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Abstract

Reaction optimisation and understanding is fundadaieior process development and is

achieved using a variety of techniques. This papgtores the use of self-optimisation and
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experimental design as a tandem approach to reacidimisation. A Claisen-Schmidt
condensation was optimised using a branch andifiinmsing algorithm, with the resulting
data being used to fit a response surface modd.riibdel was then applied to find new
responses for different metrics, highlighting the@smimportant for process development

purposes.
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| ntroduction

Traditional univarient optimisation of a chemicaaction involves the systematic and
sequential optimisation of each individual reactijpsrameter until an optimum is found.
While the execution is simple, the data will not@ant for interactions between reaction
parameters.Design of experiments (DoE) conversely uses silscalculations to screen
reactions and generate a polynomial model ovenatcained area of experimental space. The
model can highlight the key parameters and intemastthat affect changes in the desired
response, as well as predicting new responses degemon the model's design. The
methodology is commonly utilised in the pharmaa=ltindustry, particularly for reactions
with poor yield, inconsistent output or unexpectedults upon scale JpDoE is a very
powerful tool and it can show where improvement®erating conditions can be made to
deliver a more consistent and reliable product wepect to the optimisation target.

One of the disadvantages of DoE arises when threra lrge number of parameters requiring

optimisation. The number of experiments requiradafdesign increases substantially with an



increasing number of experimental parameters. Qfisnnumber can be too large to explore
the system efficiently, so a fractional factoriakdyn is implemented to reduce the number of
experiments. The disadvantage with this approatimaisat least one parameter is confounded
with an interaction, thus increasing the complexafythe model analysis. It is also very
important that the correct limits are chosen focheparameter to ensure that there are no
sudden changes in response and a good polynontialafi be achieved. Furthermore,
additional experiments might be required to veafyesponse, deconvolute interactions or
determine the robustness of optimum conditions.

Self-optimisation is a technique that could remtwe problems associated with DoE whilst
still obtaining the important information about k@arameters and interactions. A self-
optimising reactor combines on-line analysis withaaaptive feedback loop and minimizing
algorithm to autonomously execute reactions, obthm respective yields and ultimately
optimise a chemical process without user intereenti® The algorithm typically generates a
cluster of points around an optimum, thereforeeasing the robustness of proposed optimal
conditions.

The recent popularity of self-optimisation is ineseng but its use in industrial chemical
processes is severely limitddA continuous self-optimising reactor will benefiom the
numerous advantages of flow reactors including hegiface area to volume ratios, safer
operation of hazardous materials, improved mixifegter kinetics and easier access to
automated processts'

The main disadvantage with self-optimisation ig thew experiments need to be physically
executed to optimise for a new target or differeimémical compound. If DoE has already
been carried out, new models for different respsmsa be calculated without complication
or increased experimentation.

This paper attempts to combine these two optinusatechniques in parallel. A self-

optimisation experiment will rapidly generate optimn conditions and scatter across the
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chemical space through an exploratory algorithmi|siva response surface model (RSM) will

permit the prediction of new responses using tipeemental data.

Results and Discussion

Self-optimising reactors have been designed usieyiaty of analytical techniques including
IR™'® and NMR spectroscopy mass spectrometdy'®  gas®* and liquid®*
chromatography. In this paper, a feedback-conttdilew reactor, equipped with an at-line
HPLC system, is used to provide fast separationgaaahtification of the desired compounds.
Through the combined implementation of a variablavelength UV detector and
microvolume sample injector, automated optimisa&iarere executed at the mesoscale with
the direct injection of reaction mixture into thd?HC column, thus negating the need for
dilution prior to analysis. The optimisation targeds the minor product of a Claisen-Schmidt
condensation between acetory &nd benzaldehyde2) to form the desired product,
benzylideneaceton®&)(Scheme 13> Strict control over the reaction parameters wasired

to prevent3 reacting to form dibenzylideneacetone (DBA) &nd acetone polymerization,

both of which caused clogging in the reactor.
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Scheme 1. Claisen-Schmidt condensation between acetbnhand benzaldehyd&) to form
the desired benzylideneacetor® &nd undesired benzylideneacetodge Acetone can also
undergo self-condensation to form mesityl oxiflg &s well as the subsequent polymer.

A gradient HPLC method at 254 nm was developedutmtify compounds of interest. While
adequate separation between species was achieedédhipary HPLC calibrations resulted in
a non-linear response f@rand3 at the reference wavelength of 254 nm. UV speatftiaoth
compounds were obtained to determine the wavelsngthwhich each species could be
guantified, without saturating the detector (Figd)e The HPLC method was consequently
modified to momentarily switch to 295 nm and 333, wien compound? and 3 were
respectively eluted, to ensure the detector wowldhe saturated during optimisation. This

new method allowed linear calibrations of spe@iés
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Figure 1. UV absorption spectra of benzaldehy@g gdnd benzylideneaceton®) (in ethanol
between 190 and 400 nm. Dashed lines indicate wag#is selected for variable wavelength

HPLC method.



All components were monitored and controlled vidbespoke MATLAB based software
package (Reaction setup is shown Figure 6). The fates of the three reagent pumps and
reactor temperature were varied to maximise thiel y&3. Table 1 displays the optimisation
limits for the four reaction variables. Acetonewlavas controlled relative t@ to ensure it
was always in excess, while the temperature waselito 80°C after initial experiments
exhibited polymer formation beyond this. While poms literature and preliminary
experiments can be used to constrain the experahspace and speed up the optimisation
process, the algorithm is also capable of optingisiithin the entire operating range of the
equipment being utilised. This capability is part&rly advantageous when no prior

knowledge of a chemical process is available.

The algorithm used for the optimisation was SNOBFRTonstrained branch and fit function
that locates optima by fitting polynomials to thesponse of experimental data pofits.
During an optimisation it focuses on locating ogtintonditions, whilst simultaneously
exploring empty space to prevent premature termanaat local optima. In the event of
multiple optima within a chemical system, the aitjon is capable of exploring both regions

of experimental space within a single experiment.

Table 1: Parameter limits for the automated optimisatiomeximise yield of3

Reaction | Benzaldehyde? Flow /| NaOH Flow /| Acetone Flow/ | Temperature / °C

Variable | mmol min*? mmol min*® | mol. equivalent.

Limits 04-2.0 0.04 -0.25 1-7 10-80

#1.95 M solution in ethanol with 0.0325 M biphenytdrnal standard}0.2 M solution in

ethanol;’neat liquid, controlled with respect to flow ratie2o



The optimisation cycle was repeated until a tofal@ experiments had been executed. The
results (Figure 2) indicate that an optimum yiel®©.0% was achieved at a benzaldehyje (
flow rate of 0.4 mmol/min, with 7 molar equivalertt§acetone and a reactor temperature of
35.8 °C. The catalyst concentration of 0.25 M soallisplayed in molar equivalents relative
to benzaldehyde to ease comparability between B@sause the catalyst concentration was
regulated in mmol/min (Table 1), the algorithm mumsed the flow rate of benzaldehyde to
0.4 mmol/min, whilst maximising the catalyst flowte to 0.25 mmol/min, to achieve this
maximum equivalence. While the cluster of high giekperiments surrounding the optimum
were all executed at maximum NaOH equivalence,etlae other experiments exhibiting
yields of around 60%, with much lower NaOH equinése which suggests that catalyst
concentration may not be the most significant ylatdting factor in this reaction. Following
the data points along the y-axis suggests theseris®e dependence on acetone concentration.
This is better appreciated when the data is vieaedg the y-axis (Figure 2b) where this is a
clear correlation between acetone equivalence sahd. y

There is an interaction between the benzaldehydeNaOH flow rates and temperature,
which can be observed through the points at maxiracetone equivalence. As the flow rate
of benzaldehyde?] increases, NaOH decreases in order to accommautatiee decrease in
residence time. This is paired with an increase¢emperature to achieve higher yields at
lower catalyst loadings. This all contributes tla@e area of points resembling a cliff edge at
the border of the experimental space.

As predicted, formation of DBA4| increases at lower acetone concentrations with a
maximum vyield occurring at 3.1 molar equivalend&slow this concentration, formation of
ketone3 may be hindered by a reduced rate of acetone terfolanation’’

The residence time was calculated for each sebmditons to determine the point at which
the sample eluting from reactor, was representaiivthe preset experimental parameters.

Most experiments exhibited a residence time betweamd 15 mins. Given that multiple
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experiments across this range exhibited yieldsxcegs of 60%, residence time was not
deemed to have a significant impact on the yield. éiowever, for chemical processes where
a given optimisation target is dependent on resiéetime, the system autonomously

optimises this parameter within the confines offtbe rate limits.
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Figure 2: a): Each point represents one of the experimemsuted during the optimisation.
Graph displays five variables as follows: (x) moflow rate of benzaldehyde, (y) molar

equivalents of acetone, (z) temperature of tubfitav reactor. The point size denotes the



NaOH catalyst concentration in each run. The cotdwach point represents the yield (%) of
3 in relation to2. A maximum yield of 66.0% was achieved, the caodg of which are

highlighted by the star. b) Identical to a) butatet] to depict data as viewed along the y-axis.

The formation of other UV active species which weot calibrated prior to the optimisation
could also be monitored because a full HPLC chrogram was collected for each set of
reaction conditions. Any compounds of interest dobk characterised against reference
materials and subsequently quantified following BLE calibration. The HPLC method
switches to 254 nm outside regions of interest &ximise absorption resulting from ancillary
organic species. This, coupled with the directdtiga of sample into the instrument, ensures
that even low level products can be detected.

The concentration of any compound can later beeas®ad with the corresponding yield
optimisation?” The existing responses can be used as a stadingtp limit the number of
experiments required for completion, but additiongtimisations ultimately result in an
increase of time and resource. A better methodolomyld be to predict where unknown
compounds have the highest yields and then cartyymld optimisations in a smaller
operating window around that point. This can baead by fitting a response surface to the
existing data.

Response surfaces were obtained for compoBn8@snd4 using a multiple linear regression
(MLR) fit.® Models were first generated by including all sguand interaction terms, then
removing non-significant coefficients for which tbalculated error potentially equalled zero.
Next, experiments were removed that fell beyondststandard deviations (SD) on a normal
probability residual plot. Outliers are typicalgmoved (or repeated) if they fall outside of +4
SD but the lower tolerance in this instance allovie@da better fit and greater predictability.
The lowest number of experiments in a model wasvich was in excess of the requirement

for a central composite design, which is 24 plud-points. The prior removal of high error
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experiments was therefore not deemed to numericallypromise the model. A good fit was
achieved for all three compounds wit Ralues of 0.732), 0.91 @) and 0.85 4). These
models also showed a moderate level of predictabilith Q? values of 0.663), 0.86 @) and

0.78 @).

The models were subsequently used to predict amopt yield by maximising the response
of 3 (minimum tolerance 65%) and minimisi@gand4 (maximum tolerance 5%). Conditions
obtained that satisfied two of those criteria wér®7 mol/min of2, 4.8 molar eq. of acetone,
0.1 mmol/min of NaOH and a reactor temperature ®f@, generatin@® in a 61.1% vyield.
These conditions do not match the optimal condstiganerated by the self-optimisation, for
which the model calculates a yield of 59.5 %. Bibidn predicted and experimental optima are
within the error associated with HPLC analysisjaating that there is a plateau of conditions
that generat8 at approximately 60% vyield.

Further scrutiny of the SNOBFIT optimum data pahbwed that there was a significant rise
in yield compared to points in close vicinity. Theupled with the disagreement in optima
between the two techniques prompted some furthguererentation to study the
reproducibility of the algorithm optimum. Three tlwer experiments were carried out at the
optimum conditions, which generat8dn a mean yield of 64.4% + 0.3% (arithmetic mean +
1 SD). This shows that the previous optimum values \wossibly caused by an integration
error from HPLC analysis.

A second self-optimisation for the generatior3ofras executed to determine if yields could
be further increased by expanding on the existixigeemental space. As lower acetone
equivalents previously displayed lower yields, BaBlshows how acetone equivalence limits
were increased from 1-7 to 5-14 molar equivalefite maximum NaOH flow rate was also
increased to 0.1 mmol/min as the optimum point a@ags upper limit. Whilst the model-

predicted optimum was close to the maximum uppeit lof benzaldehyde flow rate, this
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parameter limit was halved (to 1 mmol/min) to comgege for the increase in experimental
space and minimise the detriment to operatingieffiicy. The maximum temperature was also
reduced from 80 to 60 °C for the same reasons.

The SNOBFIT algorithm was then restarted usingtergsdata within the new operating
conditions (Table 2). The new optimisation requi&l further experiments and produced
optimum conditions of 0.76 mmol/min &f 14 eq of acetone, 0.15 mmol/min of NaOH, and a
temperature of 43 °C, generati@gn a 67% vyield (Figure 3).

Table 2. Parameter limits for the extended optimisatiomeximise yield of3.

Reaction | Benzaldehyde2 Flow /| NaOH Flow /| Acetone Flow/ | Temperature

Variable | mmol min*? mmol min*® | mol. equivalent. | °C

Limits 04-1.0 0.10-0.25 5-14 10-60 °C

21.95 M solution in ethanol with 0.0325 M biphengtérnal standard’0.2 M solution in

ethanol;’neat liquid, regulated with respect to flow rateof
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Figure 3. Plot of experiments performed during extended rmated yield optimisation of
benzylideneacetone3) via the aldol condensation of benzaldehydg With acetone. The

graphical parameters are identical to Figure 2 Jevtlie optimisation parameters have both
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been adjusted to allow for more acetone and catagsivalents versus the first yield
optimisation (see Table 2). A maximum yield of 86.6vas achieved as highlighted by the

star.

New models were fitted using the same approactimprbved R (fit) and G (predictability)
was achieved for all models using the data fromekiended optimisation (Figurdedror!
Reference source not found.). Optimum conditions were predicted as previouwsgcribed
and the model calculated revised conditions to ggagroducB in a 63.6 % yield (Figure
5). Whilst this yield is still lower than the expeental self-optimisation, the expansion of
experimental space has resulted in an increaséd fyten the previously predicted result of
61.1%. The conditions also correlate better with dptimum produced by self-optimisation

(0.741 mmol/min o, 12.4 mol. eq of, 0.112 mmol/min of NaOH at 47.2 °C).
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Figure 4. Comparison of the change irf Bnd @ between the models generated from the

original and extended data.
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Figure 5: Contour plot of predicted benzylideneacetone yieklag original and extended

data. Optimum point with a predicted yield of 63.86hown by crosshair.

While it seems achievable to improve the maximumseoled produc8 yield of 67% by
extending the experimental space to allow for gmreatetone and hydroxide equivalents, it is
worth considering whether increasing the reagest ¢o pursuit of a higher product yield
would be financially or materially efficient upooade up of the reaction. Although yield was
the target parameter in this optimisation, previoesearch has demonstrated how these
systems can be utilised to optimise other metuich @s E factor, process mass intensity and
reaction productivity to improve the sustainabiliof a chemical proces§?32°%* The
advantage of a statistical model following selfiopgation means that such metric analyses
can be carried out without further practical expenmts.

This ability to predict alternative metrics has mademonstrated by further fitting of the
experimental data used to create the existing rsodéle metrics explored in this study were
process mass intensity (PMf)a measure of the total chemical resource per masof
product; space time yield (STY), the mass of prodoaned per unit volume per unit time;

and the raw material cost per kg of product (s@psting information for calculations). New
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models for these metrics were fitted using MLR withvalues of 0.93 (PMI), 0.92 (STY) and

0.90 (cost); and €values of 0.86 (PMI), 0.86 (STY) and 0.83 (cost).

Table 3. Effect of different metrics on the product compiosi of compound2-4

Metric 2/ % Yield | 3/ % Yield | 4/ % Yield | PMI STY/gL|Cost / £
target Lyt kg™

Yield 3.22 65.62 3.01 18.48 633.20 33.45
PMI 4.54 47.90 6.02 13.81 614.36 27.92
STY 3.06 62.15 4.45 19.11 872.69 34.50
Cost 4.15 58.81 4.13 14.30 798.39 | 26.72
Yield PMP | 4.28 55.32 4.70 13.99 729.52 26.91
PMI Cost | 2.96 64.81 3.66 16.35 769.93 29.57

The first column shows the metric target, resporsesshown in the rows. Maximum values
are highlighted in bold, minimized values are higihied in italics. Unformatted values
display the models’ predicted valuémaximise the yield oB whilst minimising the PMI;

®minimise both PMI and cost.

Table 3 shows how the model responses change pitmam conditions for different metric
targets. The maximum yield exhibits poor resporfsed®MI, STY and cost, showing how
high yielding reactions can be wasteful and unpctide. The optimum response for PMI is
the least productive and for the studied metriesdiots the lowest yield fd at 48%. There

is good correlation between the responses of PMI aost for all the metric targets. This
should be expected as both are dependent on ibeofgtroduct to substrates and reagents.
The raw material cost calculation aims to put lmaseducing the concentrations of expensive
material. However, this reaction may not best regme this capability as all substrates are

relatively inexpensive. It should be noted thatdowost promotes a higher yield to a greater
14



extent than lower PMI, thus indicating that raw emit cost could be the most important
metric in this reaction format. This is assumingttthe adoption of cheaper reagent does not

increase the reaction complexity and thereforesiase the cost of work-up and purification.

Table 4. Predicted conditions for the optimum responsesifterent metric targets

Metric target 2 Flow / mmol| NaOH Flow /| Acetone /| Temperature
min™ mmol min* equivalents °C
Yield 0.741 0.112 12.4 47.2
PMI 0.846 0.044 6.0 44.1
STY 1.000 0.150 13.9 42.2
Cost 0.986 0.067 9.2 47.1
Yield PMP° 0.915 0.055 7.5 45.5
PMI Cost 0.998 0.096 10.5 46.8

dmaximize the yield 08, minimize the PMI’minimize both PMI and cost.

The conditions for the optimal responses are shiowirable 4. The flow rate d is close to

its upper limit for every target. This reduces tesidence time and consequently increases the
reaction productivity (STY). The acetone equivategrte generally lower than those generated
by the yield driven self-optimisation, thus limiginhe reagent waste (through PMI and cost).

Strict temperature control is required in compepsato maintain the high yields & whilst

minimising risk of polymer formation.

Conclusion

The yield of a minor product in a Claisen-Schmidh@ensation has been optimised using a
self-optimising flow reactor equipped with an oeliIHPLC system. The reaction in this paper

15



was optimised directly at the mesoscale to prodix24 kg/day of the desired
benzylideneaceton®8, Through the development of a variable wavelemtfth C method, all
organic species of interest could be quantifiedhiwitheir respective linear detection limits.
With the data obtained from the self-optimisatianesponse surface was fitted to the main
compounds of interest in the reacti@d4|. After an analysis of the self-optimisation datal
resulting models, it was decided to execute a @urdptimisation in a larger chemical space.
The second experimental optimisation improved uploe yield of 3 and the increased
correlation between the new optimum and surroundrgerimental points, provided a
greater range of conditions at which optimal yieldsuld be obtained. The subsequent

statistical model of the extended optimisation @isedicted similar optimal conditions.

It should be noted that the choice of algorithnthi& initial self-optimisation step is critical to
achieving a good fit to the RSM. The simplex altfori and modifications theredt** are a

popular choice in self-optimising systefis’**?* During operation, however, only
experiments with an improved predicted responsé kal executed, therefore negating
valuable information existing in the experimentphse between the initial and optimum
points. The execution of random conditions and @gbion of free space offered by
SNOBFIT provides a scatter of data, without whibe tdditional response surface fitting
would not be possible. In this study, the increassalistness resulting from the additional
experimental points around the optimum would alseehbeen forfeited with a simplex

approach.

In this example, the experimental optimum was idiexdt at the edge of the initial

optimisation space. Prediction of the optimum viee tstatistical model was therefore
compromised due to the inability to fit a polynoht@achanges induced by the cliff edge. The
experimental self-optimisation, however, freely lexed the edge of the optimisation space to

identify the point of maximum vyield. For these m@as, we believe that self-optimisation is

16



the superior technique for chemical process op#tiaa. When used in tandem, however, the
subsequent response fitting of self-optimisatiotadzan predict the responses of different
species and even alternate metrics without additierxperimentation. It therefore follows
that self-optimisation and DoE can be interdepetdeather than conflicting techniques,
which can combine to provide a wealth of informaticn the scale-up and process

optimisation of chemical systems.

Experimental

Automated yield optimisation: Reaction control, yield calculation and procepsmisation
were under full MATLAB automation via a bespoke gmam utilising the SNOBFIT
optimisation algorithm. The reactor was setup apldied in Figure 6 for HPLC calibration

and experimental yield optimisations.
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Figure 6: Schematic of automated self-optimising flow react®espoke MATLAB based
control software monitored and regulated the foitayv flow rate and pressure of the reagent
pumps (P1, P2 & P3); temperature of the tubulactogaand activation of the sample injector.
Reagents were pumped at the specified flow ratesigi individual Jasco PU-980 HPLC

pumps and mixed via Swagelock 1/16” tee-pieces. rEaetion mixture was heated to the
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specified temperature using a Polar Bear Plus Bgnthesizer. A sample from each set of
conditions was acquired by a VICI Valco 4 Port Mmolume Sample Injector. HPLC
analysis was carried out by an Agilent 1100 HPLCst&yn with G1314B Variable
Wavelength Detector. Pressure was maintained uaingasco BP-1580 Back Pressure

Regulator and Polyflon 1/16” (OD) PTFE tubing wadised throughout the 6.5 ml reactor.

Five sets of reaction conditions were initiallyessted and autonomously executed by the
software. The yields of these experiments wereutatied from the HPLC response using a
biphenyl present in the reagent. Subsequent congditwere then generated by fitting yield
responses to the data using the SNOBFIT. 70 expatsnwere executed as 14 cycles of 5
experiments under full MATLAB automation. Followimgjtial response fitting, an additional
36 experiments were carried as described in Table 2

Variable wavelength HPLC Method: Calibration and optimisation analyses were executed
using an Agilent 1100 Series HPLC System equippétt & G1312A binary pump and
G1314B variable wavelength detector (VWD). Compaumgtre separated via an Ascentis
Express C18 column (5.0 um particle size, 4.6 mameéter x 50 mm length). Mobile phase
was a binary mixture of acetonitrile and water (N\eB,0), each containing 0.1% (v/v) of
trifluoroacetic acid. Method was gradient basedhwat 5:95 (v/v) MeCN-BHO starting
mixture. Concentration was immediately increase®%®b (v/v) MeCN-HO via a 7 min
linear gradient, followed by an immediate decrdamek to 5:95 (v/v) MeCN-kD via a 2 min
linear gradient, where it remained for 1 min. Tatah time was 10 mins at a constant flow
rate of 1.2 ml/min with a column temperature of 20 throughout. The absorption
wavelength of the VWD operates at base value of @54 3.4 mins into the method, the
wavelength switches to 295 nm for 0.2 mins. At#iRs, there is a switch to 333 nm for 0.2

mins.
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Acquisition of UV spectra: 2 M solutions of2 and 3 in ethanol were manually injected
through an Agilent 1100 HPLC System with G1314Bialale wavelength detector. A UV
absorption spectrum between 190 and 400 nm wasareapfior each species upon elution.
HPL C Calibration: Reactor was setup as depicted in Figure 6. A solwf analyte (2.0 M)
was pumped against solvent at varying flow rata#) w total flow of 1 ml/min, to create a
10-point calibration graph. Two reactor volumesradterial was eluted prior to HPLC sample
injection. Flow rates and sample injection wereoaamously controlled via a MATLAB
based program.

Statistical Modelling: Multiple linear regression fits were applied to tleitomated
experimental results using the MODDE software pgelkiaom UMetrics. Predicted responses
for the yields of compound®, 3 and4, as well as reaction metrics including processsmas
intensity, space time yield, and bulk cost of redgevere obtained using multiple linear
regression. Interactions with the potential of zeomtribution to the measured response, as
well as individual experiments with high residualoe were negated to maximise the model
fitting.

See ESI for full details on the reactor setup, HRh€thod, individual parameters for the

automated yield optimisations and the statisticalysis methodology.
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