e «') ]. (28)

p, (t) = g P,(n, t).
n=0

(21)

Using Eqs. (20) and (21) we find that

(22)

where n = a~a. We thus see that a determination of the popu-
lation of the ground state as a function of time gives direct
information on the vibrational center-of-mass energy. We
show in Sec. IV how this information may be extracted from
the fluorescence of the probe transition. Another important
consequence of Eq. (22) is

1
(n(t)) = n+ —([1+n(1 —e «')] ' —1}.2 (29)

In the case of an initial Poisson state,

Thus the steady-state probability, in both cases, is approxi-
mately 0.5 for n large. This corresponds to saturating the
probe transition.

We can use Eq. (22) together with Eqs. (27) and (28) to
obtain the mean vibrational quantum number. In the case of
an initial thermal state

~(n(t)) —(n(0))~~ 1, (23)

which indicates that, for large initial vibrational excitation,
the phonon number is very nearly a constant of motion. At
the other extreme, if the system starts in the vibrational
ground state [(n(0))= 0] and in the electronic ground state

[p, (0) = 1], then it must remain in this state.
Using Laplace transforms, the solutions to Eqs. (18) and

(19) are easily found to be

(n(t)) = n+ —(exp[ —n(1 —e «')] —1). (30)

It is then easy to see that the mean vibrational quantum num-
ber changes very little. In both cases the steady state, for
large n, is

1—P, (n,o)(1+e "«"')+ P2(n —1,0—)

P, (n, t) = 4

X(1—e «"'), n ) 0 (24)

n =n ——.2' (31)

, Pt(00), n=o,

1 —4 +iP2(n, t) = P, (n+ 1,0—)(1—e «t" ')')+ —P2(n, o)

&& (1+ 4«(n+1)f) (25)

p, (t) = 1 —2yt(n(0)). (26)

In this case we have a measurement of the initial mean vi-
brational quantum number and the information can be ex-
tracted from the initial response of the signal, The time scale
for a possible experiment is discussed in Sec. V.

If the vibrational state of the ion is initially thermal with
mean number n and the atom starts in the ground state, we
find the probability to find the atom in the ground state at
time t is

The probability to find the atom in the ground state at time t
is given by Eq. (21), with i= 1, and is a rapidly decaying
function of time if the initial distribution of vibrational en-

ergy is sharply peaked at a large value of n. For short times
yt(n)((1 and the atom initially in the ground state, we find
that to a good approximation

III. STATE REDUCTION AND QUANTUM BACK-ACTION
NOISE

The measurement model thus realizes a measurement of
the vibrational quantum number a~a. If this measurement is
quantum limited, we expect the density operator for the sys-
tem to become diagonalized in the phonon-number basis.
This dynamical state reduction is typical for continuous
quantum-limited measurements [8]. Complementary to this
decay of off-diagonal coherence in the number basis, the
theory of continuous quantum-limited measurement suggests
that the quantity conjugate to the measured quantity should
undergo a diffusion process. We now show that this is indeed
the case here. For simplicity we set the detuning to zero
(8=0) in what follows.

The general solution to the master equation (5) in the
number basis is

1
(n~p„(t)~m)=—e «(+ ~) '(q +r )

(32)
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g2 Q
Q2(~) =2x ~,~

—2x(1+
I ~I')(Q2 Ql)

1-—p( &'n+ 1+pm+ 1) ty
2

2' K6n+1,m+1 ~n, mJ

(33)

where n, m&0, q„=(nlptt(0)lm), and r„
(n p22(0) m). Off-diagonal matrix elements decay at two

rates. The fast rate is given by —X(+n+ ~m) and is due to
the birth-death process previously identified for the phonon-

number distribution. The slow rate —X(+n ~rn) is an ad-
ditional coherence decay term that becomes greater the larger
the number difference between the superposed states that the
coherence describes. This term ensures that the steady-state
distribution is diagonal in the number basis. The steady-state
density operator for the system, given that the atom starts in
the ground state, is easily seen to be

~Qi' ' ~Q2 ~Q2l
+2gl n* '+m

Bn* Bn
/ ( Bn* got)

(38)

The Q function for the vibrational motion is given by
Q(n, t) =Q, (u, t)+Q2(n, t) and satisfies the equation

a a i 82Q,
Q=x» ~ n*+ n '(Q) —Q2)+2x ~. (39)

The last term in Eq. (39), involving second-order partial
derivatives, leads to phase diffusion. This may be seen by
writing the equations of motion in terms of polar coordinates
(r, P), where u= re'~. This gives a term of the form

x ~'Qi
2r 8$

p-= P(o.0)lo)(o+ —X P( o)I )( In= 1 r

1)(1 +— g P(n+ 1,0) n)(nl S 2)(2I. (34)

I
p =g P(n, O) n)(nle —,

n=0 2'

If the initial phonon-number distribution has a large mean,
this equation may be approximated by

We have previously noted that for an initial state with large
mean phonon number, the average (a~a) is very nearly con-
stant. Thus if we start in an initial state of large amplitude

ao, we can replace r by I uol . If we assume the atom starts
in the ground state, then for a short time Q=Q, and
Q2=0. The initial evolution then corresponds to a simple
harmonic oscillator decaying into a zero-temperature heat
bath, with the amplitude decay rate of y. If the initial mean
vibrational energy is large, then for long times Q, = Q2. This
can be seen by noting that the off-diagonal elements of p;;
decay rapidly

I
see Eqs. (32) and (33)], thus the Q functions

for long times can be approximated by

Q, (n, t) =(nip;, (t) In), (36)

where a) is a coherent state of the oscillatory motion in the
trap. The equations of motion for each of these functions
may be obtained directly from Eqs. (13) and (14) using stan-
dard operator correspondence rules I 9]. The results are

BQi BQi
Qi(~) =2xl ~l'(Q2 —Qi) —x ~*~, + ~ ~, (»)

where l is the two-dimensional identity matrix. The approxi-
mate steady-state solution is diagonal in the phonon number,
with the diagonal matrix elements unchanged from the initial
phonon-number distribution. This is characteristic of a
quantum-nondemolition (QND) measurement of the number
operator for a simple harmonic oscillator I9] and thus the
measurement scheme analyzed here is approximately a QND
number measurement. The electronic state is an equal mix-
ture of the ground and excited states. A QND measurement
of the quantum number of an oscillator must necessarily add
noise to the oscillator phase. We now show that the center-
of-mass oscillations undergo a phase diffusion as expected.

The Q functions for the operators p;, are defined by co-
herent state matrix elements as

Q;(n, t) =g, e ~ P;(n, t).
n=0

(40)

Using Eqs. (24) and (25) and assuming the atom starts in the
ground state we find

lnl'"
Q&(u, t) =—g e ~ P&(n,O)(1+ e ~"') (41)2 =0 n~

Q2(n, t)=—g e ~ Pt(n+1, 0)(l —e ~~"+' ').
0 F1

(42)

If the mean photon number is large, there is very little dif-
ference between P, (n, O) and P, (n+1,0). Thus for long
times these two Q functions are very nearly equal. This re-
sult is also confirmed by numerical solution indicated in Fig.
2. In this case the long time evolution can be approximated
by

g2 QQ=x
Bo.'

(43)

leading to phase diffusion at the rate D&= x/4lnol . The
phase diffuses at a slower rate for larger initial mean vibra-
tional energies.
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t=O t=50

t=20 t=500

FIG. 2. Plot of the Q function, versus real (x) and imaginary (y) parts of n, at various times for an initial coherent state with coherent
amplitude no=4. (a) yt=0, (b) yt=20, (c) gt=50, and (d) yt=500.

Rather than solve Eqs. (37) and (38) directly, we solve
Eqs. (13) and (14) in the photon-number basis and then com-
pute the Q functions via the general results in Eqs. (32) and

(33). In order to show the phase diffusion we take the initial
center-of-mass state to be a coherent state

~ no) and assume
that the atom is initially in the ground state. The Q function
for the initial coherent state is a bivariate Gaussian centered
on ao. The results are shown in Fig. 2, where we plot the Q
function versus real and imaginary a at increasing times.
Note that as time proceeds the initial coherent state under-

goes a phase diffusion, eventually producing an annular dis-
tribution at approximately the same radius as the initial co-
herent state. As expected, a measurement of the number
operator a~a causes the phase variable to undergo diffusion
by quantum back-action noise, while the initial mean phonon
number remains very nearly constant. This is consistent with
our identification of the measurement scheme as an approxi-
mate QND measurement of the vibrational energy of the
trapped ion.

IV. SIGNAL AND NOISE

In Sec. III we demonstrated that the probability to find the
atom in the ground state at time t is proportional to the
average vibrational quantum number of the trapped atom at
the same time. However, we do not observe p, (t) directly.
The actual signal is a photocurrent produced by monitoring
the Auorescent light from the probe transition.

The mean photocurrent is proportional to the probability
to find the atom in state ~3), Eq. (9). However, in the adia-
batic approximation used in this paper, we may write this

more directly in terms of the probability to find the atom in
state

~
I) (see [5]),

E(i(t))=21 ep, (t), (44)

where, as previously, e is the quantum efficiency and
I = A„/2y is the measurement parameter. Using Eq. (22)
and assuming the atom starts in the ground state ~1), we
have that

E(i(t))=2I e[(n(t)) —(n(0))+ 1]. (45)

This equation indicates that, on top of a dc current, there is a

fluctuating photocurrent directly proportional to the instanta-
neous mean vibrational quantum number. The dc background
is determined by the initial mean vibrational quantum num-
ber.

To estimate the noise in the signal we can calculate the
variance in the photocurrent or, more usefully, the spectrum
of fluctuations in the photocurrent. The variance in the pho-
tocurrent is

2I e
V(i(t))= pt(t) —4I e [pt(t)],

+D
(46)

where ~D is the characteristic response time of the photode-
tector. The first term in Eq. (46) represents the shot noise of
the detector, which is the dominant term.
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In an experimental context a more useful quantity than the
variance is the power spectrum of the current fluctuations.
We are thus led to consider the stationary two-time correla-
tion function [7]

0.6 '

0.4

G(&) =(i(r+ &)i(r))ss (47)

2(g( —)(0)g(—)( )P(+)( )P(+)(0))

+ ~g(r)(P( —)~(+)) (48)

0.2

where the subscript SS reminds us that these averages are
evaluated in the stationary state of the source. For the atomic
source considered here this correlation function reduces to

10

G ( r) = i [8'( r) + 2 I' ep ) ss( r) ], (49)

where i =2I ep, (~) is the stationary current and p, ss(7)
is defined by

FIG. 3. Plot of the normalized photocurrent power spectrum
spectrum s(co) for an initial thermal distribution of vibrational en-

ergy. In all cases 4y= l. (a) n =5, (b) n =2, (c) n =0.2, and (d)
n =0.1

ptss(r)= — I+Ip)( )] 'X e """P)(n~)
n=o

/

(50)

P(0,0), n=O

where P, (n, ~) is the steady-state conditional probability to
find the n vibrational quanta and the atom in the ground
electronic state. This probability is given by

Pt(& ) = ~,o (55)

then the noise spectrum is purely a Oat shot-noise spectrum.
This could be used as a diagnostic to determine the effective-
ness of laser cooling in localizing the ion in the ground state
of the trap.

If the atom starts in a thermal state, the initial phonon-
number distribution is

P, (n, ~) = &

2 P (n,0), n 4 0. (51)

The spectrum of fiuctuations S(cu) is the Fourier transform
of G(r) and is given by

P(n, O) =
I +n ( I +n J

S(co) =i (I+I'~[22z5(to)+s(to)]),

where the normalized spectrum s(co) is

(52)
In the low-temperature limit n(& 1 the spectrum is

4I e+n
S(tu) =i 1+

pt( )(~'+16'')) (57)

4yn
~(m)=[pt( )] 'X P(n.0) 2 2 2.

n= 1 0) + 16X
(53)

The first term in Eq. (52) is the shot-noise contribution to the
noise power, while the second term is a dc term, which we
neglect in what follows. If the atom starts in the ground state
then the steady-state probability of finding the atom in the
ground state is p&(~) =[P(0,0)+ 1]/2, which for a vibra-
tional number distribution with a large initial mean is ap-
proximately 1/2. This result was previously obtained in [1].
In the frequency domain the short-time approximation corre-
sponds to large frequencies. Thus for co&)4y(n(0)) we find

This is a Lorentzian, above the shot-noise background, cen-
tered at co=0 with height proportional to n and width pro-
portional to y .

Finally, we consider the case of an initial coherent state of
vibrational motion in which case the phonon-number distri-
bution is Poissonian and is given by

0.6 '

0.4

4I eg
S(to) =i 1+ 2 (n(0)),

p) QO Q7
(54) s(0)

where (n(0)) is the initial mean vibrational quantum num-
ber. As expected, the initial mean vibrational quantum num-
ber can be determined as a noise component above the shot-
noise component at high frequencies. In Sec. V we consider
what the frequency scale is likely to be in a typical experi-
ment.

A number of special cases can be considered. If the atom
starts in the electronic ground state and also in the ground
state of the trap,

0.2

10

FIG. 4. Plot of the normalized photocurrent power spectrum
evaluated at zero frequency s(0) versus n for an initial thermal
distribution.
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P(n, 0) = —e
n!

where (, j is an anticommutator and the heating rate is
given by

If the initial mean quantum number is large we find
2 2

yh 2
(62)

green
S(co) =i 1+

o) +16' n i
(59)

where rg is the Lamb-Dicke parameter for the probe field.
This term may be neglected provided yh&& y, which requires

This is a low, broad Lorentzian, above the shot-noise back-
ground and centered at zero frequency.

In Fig. 3 we plot the normalized spectrum defined by

(6o)

for an initial thermal distribution of vibrational energy, and
4y= 1. As the ion is cooled, the spectrum approaches the flat
shot-noise characteristic spectrum. In Fig. 4 we plot s(0)
versus n for an initial thermal distribution. This shows a
crossover from the low-temperature limit Eq. (57), in which
s(0) is linear in n, to the high-temperature limit in which
s(0) decreases as n increases.

V. DISCUSSION AND CONCLUSION

We first estimate some likely experimental values for the
parameters of our model. To begin we note that the good
measurement limit requires that the Rabi frequency of the
probe transition be less than the decay rate on that transition.
This transition will be a typical electric-dipole cooling tran-
sition for which a typical spontaneous emission rate is
y= 10 MHz. We thus choose A~ = 2 MHz and thus the mea-
surement parameter is I =0.2 MHz. The second part of the
good measurement limit requires that A„/y ) gO. The
scale parameter y is typically of the order of 0.01; hence if
we choose 0= 0.1 MHz, this condition is satisfied. The mea-
surement coupling parameter is then y=1.25 Hz. This pa-
rameter determines the time scale of the birth-death process
of our measurement, which we see will be slow compared to
the period of oscillation in the trap (which is typically of the
order of microseconds).

The time scale for the short-time result in Eq. (26) is
t~ 1/yn. For Doppler cooling of the ion the mean vibra-
tional quantum number is n= y/2P. For a typical trap fre-
quency of v= 1 MHz this gives n=5. Thus the short-time
limit means time less than about 1 s, which for this kind of
experiment is not very short at all. In the context of the
photocurrent power spectrum we see that the widths of the
distribution, for an initial thermal distribution with n = 5, will
also be rather small. Thus the high-frequency limit is easily
achieved in an experiment.

A more serious practical limitation to this measurement
scheme is posed by the heating of the ion due to the probe
field. In the Appendix we show that the effect of heating is to
add to the equation for p» [Eq. (10)] a term of the form

(63)

If this is combined with Eq. (4), it indicates that rg„(&1.For
the parameters used above this would require g„(&rg, which
may be difficult to achieve in practice. The difficulty may be
overcome by only switching on the probe field for a short
time. This suggests a pulsed probe field might be a better
way to extract the information. A pulsed probe field would
require a very different treatment to that presented in this
paper.

In this paper we have proposed an approximate quantum-
nondemolition measurement scheme for measuring the vi-
brational energy of a trapped ion in a standing wave in the
Lamb-Dicke limit. By measuring the fluorescent intensity in
a strong probe transition coupled to one of the levels, a direct
determination of the number of vibrational quanta can be
made. Current experiments on laser-cooled trapped ions sug-
gest that such a QND measurement is possible with available
technology.

APPENDIX

In this appendix we show how the effects of probe heating
of the ion may be included. The probe field induces fluores-
cence on the ~1)~ ~3) transition and the atom recoils at
each spontaneous emission event. The effect of spontaneous
emission and recoil is described by a master equation for the
total system, which includes the term

y
ph„,=—(2o~po-t —o t o-p —po-t o-), (A 1)

where o.= ~1)(3~ and

~p= @(n)e'"l l"lpe '"~ '"'dn, (A2)

2

pheat [Xl,tXl, o p& ]].y Qp
(A3)

where P(n) is the probability for a photon to be scattered in

direction n, ni =k. n/k is the projection of the recoil direc-
tion on the standing-wave axis, Xi =a+ a is the dimension-
less position of the ion, and y~ is the Lamb-Dicke parameter
for the probe transition. Expanding to second order in y„,
the effect of recoil on the center-of-mass motion is described
by the term

(p„)hept y„(2~p»~+2ap»~" —(a o, p»j —(«",p»j)
(61)

If we now transform to the interaction picture for the vibra-
tional motion of the ion in the trap and assume that the
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vibrational frequency is larger than the response bandwidth
of the measurement, the effect of the heating is well de-
scribed by the equation

2

pz„,= (2a p33a+2aps3a —(a a, p3$)
Y Qp

replacing p3s —+ (II„/y ) p», the final equation to describe
the heating of the ion is

p„...= 7 „[(2~p»a+ 2~ p»~ —(a ~,p»)

(AS)

where
—(aa'. p33)) I »( I

I (A4)

In the adiabatic approximation, level ~3) is eliminated and (A6)
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