
Baudraz et al., Improvement of macroecological models of mountain grasslands  

1 
 

Learning from model errors: Can land use, edaphic and very high-resolution 1 

topo-climatic factors improve macroecological models of mountain grasslands?  2 

 3 

 4 

Running title: Improvement of macroecological models of mountain grasslands 5 

 6 

Maude E. A. Baudraz1,2†, Jean-Nicolas Pradervand1,3†, Mélanie Beauverd1, Aline Buri4, Antoine 7 

Guisan1,4 ††, Pascal Vittoz1,4††  8 

† Shared first authorship, †† Shared last authorship 9 

1 Department of Ecology and Evolution, University of Lausanne, Biophore, CH-1015 Lausanne, 10 

Switzerland. 11 

2 School of Natural Sciences, Zoology, Trinity College Dublin, Dublin 2, Ireland  12 

3  Swiss Ornithological Institute, Valais Field Station, Rue du Rhône 11, CH-1950 Sion, Switzerland 13 

4 Institute of Earth Surface Dynamics, University of Lausanne, Géopolis, CH-1015 Lausanne, Switzerland 14 

Corresponding author: Pascal Vittoz, Institute of Earth Surface Dynamics, University of Lausanne, 15 

Géopolis, CH-1015 Lausanne, Switzerland; pascal.vittoz@unil.ch 16 

  17 

Word count (Abstract, main text and references): 50998 18 

  19 

mailto:pascal.vittoz@unil.ch


Baudraz et al., Improvement of macroecological models of mountain grasslands  

2 
 

Abstract  20 

Aim: Assess the potential of new predictors (land use, edaphic factors and high-resolution topographic 21 

and climatic variables, i.e., topo-climatic) to improve the prediction of plant community functional 22 

traits (specific leaf area, vegetative height and seed mass) and species richness in models of mountain 23 

grasslands.  24 

Location: The western Swiss Alps 25 

Methods: Using 912 grassland plots, we constructed predictive models for community-weighted 26 

means of plant traits and species richness using high resolution (25 m) topo-climatic predictors 27 

traditionally used in previous modelling studies in this area. In addition, 78 new plots were sampled 28 

for evaluation and error assessment in four narrower sets of homogenous conditions based on 29 

predictions by the topo-climatic models within two elevation belts (montane and alpine). New, finer-30 

scale predictors were generated from direct field measurements or very high-resolution (5 m) 31 

numerical data. We then used multimodel inference to test the capacity of these finer predictors to 32 

explain part of the residual variance in the initial topo-climatic models.  33 

Results: We showed that the finer-scale predictors explained up to 44% of the residual variance in the 34 

classical topo-climatic models. The very high-resolution topographic position, soil C/N ratio and pH 35 

performed notably well in our analysis. Land use (farming intensity) was highlighted as potentially 36 

important in montane grasslands, but improvements were only significant for species richness 37 

predictions.    38 

Main conclusions: Compared with previously-used topo-climatic models, the new, finer-scale 39 

predictors significantly improved the prediction of all traits and species richness in alpine plant 40 

communities and that of specific leaf area and richness in montane grasslands. The differences in the 41 

importance of the predictors, dependent on both trait and position along the elevation gradient, 42 

highlight the different factors that shape the distribution of species and communities along elevation 43 

gradients. 44 

Keywords: Alps; Community ecology; Functional traits; Seed mass; Species richness; Specific leaf area; 45 

Switzerland; Vegetative height  46 
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Introduction 48 

It has long been argued that the description of communities by their biological characteristics (also 49 

called “traits”) provides better and more generalizable results than descriptions based only on species 50 

identities (Keddy, 1992; McGill et al., 2006). Amongst species traits, functional traits are related to the 51 

fitness of individuals (growth, reproduction or survival; Violle et al., 2007). To understand the 52 

distribution of communities and their responses to particular conditions, functional trait values can be 53 

calculated at the community level (Dubuis et al., 2013), allowing for the identification of general 54 

patterns that cannot be observed when working at the species level. Species richness, usually defined 55 

as the number of species in a specified area or system (Díaz & Cabido, 2001), is also widely assessed 56 

by ecologists because of its importance in regulating ecosystem properties and functions (Grime, 57 

1998), such as resilience (Perterson, Garry et al., 1998) and stability (Tilman et al., 2014).   58 

In this context, macroecological models (MEM) that relate community properties, such as richness, 59 

composition, structure, or function, with environmental or biotic factors are promising tools (Keddy, 60 

1992; Küster et al., 2011; Dubuis et al., 2013). This approach provides powerful insights into the factors 61 

that determine the distribution of community properties. For example, Küster et al. (2011) predicted 62 

the distribution of functional traits to assess the potential effects of climate and land use changes on 63 

the distribution of leaf anatomy. Although MEMs have gained popularity (Pellissier et al., 2010; Sonnier 64 

et al., 2010; Dubuis et al., 2011, 2013; Küster et al., 2011; Mod et al., 2015), many studies have been 65 

based on similar sets of topographic and climatic (hereafter “topo-climatic”) predictors extracted from 66 

GIS-derived data. To date, only a few studies have assessed the extent to which other predictors 67 

improve the predictions of community trait composition (Garnier et al., 2004; Dubuis et al., 2013). 68 

Dubuis et al. (2013) tested the influence of edaphic factors on the quality of trait models and concluded 69 

that the inclusion of soil chemical (pH, nitrogen and phosphorus contents) and physical (soil texture) 70 

properties significantly improved the quality of the predictions. These authors focused only on edaphic 71 

factors but recognized that other predictors, such as land use, could also be included (Dubuis et al., 72 

2013). For example, it is well known that farming intensity affects the floristic composition (Peter et 73 

al., 2008) and richness (Zechmeister et al., 2003) of grasslands, and the inclusion of farming 74 

management (intensity of grazing or mowing, fertilization) in models improved the prediction of plant 75 

abundance (Randin et al., 2009). Therefore, farming intensity could be expected to influence 76 

community traits. Furthermore, to our knowledge, very high-resolution environmental maps (< 10 m) 77 

have not been incorporated into community trait modelling, although their use has improved the 78 

distribution models of some species (Lassueur et al., 2006; Pradervand et al., 2014). By contrast, most 79 

climatic data are obtained from interpolations of a limited number of point measurements over a 80 
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broad study area (e.g., Zimmermann & Kienast, 1999), which results in calculations that are sometimes 81 

based on rough approximations, particularly in mountainous regions (Guisan & Zimmermann, 2000). 82 

Therefore, a possible approach to increase the quality of predictions is to conduct larger sampling 83 

efforts of point measurements of environmental factors in the field, at the locations of species 84 

observations, to improve the quality of the predictions.  85 

The evidence suggests that the relative importance of the drivers of species distributions changes over 86 

space and time or along productivity gradients (Michalet et al., 2006). In the Alps, the elevation 87 

gradient can extend from approximately 400 m to above 4000 m. As advised by the current literature 88 

(McGill et al., 2006), Dubuis et al. (2013) studied an entire elevation gradient, seeking a complete 89 

understanding of the community variation over a wide ecological range; however, such a large gradient 90 

can also buffer the importance of local factors. For example, farming intensity affects communities 91 

differently at high and low elevations (Randin et al., 2009), and Pottier et al. (2013) showed that the 92 

accuracy of community composition models was dependent on elevation. Thus, there is a clear 93 

indication that additional factors may improve community models and that improvement may depend 94 

on elevation, but a systematic study has yet to address these questions. 95 

This study aims to assess the potential of a set of new predictor variables (i.e., farming intensity and 96 

edaphic and very high-resolution (VHR; 5 m) versus high-resolution (HR; 25 m) topo-climatic factors), 97 

measured locally or computed at a fine scale to improve the performance of four community-level 98 

macroecological models, namely, species richness (SR) and three functional traits: specific leaf area 99 

(SLA), vegetative height (VH) and seed mass (SM). We assessed the potential of the new predictors to 100 

explain the error in the previously-used topo-climatic models (hereafter referred to as « classical 101 

models »). To identify condition-specific effects of the predictors, we focused on two specific sets of 102 

environmental conditions in two disjointed elevation belts (montane and alpine) within the same study 103 

area. The potential of the new predictors was assessed for each of the elevational belts separately, 104 

and the importance of the different predictors between these two belts was then compared. We 105 

expected that the increase in the resolution of the predictors would bring potential to improve the 106 

quality of the models, particularly at high elevations where environmental filtering is expected to be 107 

stronger (Pottier et al., 2013) and that the farming intensity predictors would be of more primary 108 

importance in the lowland.  109 

  110 
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Materials and Methods  111 

Study design 112 

 To assess the predictive power of the new local predictors, we first built generalized linear models 113 

(GLM) of community-weighted means of plant traits and species richness based on topo-climatic 114 

predictors  (see Figure S1 in Supporting Information), as done in previous studies (Zimmermann & 115 

Kienast, 1999; Dubuis et al., 2011, 2013). New, finer-scale environmental descriptors (farming intensity 116 

and edaphic and VHR topo-climatic factors) were generated from direct field measurements or VHR (5 117 

m) numerical data for a set of newly sampled plots. Small, bivariate linear models (LM) made up of 118 

combinations of the new predictors were run on the residuals of the classical models for these new 119 

plots. A multimodel inference (MMI) was used to address the capacity of the finer predictors to explain 120 

the residual (i.e., unexplained) variance (i.e., deviance in the case of GLMs) in the initial topo-climatic 121 

models. Using only the two best predictors highlighted by the MMI, we created a single bivariate (GLM) 122 

model per trait, assessed the magnitude of the yielded improvement on the residuals and tested for 123 

their significance.   124 

 125 

Figure 1. Map of the study area with sample sites (The Alps in Canton de Vaud, Switzerland, 46°10 - 126 
46°30′ N, 6°50 - 7°10′ E). White dots = 912 vegetation plots previously sampled. Triangles = 37 alpine 127 
and pentagons= 41 montane vegetation plots sampled for this study.    128 

 129 
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Vegetation data and predictors 130 

Study area and initial vegetation data 131 

The study area covers 700 km2 in the western Swiss Alps (Fig. 1), with an elevation ranging from 375 132 

to 3210 m. The vegetation reflects the typical elevation gradient of Central Europe, with broadleaf 133 

deciduous forests at the lowest elevations (colline belt), coniferous forests (subalpine) and then alpine 134 

grasslands above the treeline (see Dubuis et al. (2013) for more information). Outside of the forests, 135 

most of the area is used for agriculture, with pastures in the lowlands to the lower alpine zones and 136 

meadows primarily in the colline and montane belts (Randin et al., 2009). 137 

We used 912 plant inventories in 4 m2 plots sampled between 2002 and 2009 in grasslands and open 138 

areas to fit the initial topo-climatic models. These inventories were conducted based on a random-139 

stratified sampling strategy using elevation, slope and aspect as the stratifying factors (Fig. 1; see 140 

Dubuis et al. (2013) for more details). 141 

Table 1. Ecological ranges of the two selected elevation strata for the four considered predictors and 142 

corresponding proportions of the total available pixels in the study area. 143 

Predictor 
Total range over 
the study area 

  Montane   Alpine 

Stratum Sampling Proportion 
[%] 

 Sampling Proportion 
[%]   range   range 

Mean temperature June-
August [°C] 

2.8 – 18.3 
 

12.2 – 13.4 7.75 
 

8.9 – 9.7 6.44 
  

Global solar radiation 
[kJ•day-1•pixel-1] 

313.3 – 3106.8 
South 2800 – 3000 7.20  3000 – 3100 3.03 

North 1600 – 1800 7.20  1150 – 1450 9.09 

Slope [°] 0 – 80  20 – 25 6.25  30 – 35 5.56 

Topographic position index -699 – 1054   -100 – 0 5.70   100 – 200 1.67 

 144 

Sampling strategy and new plots 145 

A random-stratified design based on mean temperature, global solar radiation and topographic 146 

position was then used to sample the new plots in the grassland areas (see Appendix 1, Table S1 for a 147 

presentation of the 25 m resolution predictors used in this study). To obtain data from groups of plots 148 

sharing very similar macro-environmental conditions, we selected plots in both montane and alpine 149 

grasslands in two sets of very precise ecological conditions corresponding mainly to southern and 150 

northern exposure (Table 1; see supplement to methods in Appendix 1). In each combination of 151 

ecological conditions we would expect nearly identical plant communities based on the topo-climatic 152 

models. 153 
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A total of 41 montane and 37 alpine grassland plots were sampled (Fig. 1) during the summer of 2014 154 

(June-August). Inventories of all vascular plants were made in 4 m2 plots following the same methods 155 

and plot size used in the previous inventories. We estimated the cover of each species using the same 156 

adapted Braun-Blanquet (1964) abundance-dominance scale (r, 1-3 individuals; +, < 1%; 1, 1-5%; 2a, 6-157 

15%; 2b. 16-25%; 3, 26-50%; 4, 51-75%; 5, 76-100%). The mid-range values of these classes were used 158 

for further analyses. 159 

Functional traits  160 

Three functional traits were considered, corresponding to three different characteristics of plant life 161 

(Westoby, 1998). Specific leaf area (SLA) is the area of one side of a fresh leaf per dry mass of the leaf 162 

(Cornelissen et al., 2003) and is linked to photosynthetic and carbon fixation rates (Lavorel & Garnier, 163 

2002). Vegetative height (VH) is calculated as the distance between the top photosynthetic tissue and 164 

the ground and is linked to disturbance, stress avoidance and competition (Lavorel & Garnier, 2002). 165 

Seed mass (SM) is the average dry mass of the seeds and represents the strategy of plant investment 166 

in reproduction (Cornelissen et al., 2003). For SLA and VH, data previously collected for the same study 167 

area were used (Dubuis et al., 2013). SM data were gathered from databases or literature (Kleyer et 168 

al., 2008; Royal Botanic Gardens Kew, 2014; Müller-Schneider, 1986; Römermann et al., 2005; Pluess 169 

et al., 2005; Vittoz et al., 2009; Klotz et al., 2002). We calculated cover-weighted means for the entire 170 

plant community (i.e., weighted mean). Plots were discarded whenever trait information was available 171 

for less than 60% of the vegetation cover. No new plots had to be discarded. More information about 172 

trait value computation can be found in Supporting Information (Appendix S1). Species richness was 173 

calculated for all plots as the total number of species per plot. 174 

New predictors 175 

An overview of the new predictors is available in Supporting Information, Appendix 1 (Table S2). 176 

Farming intensity data were collected for the 41 montane grasslands from interviews with farmers. A 177 

land use intensity index (LUI) was then computed, as suggested in Blüthgen et al. (2012):  178 

 179 

where Fi is the fertilization level for the plot i (m3 of manure∙year-1∙ha-1), Mi is the frequency of mowing 180 

per year, Gi is the grazing intensity (UGB∙days∙ha-1∙year-1) and FR, MR and GR are their respective means 181 

for the data set. A UGB is a standardized unit for cattle foraging requirements (1 UGB = one cow). For 182 

the 37 alpine plots no interviews were conducted. In the alpine plots, grazing pressure is always diluted 183 

LUI =
Fi

FR
+
Mi

MR

+
Gi

GR
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across vast areas with high topographic and grazing heterogeneity. Details would therefore be of little 184 

value.  185 

For all plots, we measured the true aspect with a compass. The total depth of the soil was measured 186 

with an auger. A soil sample of the organo-mineral horizon (Baize & Jabiol, 1995) was collected and 187 

air-dried. The pH of the sample was measured with a pH meter after dilution in water in a 1:2.5 w/v 188 

ratio. We measured the organic C and N contents with a Carlo Erba CNS2500 CHN Elemental Analyser 189 

coupled with a Fisons 198 Optima mass spectrometer (Tamburini et al., 2003). The C/N ratio was used 190 

as a biologically relevant summary of nutrient availability (Batjes, 1996). 191 

Pradervand et al. (2014) developed different very high resolution (VHR) predictors for the same study 192 

area using modelling processes instead of interpolation. We retained growing degree-days, 193 

topographic position and slope at a 5 m resolution because these predictors yielded the best results in 194 

the previously published species distribution models (Pradervand et al., 2014). Growing degree-days 195 

corresponded to the sum of the daily temperatures during the growing season (June, July and August) 196 

when temperatures were above 3°C. For more details on these raster maps, see Pradervand (2015), 197 

Descombes et al. (2015) and Appendix 1. 198 

Modelling 199 

The models were run for the three functional traits – SLA, VH and SM - and for species richness (SR) 200 

following a similar canvas (Fig. S1 in Appendix S1). All analyses were performed using R statistical 201 

software (version 3.3.2; R Core Team, 2016). 202 

Topo-climatic models 203 

Classical topo-climatic models (GLM) were built following the method of Zimmermann & Kienast 204 

(1999) using the same high-resolution (HR) topo-climatic predictors, i.e., moisture index, growing 205 

degree-days, global solar radiation, slope and topographic position (25 m resolution). The moisture 206 

index is the mean difference between precipitation and potential evapotranspiration over the growing 207 

season. The moisture index represents the amount of water potentially available in the soil (see 208 

Appendix 1 for more details about the HR predictors). Using these predictors, a GLM was fitted with 209 

the 912 available vegetation plots for each of the three traits and for SR. All trait values were log 210 

transformed before analyses to meet the normality assumption of the data. Models were selected 211 

through a backwards stepwise selection based on AIC. The family and link functions were set to 212 

Gaussian and identity for the three traits and Poisson and logarithm for SR.  213 
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We used the 912 vegetation plots previously available to fit our classical 25 m topo-climatic models. 214 

These plot data had been collected following a random stratified sampling strategy over the main 215 

environmental gradients. This approach allows the most accurate distribution models to be built for 216 

species (Hirzel & Guisan, 2002) and for functional traits (McGill et al., 2006; Dubuis et al., 2011, 2013; 217 

Küster et al., 2011). To further assess the predictive power of the finer local predictors, we projected 218 

the topo-climatic models on the 78 new plots and calculated the ordinary residuals at these sites. We 219 

did so by comparing the predictions to the actual observations (Zuur et al., 2013), which means 220 

focusing on the “error” of the model within these plots, an appropriate approach towards model 221 

improvement (Jenkins et al., 2003). To address the potential effect of stratification in the design, we 222 

compared the residuals of the different strata within each elevation belt using a Kruskal-Wallis test. 223 

One new plot in the alpine belt behaved as an outlier. As the outlier occurred on an extremely steep 224 

slope and the vegetation was heathland instead of grassland for all other plots, it was discarded in the 225 

following analyses.  226 

Relative importance of the new predictors 227 

To calculate the relative performance of the new predictors, we performed a second modelling step 228 

by fitting new models to these residuals, this time using simple linear models (LM) and including the 229 

new, local variables as predictors. Adapting the approach recently developed by Breiner et al. (2015), 230 

we constructed ensembles of small models using all possible combinations of two predictors at a time 231 

(i.e., in each small model) or a combination of the linear and quadratic terms of these predictors. The 232 

number of predictors in each small model was limited to four (when both quadratic and linear terms 233 

were included) in the final models according to Harrell’s rule-of-thumb of 10 observations per 234 

parameter estimate (Harrell, 2001). The quadratic terms were always considered together with their 235 

respective linear terms to allow the capture of a proper quadratic curve response by the model. 236 

Potential overfitting issues were addressed through an RMSE analysis (see Appendix 1). The 237 

importance of each new predictor in explaining the variance in the residuals was assessed across the 238 

ensemble of models using multimodel Inference (MMI; Burnham et al., 2011). We used the ‘MuMIn’ 239 

R package (Barton, 2014) to rank the models by AICc score, and an Akaike weight was computed for 240 

each model (Burnham & Anderson, 2002). These Akaike weights were used to estimate the relative 241 

importance (RI) of each predictor (for more details see Appendix 1). This permitted the assessment of 242 

the usefulness of each of the new predictors relative to the others in explaining the error of the 243 

classical topo-climatic models.  244 

Because farming intensity was only available for the lower plots, the two elevation belts were analysed 245 

separately. The montane plots were analysed twice: once with farming intensity to evaluate the 246 
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importance of this category of predictor, and once without farming intensity for direct comparison 247 

with the alpine plots. 248 

Percentage of deviance explained by the new predictors 249 

To quantify the effects of the new predictors, we fitted a final model (GLM) for each of the three traits 250 

and for SR, including the two best predictors (with quadratic terms when applicable) according to the 251 

relative importance values previously calculated by MMI. These models were run on the residuals of 252 

the topo-climatic models to evaluate the proportion of the residual variance that could be explained 253 

by the new predictors. The family was set to Gaussian for the residuals of all traits and species richness. 254 

We estimated the potential for model improvement with the new predictors by calculating the 255 

percentage of residual deviance that could be explained by this new modelling step. We tested 256 

whether this increase in explained variance was significant by creating models with random new 257 

variables based on a normal distribution in the same way that our best models were created. This step 258 

was repeated 10,000 times. We then tested whether the amount of explained variance was 259 

significantly above the 95% quantile of the distribution of random values.  260 

Results 261 

The HR topo-climatic models explained 44.3% of the total deviance for SLA, 63.9% for VH, 8.3% for 262 

SM and 38.4% for SR for the 912 vegetation plots that covered the entire study area. The details are 263 

presented in the supplementary material (Table S3 in Appendix S2). The results of the Kruskal-Wallis 264 

tests among the elevation belts were non-significant, indicating no stratification in the residuals.  265 

No predictor was identified as most important in the models fitted on the residuals (Fig. 2). The 266 

overfitting analysis indicated that none of these models were significantly overfitted. When farming 267 

intensity was not considered (Fig. 2, middle panel), the edaphic factors performed well in the montane 268 

grasslands. The C/N ratio was the most important predictor for SLA and VH in the montane belt, while 269 

soil depth and pH were the most important predictors for SM and SR, respectively (Fig. 2, upper and 270 

middle panels).  271 

In contrast, the VHR (5 m) topo-climatic predictors were more important in the alpine grasslands. 272 

Notably, the topographic position was identified as the most important local predictor to model SLA 273 

and SR and the second most important predictor for VH (Fig. 2, lower panel). The VHR growing degree-274 

days was important to model VH and SR. 275 

 276 

 277 
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When comparing the models with and without farming intensity, grazing pressure was the most 279 

important variable to predict VH, and the LUI index was highlighted as the most important for SR. The 280 

relative ranking of the predictors was only slightly affected by the inclusion of farming intensity in all 281 

models (Fig. 2, lower panel).  282 

Table 2. Most important new predictors for each community trait and for species richness in the best 283 

models based on very-high resolution topoclimatic predictors (5 m), farming intensity and values 284 

measured in the field. The D2 values are calculated on the residual deviance of the topoclimatic 285 

models (25 m resolution). Individual D2 values for each variable are presented in Appendix S2, Table 286 

S4. Predictors are listed in order of importance.  287 

 
Montane grasslands – with 

farming intensity 
Montane grasslands – without 

farming intensity 
Alpine grasslands – farming 

intensity not available 

 
Retained 

predictors 
AIC D2 

Retained 
predictors 

AIC D2 
Retained 

predictors 
AIC D2 

SLA 
C/N ratio 

Deg. days 
-148.4 0.27 

C/N ratio 

pH 
-148.44 0.26 

C/N ratio 
Topo. pos. 

-87.7 0.34 

VH 

Graz. pres. 

C/N ratio 
-41.7 0.12 

C/N ratio 
Slope 

-43.8 0.07 

Topo. pos. 

Topo. pos.2 

Deg. days 
Deg. days2 

-27.4 0.27 

SM 
Soil depth 
Exposure 

1.7 0.14 
Soil depth 

Exposure 
1.7 0.14 

Soil depth 
Soil depth2 

pH 
pH2 

-24.1 0.44 

SR 
LUI 

pH 
311.3 0.16 

Expo 
Expo2 

pH 
 

310.43 0.14 
Topo. pos. 

pH 
pH2 

279 0.27 

SLA = specific leaf area; VH = vegetative height; SM = seed mass; SR = species richness; C/N ratio = 288 

soil organic carbon to nitrogen ratio; pH = soil pH of the organo-mineral horizon; Soil depth = depth 289 

of the soil down to bedrock; Slope = slope of the plot measured in the field; Exposure = exposure 290 

measured in the field; Deg. days = growing degree-days; Topo. pos. = topographic position (convex or 291 

concave) calculated at a 5 m resolution; Graz. pres. = grazing pressure; LUI index = farming (land use) 292 

intensity. 293 

The models constructed with the two best predictors for each trait and SR are summarized in Table 2. 294 

In the montane grasslands, the new predictors explained an additional 14.8% of the total deviance for 295 

SLA, 4.4% for VH, 13.1% for SM and 9.9% for SR (Fig. S2). When farming intensity was not included, 296 

these percentages decreased to 2.7% for VH and 8.8% for SR. In the alpine grasslands, the new 297 

predictors (particularly the VHR topographic position) explained an additional 18.9% of the total 298 

deviance for SLA, 9.8% for VH, 40% for SM and 16.6% for SR. This increase in explained deviance was 299 

significantly different from what could be achieved with random variables for all traits and SR in the 300 

alpine grasslands (p-values between 0.001 and 0.036, Fig. S2). In the montane grasslands, the amount 301 
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of explained deviance was significantly higher than random simulations for SLA with and without 302 

farming intensity information and for SR when farming intensity was included (Fig. S2).  303 

Discussion 304 

The addition of locally measured or very high resolution (VHR; 5 m) predictors derived from GIS data, 305 

soil characteristics and VHR topography, to model community properties such as traits and species 306 

richness explained additional variance compared to models used in previous studies using traditional 307 

predictors. Indeed, these new local variables explained up to 44% of the residual variance in the 308 

traditional topo-climatic (25 m) models. The most important variables were different between the 309 

grassland types, with a slight shift from edaphic variables at low elevations to VHR topographic 310 

variables at high elevations. Adding the local variables could improve the quality of the models for 311 

specific leaf area (SLA) and species richness (SR) at mid elevations (montane belt) and for all traits 312 

except for seed mass (SM) at higher elevations (alpine belt). 313 

Farming intensity 314 

In this study, farming intensity ranked high as a potential predictor for VH and SR, but surprisingly, it 315 

only produced significant improvement in the case of SR. However, based on the significant human 316 

activity in the study area, we expected the farming intensity to be more important when modelling the 317 

community traits in the montane grasslands. Therefore, it seems that the impact of farming was not 318 

fully captured by our estimation of the grazing pressure and by the LUI index proposed by Blüthgen et 319 

al. (2012). Particularly, our analyses did not account for possible interactions with other factors, such 320 

as correlations between land use and topography, which might affect the consequences of farming 321 

intensity. Indeed, cows are not expected to graze homogeneously on a bumpy field, nor could a farmer 322 

mow a flat patch similar to a slope. Yet, as Randin et al. (2009) found that categories of land use 323 

(mowing versus grazing, fertilization levels) improved the models of species abundance, there seems 324 

to be a real potential for adding farming intensity into the models. Accurate spatial information on 325 

these processes remains difficult to obtain, and better ways to compute this information will need to 326 

be identified in future studies. 327 

Edaphic factors  328 

Soil properties, especially the C/N ratio and soil pH, were important predictors, showing up most often 329 

within the two best new variables (Figure 2; Table 2). These two predictors represent the availability 330 

of nutrients and toxic elements, respectively (Dubuis et al., 2011). These are particularly important 331 

indicators of plant growth (Batjes, 1996; Girard et al., 2011). Therefore, it is not surprising that the C/N 332 

ratio was consistently within the two best predictors for SLA in both elevation belts. The relationship 333 

between SLA and nutrient availability has been widely assessed in the literature (e.g., Cornelissen et 334 
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al., 2003), and the inclusion of edaphic factors has been demonstrated to improve the quality of 335 

predictions of SLA (Dubuis et al., 2013). In a previous study, two soil chemical properties, pH and 336 

carbon isotopic ratios, were predicted across the geographic area (Buri, 2014), and additional maps 337 

are currently being developed for other soil properties (Buri et al. In press). If the C/N ratio could be 338 

similarly mapped, C/N ratio and pH would provide high potential for model improvement, especially 339 

for SLA. 340 

 341 
Very high resolution (VHR) predictors  342 

Although the improvements brought by the use of VHR data may seem obvious (5 m resolution being 343 

closer to the 2 x 2 m plots size), a previous study revealed that using 5 m or 25 m topo-climatic 344 

predictors resulted in species distribution models of similar performance (Pradervand et al., 2014). In 345 

our study, VHR topo-climatic predictors, especially topographic position and growing degree-days, 346 

contributed significantly to the improvement of the SLA, VH and SR models within the alpine belt. 347 

Topographic position is closely linked to microclimatic and edaphic conditions because it represents 348 

potential shelters against the wind and places with an accumulation of snow or cold air and is related 349 

to soil distribution. Similarly, growing degree-days are expected to be very sensitive to 350 

microtopography in the alpine environment (Köner, 2003). This result highlights the importance of 351 

micro-topographic information in the alpine areas, where the communities are primarily regulated by 352 

climatic, microclimatic and partly related soil conditions. Because topographic position is relatively 353 

easy to infer and implement in models (Pradervand et al., 2014), it is a promising candidate for further 354 

improvement of community trait models. 355 

For all functional traits, the use of weighted average species values instead of direct field 356 

measurements could have biased the results. Nevertheless, this is a common approach in the literature 357 

(see for example Cornwell & Ackerly, 2009; Dubuis et al., 2013) and is often necessary due to the time 358 

or resource limitations of measuring traits for all species in all plots (990 in this study). Furthermore, 359 

the results of Cornwell & Ackerly (2009) suggest that the contribution of intraspecific variability would 360 

be very low compared to those of other ecological processes when studying shifts in trait values 361 

amongst ecological gradients. 362 

Conclusions 363 

We demonstrated that in the montane and alpine grasslands of the western Swiss Alps, part of the 364 

remaining variance in the standard topo-climatic models (25 m resolution) of plant community 365 

functional traits can be explained by new, complementary local predictors, i.e., edaphic and very high-366 

resolution (5 m) topo-climatic predictors.  367 
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Because different responses were observed along the elevation gradient, the selection of 368 

environmental variables used to fit models ought to be considered more cautiously in relation to 369 

elevation. Studies that combine modelling with field verification are promising, and future studies 370 

could replicate this type of analysis and assess the other parts of the elevation range that were not 371 

investigated in this study. 372 

Finally, two of these predictors, the 5 m resolution topographic position and the soil C/N ratio, yielded 373 

particularly good results. The very high-resolution topographic position is relatively easy to implement 374 

in models, and the ability to obtain predicted maps of soil chemical composition is rapidly progressing. 375 

Therefore, these variables are good candidates to improve macroecological models. 376 
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Appendix S1.  Supplement to Materials and Methods 528 

 529 

Figure S1. General workflow of the study. We first created a set of models using the classical 25 m 530 

predictors, calibrated on 912 pre-existing vegetation plots (Panel A.). This accounted for the best state 531 

of knowledge in community modeling (Dubuis et al. 2013). We then focused on the residuals of these 532 

models as to see how much of the remaining variance could possibly be improved by a set of more 533 

local variables (Table S2). For this, we projected the classical models on a set of newly sampled plots, 534 

for which we had additional information, and calculated the residuals for these new plots. For each 535 

elevation belt, we created a set of new models through bivariate combinations of our new, local 536 

predictors and classified these in their potential to explain the remaining variance through multimodel 537 

inference (Panel B.). We used this classification to select the two variables with highest potential. We 538 

tested the significance of the improvements obtained by these two variables through randomization 539 

tests (Panel C).  540 

 541 
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Table S1. Presentation of the “classical” 25 m variables used in this study. 544 

Calculation of the 25 m resolution topo-climatic predictors  545 

The temperature, growing degree days and solar radiation were measured by the Swiss network of 546 

meteorological stations (www.meteoswiss.ch), and the predictors were all generated at a 25 m 547 

resolution following Zimmermann and Kienast (1999). The slope was derived from the elevation model 548 

using the ArcGIS 10.2 spatial analyst tool (ESRI). The topographic position was computed through 549 

moving windows that integrated topographic features at various scales, with positive values indicating 550 

ridges and tops and negative values corresponding to valleys and sinks. The global solar radiation is 551 

the sum of the daily average of potential radiation per month over the entire year (Müller, 1984) and 552 

was calculated based on the direct, diffuse and reflected solar radiation that reached the area, 553 

accounting for the slope, aspect and shading of the surrounding topography  (Kumar et al., 1997). The 554 

moisture index is the mean difference between precipitation and potential evapotranspiration over 555 

the growing season. It represents the amount of water potentially available in soil.  556 

Details of the sampling strategy for the new plots 557 

Our goal was to obtain groups of plots sharing very similar macro-environmental topo-climatic 558 

conditions, so as to allow identifying which local variables may further explain part of the residual 559 

variation (i.e. not explained by the topo-climatic HR variables). We first stratified the sampling within 560 

two elevation belts (montane and alpine) based on four HR topo-climatic predictors of primary 561 

ecological importance: slope, topographic position (indicating ridges or sinks), global solar radiation 562 

over the growing season (June-August) and mean temperature over the growing season (Dubuis et al., 563 

2011, 2013). Within each of these two elevation belts, two strata were further created by combining 564 

situations of temperature, exposure (North and South) and slope. The strata were defined as 565 

illustrated in Table 1 and Table S1: pixels with a mean growing season temperature from 12.2°C to 566 

13.4°C, a global solar radiation from 1600 to 1800 kJ day-1 pixel-1 (North) or from 2800 to 3000 kJ567 

day-1 pixel-1 (South), with a slope between 20° and 25° and a topographic position index between -1 568 

× × ×

×

Category Variable Definition

Moisture	index
Mean	difference	between	precipitation	and	potential	evapotranspiration	over	the	growing	

season	(water	potentially	available	in	soil)

Growing	degree-days
Sum	of	the	daily	temperatures	during	the	growing	season	-	June,	July	and	August-	when	

temperatures	>	3°C

Global	solar	radiation Sum	of	the	daily	average	of	potential	radiation	per	month	over	the	year

Slope Slope	of	the	grasslands

Topographic	position Index	where	positive	values	=	ridges	and	tops,	negative	values	=	valleys	and	sinks

Mean	temperature Mean	temperature	over	the	growing	season

Coarse	resolution	predictors										

[25	m	resolution]
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and 0, for the montane grasslands; pixels with a mean growing season temperature from 8.7°C to 569 

9.7°C, global solar radiation from 1150 to 1450 kJ day-1 pixel-1 (North) or from 3000 to 3100 kJ day-1570 

pixel-1 (South), slopes from 30° to 35° and topographic position indices between 1 and 2 for the alpine 571 

grasslands. These restricted ranges represented between 1.7% and 9.1% of the total ranges of the 572 

predictors over the entire study area (Table 1). 573 

Functional traits 574 

SLA is the area of one side of a fresh leaf per the dry mass of the leaf (Cornelissen et al., 2003) and is 575 

linked to photosynthetic rates and carbon fixation (Lavorel & Garnier, 2002). VH is the distance 576 

between the top photosynthetic tissue and the ground and is linked to disturbance, stress avoidance 577 

and competition (Lavorel & Garnier, 2002; Cornelissen et al., 2003). SM is the average dry mass of the 578 

seeds (Cornelissen et al., 2003) and represents the strategy of plant investment in reproduction, i.e., 579 

smaller seeds are produced in higher numbers but are expected to have lower reproductive success 580 

because of the limited amount of resources (Cornelissen et al., 2003). For SLA and VH, we used data 581 

previously collected by Dubuis et al. (2013) for the 240 most abundant species in this study area. These 582 

authors sampled generally ten (4-20) individuals per species in contrasted environmental conditions 583 

and calculated an average trait value for each species. Values for two species were obtained from the 584 

literature (Aeschimann et al., 2004; Kleyer et al., 2008). The information on SM was collected from the 585 

LEDA trait database (Kleyer et al., 2008) and missing values were complemented from the Kew seed 586 

base (Royal Botanic Gardens Kew, 2014) or with a literature (Muller-Schneider, 1986; Klotz et al., 2002; 587 

Pluess et al., 2005; Römermann et al., 2005; Vittoz et al., 2009).. For each trait, we calculated an 588 

average, cover-weighted value for the entire plant community (i.e. weighted mean). Whenever trait 589 

information was available for less than 60% of the vegetation cover, the plot was discarded. 807 of the 590 

ancient plots were kept for SLA and VH analyses and 552 for SM. None of the new plots had to be 591 

discarded. Species richness was calculated for all plots as the total number of species per plot. 592 

 593 

 594 

× × ×

×
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Table S2. Presentation of the new variables tested in this study. *The farming intensity information is 595 

only available for montane grasslands.  596 

 597 

Presentation of the new predictors 598 

Farming intensity data was collected for the 41 montane grasslands from interviews with the farmers. 599 

A land use intensity index (LUI) was then computed as suggested in Blüthgen et al. (2012):  600 

 601 

where Fi is the fertilization level for the plot i (m3 of manure∙year-1∙ha-1),Mi is the frequency of mowing 602 

per year, Gi is the grazing intensity (UGB∙days∙ha-1∙year-1) and FR, MR and GR their respective means for 603 

the data set. A UGB is a standardized unit for cattle foraging requirements (1 UGB = one cow). 604 

For the 37 alpine plots, no interviews were conducted. These plots are rarely or very sparsely fertilized, 605 

but some are grazed by cows or sheep in summer. However, grazing pressure is always diluted across 606 

large areas with high topographic and grazing heterogeneity. Details would therefore be of little value. 607 

The other new predictors were all measured in the 78 plots. 608 

For each plot, we measured the true aspect with a compass to complement the global solar radiation 609 

data calculated on an elevation model with a resolution of 25 m.  610 

The total depth of soil was measured with an auger (mean of 2-4 measurements per plots). When 611 

depth exceeded 50 cm, the soil was classified as deep. For each plot, a soil sample of the organo-612 

mineral horizon (Baize & Jabiol, 1995) was collected, air-dried and sieved at 2 mm for laboratory 613 

analyses. Its pH was measured with a pH meter, after dilution in water in a 1:2.5 w/v ratio. We 614 

measured the organic C and N contents with a Carlo Erba CNS2500 CHN Elemental Analyser, coupled 615 

with a Fisons 198 Optima mass spectrometer (Tamburini et al., 2003). The C/N ratio was used as a 616 

biologically relevant summary of nutrient availability (Batjes, 1996). 617 

LUI =
Fi

FR
+
Mi

MR

+
Gi

GR

Category Variable Definition

Growing	degree-days																

(G.	degree	days)
Sum	of	the	daily	temperatures	during	the	growing	season	(June,	July	and	August)	when	temperatures	is	>	3°C

Topographic	position											

(Topo.	pos.)
Positive	values	=	ridges	and	tops,	negative	values	=	valleys	and	sinks

Slope Slope	of	the	grassland

pH pH	of	the	soil	organo-mineral	horizon

C/N	ratio C/N	ratio	of	the	soil	organo-mineral	horizon

Soil	depth Soil	depth

Grazing	pressure Farming	intensity	measure	where	only	grazing	is	taken	into	account

Land	Use	Intensity	index															

(LUI)

Farming	intensity	metric	where	grazing,	fertilization	and	mowing	are	taken	into	account.	See	main	text	for	details	

about	computation

Very-high	Resolution																				

[5	m	resolution]

Edaphic	factors

Farming	intensity*



Baudraz et al., Improvement of macroecological models of mountain grasslands  

23 
 

Pradervand et al. (2014) developed different VHR predictors for the same study area issued from 618 

modelling processes instead of interpolating. We retained growing degree-days, topographic position 619 

and slope at a 5 m resolution because these predictors yielded the best results in previously published 620 

species distribution models (Pradervand et al, 2014). Growing degree-days corresponded to the sum 621 

of the daily temperatures during the growing season (June, July and August) when temperatures were 622 

above 3°C and were inferred from temperature data loggers established in the study area in 2012. 623 

Topographic position and slope were calculated from a digitalized elevation model with a resolution 624 

of 2 m acquired by LIDAR. For more details on these raster maps, see Pradervand  (2015) and 625 

Descombes et al. (2015). 626 

Overfitting issues 627 

In our multimodel inference approach, we built models formed of all bivariate combinations of our 628 

new variables (Fig. S1, panel B). We addressed potential overfitting issues through Root Mean Square 629 

Error (RMSE; Caruana & Niculescu-Mizil, 2004; Liu et al., 2011) analysis. For all the models, we split the 630 

data in a training and testing sets of 70% and 30% of the data, respectively. We then assessed whether 631 

the models were overfitted through a RMSE: if the model is overfitted, the error is going to be higher 632 

on the testing than on the training test, and the subtraction of both terms will be higher than 0. We 633 

performed 30 steps of data splitting, and inferred a distribution of the subtraction term. We tested 634 

whether 0 was outside the 95% quantile of the distribution. None of the resulting p-values were 635 

significant, indicating no overfitting. 636 

Calculation of the Akaike weight and the relative importance of the new predictors 637 

To compare the support obtained by each model based on the combination of the four new predictors 638 

and their quadratic terms, we calculated an Akaike weight (wi) based on the differences in AICc scores 639 

(Burnham & Anderson, 2002): 640 

  641 

where i is the considered model, R is the considered set of models, and Δi is the difference in AICc 642 

scores between the model i and the best model in the set (i.e., the one with the lowest AIC);  643 

  644 

The relative importance (RI) of a predictor corresponds to the sum of the Akaike weights for each 645 

model in which the predictor is included (Burnham & Anderson, 2002). 646 

wi =
exp(-

1

2
Di )

exp(
1

2
Dr )

r=1

R

å

Di = AICi -AICmin
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Appendix S2. Complements to Results 716 

Table S3. Predictors retained in the topoclimatic models (25 m resolution) and evaluation of these 717 

models for the three community traits and for species richness. These models were established on 718 

the 912 plots that were distributed within the entire study area. 719 

  720 

Trait Predictor Unit Coefficients p-values AIC D2 

Specific leaf area Growing deg. Days °C 7.46 • 10-05 < 0.001 

-1781.8 0.44 

(log transformed) Glob. Rad. 
kJ/ (day 

⋅pixel) 
8.89 • 10-07 0.082 

  Slope  ° 0.0011 0.150 
 Topo. pos. unit-less -5.73 • 10-05 0.010 
 Moisture Index 1/10 mm -8.52 • 10-05 0.003 

 Glob. Rad.2 
kJ/ (day 

⋅pixel) 
-2.12 • 10-12 0.060 

 Slope2 ° -4.04 • 10-05 0.008 
 Moisture Index2 1/10 mm 4.72 •10-08 0.023 

  Intercept   1.15 < 0.001     

Vegetative height Growing deg. days  °C 0.001 < 0.001 

-394.7 0.64 

(log transformed) Slope ° 0.003 < 0.001 

 Topo. pos. unit-less 9.64 • 10-05 0.110 
 Moisture Index 1/10 mm -0.0002 0.003 
 d 2 °C -1.21 • 10-07 < 0.001 

 Topo. pos.2 unit-less 4.2 • 10-07 0.049 

 Moisture Index2 1/10 mm -2.42 • 10-07 < 0.001 

  Intercept   -1.45 < 0.001     

Seed mass Glob. Rad. 
kJ/ (day 

⋅pixel) 
3.84 • 10-06 0.100 

-20.9 0.08 

(log transformed) Slope ° 0.004 < 0.001 
 Moisture Index 1/10 mm -0.00031 < 0.001 

 Glob. Rad.2 
kJ/ (day 

⋅pixel) 
 -8.05 • 10-12 0.120 

 Moisture Index2 1/10 mm 3.42 • 10-07 < 0.001 

  Intercept    -0.57 0.037     
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 Table S3. Continues 721 

AIC is the value of Aikake Information Criterion, and D2 is the proportion of the total deviance 722 

explained by the model. Growing deg. days = growing degree-days; Glob rad = global solar radiation; 723 

Topo. pos. = topographic position. 724 

The result of the Kruskal-Wallis tests performed on their residuals for the newly sampled plots were 725 

non-significant, indicating no stratification in the residuals.  726 

 727 

  728 

Species richness Growing deg. days   °C 0.00062 < 0.001 

10356.9 0.38 

 Slope ° 0.02 < 0.001 
 Topo. pos. unit-less 0.0011 < 0.001 

 Growing deg. days 2 °C - 1.72 • 10-07 < 0.001 

 Glob. Rad.2 
kJ/ (day 

⋅pixel) 
-3.21 • 10-12 < 0.001 

 Slope2 ° -0.0002 < 0.001 
 Topo. pos. 2 unit-less 4.53 • 10-07 0.085 
 Moisture Index2 1/10 mm -1.51 • 10-06 < 0.001 

  Intercept   3.07 < 0.001     
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Table S4. Overview of the separate D2 values of the retained predictors when put into separate 729 

univariate models. D2 values are calculated on the residual deviance of the topoclimatic models 730 

(25 m resolution).  731 

 Montane grasslands – with 
farming intensity 

Montane grasslands – 
without farming intensity 

Alpine grasslands – farming 
intensity not available 

  
Retained 

predictors 
Separate D2 

Retained 
predictors 

Separate D2 Retained predictors Separate D2 

SLA 

C/N ratio 0.21 C/N ratio 0.21 C/N ratio 0.24 

Deg. days 0.03 pH 0.0004 Topo. pos. 0.25 

VH 

Graz. pres. 0.08 C/N ratio 0.06 
Topo. pos.  (linear + 

quadratic) 
0.12 

C/N ratio 0.06 Slope 0.04 
Deg. days (linear + 

quadratic) 
0.33 

SM 

Soil depth 0.10 Soil depth 0.10 
Soil depth (linear + 

quadratic) 
0.37 

Exposure 0.06 Exposure 0.06 
pH (linear + 
quadratic) 

0.17 

SR 

LUI 0.07 
Expo (linear + 

quadratic) 
0.14 Topo. pos. 0.06 

pH 0.08 pH 0.08 
pH (linear + 
quadratic) 

0.13 

SLA = specific leaf area; VH = vegetative height; SM = seed mass; SR = species richness; C/N ratio = 732 

soil organic carbon to nitrogen ratio; pH = soil pH of the organo-mineral horizon; Soil depth = depth 733 

of the soil down to bedrock; Slope = slope of the plot measured in the field; Exposure = exposure 734 

measured in the field; Deg. days = growing degree-days; Topo. pos. = topographic position (convex or 735 

concave) calculated at a 5 m resolution; Graz. pres. = grazing pressure; LUI index = farming (land use) 736 

intensity.  737 

 738 
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739 
Figure S2. The amount of the remaining deviance (vertical line) that could be explained by the two 740 

most important variables for the three community traits and species richness at each elevation strata 741 

compared to random variables (black histograms). The p-values indicate whether the values are 742 

significantly outside the 95% confidence interval of the distribution. Abbreviations of the community 743 

traits are similar to those in Figures 2, 3 and 4. 744 

  745 
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Appendix S3. Correlations between predictors and community weighted means 746 

of the traits. 747 

Figure S3. Correlation between the original data and the new predictors. A = correlation with the 748 

linear term (blue line). B = quadratic correlation (red dashed line). CWM = community weighted 749 

mean of the considered trait; Topo. pos. = topographic position (5 m); G. degree days = growing 750 

degree days; LUI = farming (land use) intensity. 751 

 752 

  753 
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Figure S3. Continued 754 

 755 
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Figure S3. Continued 757 
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Figure S3. Continued 760 
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Figure S3. Continued 763 
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Figure S3. Continued 766 
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Figure S3. Continued 769 
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Figure S3. Continued 772 
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