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Abstract
In many areas of academic publishing, there is an explosion of literature, and sub-division of fields into subfields, leading to stove-piping
where sub-communities of expertise become disconnected from each other. This is especially true in the genetics literature over the last
10 years where researchers are no longer able to maintain knowledge of previously related areas. This paper extends several approaches
based on natural language processing and corpus linguistics which allow us to examine corpora derived from bodies of genetics literature
and will help to make comparisons and improve retrieval methods using domain knowledge via an existing gene ontology. We derived
two open access medical journal corpora from PubMed related to psychiatric genetics and immune disorder genetics. We created a
novel Gene Ontology Semantic Tagger (GOST) and lexicon to annotate the corpora and are then able to compare subsets of literature
to understand the relative distributions of genetic terminology, thereby enabling researchers to make improved connections between them.
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1. Introduction
The explosion of scientific literature in all fields makes it
hard to keep apace of new knowledge. This is particu-
larly true in the relatively new field of genomics. For ex-
ample, a search in the main citation database for biomedi-
cal literature (PubMed) for the term ‘genome wide associ-
ation study’ results in just 5 papers from 1995, 141 from
2005 and 3,633 from 2015. We contend that the myriad
of techniques developed in Information Retrieval coupled
with Natural Language Processing can help address these
scaling and searching issues. Such a set of techniques could
help in a myriad of ways, for example, summarisation of
papers or a set of papers, collocation methods to investi-
gate drug-disease-gene interactions, and query expansion
where terminology varies from one subfield to another. Pre-
viously such techniques have been used to perform tasks
such as identifying gene-gene or gene-phenotype interac-
tions (Bundschus et al., 2008; Kann, 2007). In addition,
by using corpus comparison methods originating in Cor-
pus Linguistics, we aim to identify key words and concepts
emerging from a body of literature that will provide new
clues to disease aetiology.
In the remainder of this paper, we describe related work
on biomedical text mining and corpus comparison. Then
we explain how we created an open access corpus derived
from medical journal abstracts, and a novel semantic tagger
to apply a lexicon derived from a standard Gene Ontology.
Finally, we illustrate how these new resources allow us to
profile medical journal articles using domain-specific on-
tologies.

2. Related Work
Over a number of years, Natural Language Processing
(NLP) techniques have been widely applied to biomedical
text mining to facilitate large-scale information extraction
and knowledge discovery from the rapidly increasing body
of biomedical literature. Substantial efforts have been ded-
icated to this research area. Among the early researchers
in this area are Ananiadou et al. (2006), who identified
the challenging issue of finding useful information from the

plethora of biomedical scientific literature which are man-
ually unmanageable. Kann (2007) also suggested that Text
Mining approaches are essential for discovering informa-
tion about disease and protein interactions buried within
millions of biomedical records. Since the recognition of
the importance of the Biomedical text mining, a variety of
NLP tools have been developed and modified to support it.
Among the main tools and corpora developed for such pur-
poses include Genia tagger/corpus (Tsuruoka et al., 2005;
Thompson et al., 2017), Termine1, and LAPPS GRID (Ide
et al., 2016). These tools have typically focused only on
lexical, syntactic and shallow semantic (named-entity) ap-
proaches. Another related biomedical annotation tool is
the Penn BioTagger2 (Jin et al., 2006), which is capable of
tagging gene entities, genomic variations entities and ma-
lignancy type entities. Despite the progress over the past
years, there are still various issues which remain unsolved,
including the lack of NLP tools tailored for specific sub-
fields of biomedical research, and the need to link entities
at the conceptual level. In this work, we report on our ex-
periment in which we modify a semantic tagger and create
a corpus semantically tagged with both related sub-sets of
the Gene Ontology categories and generic semantic field
categories for an aetiology study.
Comparing corpora is a key method in corpus linguis-
tics, and is a vital step towards measuring the differences
between collections of textual documents. Previous ap-
proaches have been focused on word level comparisons
only, finding terms or keywords that can differentiate one
corpus from the other (Kilgarriff, 2001; Rayson and Gar-
side, 2000). When the method is applied at the seman-
tic level (for example with the general purpose USAS tax-
onomy3), this enables confirmation of the word-level find-
ings but also the ability to uncover key semantic categories,
which are more dispersed across a wider group of words
and would not otherwise be highlighted as key (Rayson,
2008). In a medical context, we hypothesise that it is impor-

1http://www.nactem.ac.uk/software/termine/
2http://seas.upenn.edu/∼strctlrn/BioTagger/BioTagger.html
3http://ucrel.lancs.ac.uk/usas/
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tant to use a more fine-grained semantic taxonomy which
embodies greater medical domain knowledge, hence our
undertaking the research presented here which derives and
applies a gene ontology semantic lexicon to this problem.

3. Dataset
We collected medical journal abstracts from PubMed4 by
restricting the search to retrieve only English medical ar-
ticles discussing human genetics studies in psychiatry and
immune related disorders. Table 1 shows the dataset statis-
tics in terms of article and word counts. The searches have
been adapted to ensure appropriate literature coverage. For
example, whilst including immun* in the abstract search
picks up papers on many diseases such as psoriasis, the
same approach using the term psych* is not as effective.
In our results, we directly compare the Immune and Psy-
chiatric subcorpora only, but the Reference dataset statistics
are included here to show the relative size of the two sub-
corpora. We will also be employing the Reference corpus in
other experiments and to check vocabulary coverage of the
existing semantic lexicon. We chose immune and psychi-
atric genetics corpora as examples that would be very dif-
ferent from each other allowing us to test the utility of the
tools. The selected domains fall within the fourth author’s
research expertise and this has helped in appropriately in-
terpreting the findings (Pouget et al., 2016).
The dataset was downloaded from PubMed in large XML
file format5. We built a Java suite for parsing PubMed XML
file format and extract abstracts along with other informa-
tion such as journal titles, author names, publication date,
DOI and so on. Our code is publicly available for research
purposes.6

Table 1: Corpus Statistics
Corpus #Articles #Words Keywords
Immune 21.5K 4.8M (geneti* OR gene

OR genot*) AND
(immunol* OR
immunog* OR
immune)

Psychiatric 15.2K 2.8M (geneti* OR gene OR
genot*) AND (psy-
chi)

Reference 296.5K 79.0M (geneti* OR gene OR
genot*)

Total 333.2K 86.7M

4. Gene Ontology Semantic Tagger
For our initial experiments, the corpora were uploaded to
Wmatrix7 where we ran automatic part-of-speech tagging
using CLAWS, semantic field tagging using USAS, and

4https://www.ncbi.nlm.nih.gov/pubmed
5Instead of using PubMed API we searched PubMed website

directly and exported the results to XML using PubMed “Send To
File” service.

6https://github.com/drelhaj/BioTextMining
7http://ucrel.lancs.ac.uk/wmatrix/

counted word frequencies and compared sub-corpora using
the keywords method from corpus linguistics. We quickly
realised that we needed to provide better coverage of the
more fine-grained medical terminology in the PubMed cor-
pora, and therefore included an extra level of annotation
by tagging the corpora using The Gene Ontology Consor-
tium’s8 OBO Basic Gene Ontology (go-basic.obo) cate-
gories9.
The Gene Ontology (GO) project is a collaborative effort to
address the need for consistent descriptions of gene prod-
ucts across databases. The go-basic.obo is the basic version
of the GO ontology, filtered such that the graph is guaran-
teed to be acyclic paths, and annotations can be propagated
up the graph. We focused on the is_a relation in order to
trace ancestors and children for each entry in the ontology.
We chose the is_a relationship in the first instance because
it has a more intuitive meaning. Something is only consid-
ered is_a if an instance of the child process is an instance
of the entire parent process.
To parse the OBO file we created Java code that combines
the use of publicly available OBO library10 with Java Di-
rected Graph (Digraphs) to trace the paths from a node child
to the root. The code used Breadth First and Depth First
algorithms to quickly and accurately extract the paths. Fig-
ure 1 shows an example of a directed graph for the basophil
homeostasis GO entry. The figure shows two paths starting
from the child entry up to the biological process root.

Figure 1: GO Directed Graph Sample

Our code allowed us to generate a USAS tagger dictionary
file where each entry in the OBO ontology is tagged with
the GO IDs shown in its path. Taking the “mucosal im-
mune response” OBO entry shown in Figure 1 we can see
there are two paths starting from the child node towards the
“biological process” root. The dictionary creation process
works as follows:

8http://geneontology.org/
9http://purl.obolibrary.org/obo/go/go-basic.obo

10https://github.com/sugang/bioparser



1. determine whether the child node is single word or
multi-word expression. The example shows the latter.

2. determine the number of paths towards the root.

3. get each path’s GoID entries (child node’s ancestors)

4. include the level of each ancestor by adding that to the
end of each entry (e.g. .1 to refer to the first parent
(GOO:0002251).

5. determine whether the path passes through an “im-
mune system process”, which is the one with GoID:
0002376. If so we add .I to the end of the GoID tag to
refer to immune entry, otherwise we add .N referring
to a non-immune entry.

Following the steps above, the child node GO:0002385 will
be considered a multi-word expression entry and will have
the following semantic dictionary tags:
GO:0008150.4.I, GO:0002376.3.I,
GO:0050896.3.N, GO:0006955.2.I,
GO:0002385.0.I, GO:0002251.1.N,
GO:0006955.2.N, GO:0002385.0.N,
GO:0002251.1.I, GO:0008150.4.N.
In the above dictionary, tags such as GO:0006955 will be
extended with a .2 suffix referring to level two (counting
from level zero) and will appear twice; once as an immune
entry with a .I suffix (GO:0006955.2.I) and another as
a non-immune entry with a .N suffix (GO:0006955.2.N).
While the GO directed graph snippet shown in figure 1
is relatively simple, figure 2 shows a much more com-
plex example illustrating that the dictionary creation pro-
cess can become more troublesome with overlapping hi-
erarchies and levels that can be skipped for some graph
traversals.
The resultant GO term and ID map collection from the
process described above, which contains 433 single word
bioterms and 44,180 multiword bioterms, has been merged
into the Lancaster UCREL Semantic lexicons to create a
new version of the Lancaster USAS semantic annotation
system (Rayson et al., 2004; Piao et al., 2017), named
GOST (Gene Ontology Semantic Tagger), in order to au-
tomatically annotate the bioterms with GO IDs in the jour-
nal articles, along with generic USAS semantic tags. Cur-
rently, using the GOST, we have tagged 237,615 PubMed
abstracts in our corpus. This corpus provides a valuable
new resource for mining Biomedical and health informa-
tion from the Biomedical literature.
Table 2 shows a sample from a tagged abstract, where
the part-of-speech tags are from CLAWS C7 tagset11, the
generic semantic tags are from the USAS tagset12, the
tags with leading code GO are from the Gene Ontol-
ogy, and the MWE tags encode multiword term informa-
tion including sequential number, term length and loca-
tion of each word in the given term. As shown in the
table, such a tagging can facilitate analysis of Gene in-
formation at any hierarchical levels of the Gene Ontol-
ogy as researchers need. For example, researchers can

11http://ucrel.lancs.ac.uk/claws7tags.html
12http://ucrel.lancs.ac.uk/usas/

Figure 2: GO Directed Graph More Complex Sample

filter their analysis results by setting a range of hierar-
chical levels of [3-4], in which case only GO categories
{GO:0008152.3.N, GO:0071704.3.N, GO:0008150.4.N,
GO:0009987.3.N, GO:0006807.3.N, GO:0008152.4.N}
would be considered for the term "cellular protein
metabolic process" in Table 2.

5. Results
In our preliminary work using only a word level compari-
son (El-Haj et al., 2017), we uncovered many subject spe-
cific words have a much higher proportional representation
in one corpus (e.g. schizophrenia). Other less predictable
words such as “risk” are also found to be more frequent in
psychiatric literature. The increased proportional represen-
tation suggests that language is used different despite both
corpora describing genetic studies of a complex trait.
With the new GOST annotated corpora, we are able to com-
pare the two corpora at the semantic level using the Gene
Ontology concepts, see Table 3 for keyness sorted results.
The final six columns show the actual and relative frequen-
cies for the immune and psych sub-corpora, an indication of
over- and under-use (by a direct comparison of the relative
frequencies) and the log-likelihood keyness value. Many of
the GO terms with the most significantly different frequen-
cies between the two corpora are those strongly related to
the suspected biological underpinning of the traits. For ex-
ample “immune response”, “immune system process” and
“response to stimulus” were all more frequent in the im-



Table 2: Sample tagged text
WORD LEMMA POS SEM MWE
several several DA2 N5 0
processes process NN2 A1.1.1 X4.2 0
potentially potentially RR A7+ 0
involved involved JJ A1.8+ A12- 0
in in II Z5 0
MN mn FO Z99 0
, PUNC YCOM PUNC 0
including including II A1.8+ 0
extracellular extracellular JJ GO:0022617.0.N GO:0016043.3.N GO:0044763.2.N GO:0043062.2.N GO:0030198.1.N GO:0016043.2.N

GO:0008150.4.N GO:0044699.3.N GO:0022411.1.N GO:0044763.3.N GO:0044699.4.N GO:0071840.4.N
GO:0071840.3.N GO:0022617.0.N GO:0009987.3.N GO:0008150.5.N GO:0009987.4.N

1:3:1

matrix matrix NN1 GO:0022617.0.N GO:0016043.3.N GO:0044763.2.N GO:0043062.2.N GO:0030198.1.N GO:0016043.2.N
GO:0008150.4.N GO:0044699.3.N GO:0022411.1.N GO:0044763.3.N GO:0044699.4.N GO:0071840.4.N
GO:0071840.3.N GO:0022617.0.N GO:0009987.3.N GO:0008150.5.N GO:0009987.4.N

1:3:2

disassembly disassembly RR GO:0022617.0.N GO:0016043.3.N GO:0044763.2.N GO:0043062.2.N GO:0030198.1.N GO:0016043.2.N
GO:0008150.4.N GO:0044699.3.N GO:0022411.1.N GO:0044763.3.N GO:0044699.4.N GO:0071840.4.N
GO:0071840.3.N GO:0022617.0.N GO:0009987.3.N GO:0008150.5.N GO:0009987.4.N

1:3:3

and and CC Z5 0
organization organization NN1 S5+c S7.1+ 0
, PUNC YCOM PUNC 0
cell cell NN1 GO:0007155.0.N GO:0022610.1.N GO:0008150.2.N 2:2:1
adhesion adhesion NN1 GO:0007155.0.N GO:0022610.1.N GO:0008150.2.N 2:2:2
, PUNC YCOM PUNC 0
cell-cell cell-cell JJ Z99 0
signaling signaling NN1 GO:0023052.0.N GO:0008150.1.N 0
, PUNC YCOM PUNC 0
cellular cellular JJ GO:0008152.3.N GO:0019538.1.N GO:1901564.2.N GO:0071704.3.N GO:0044267.0.N GO:0008150.4.N

GO:0044260.1.N GO:0044237.2.N GO:0043170.2.N GO:0044238.2.N GO:0009987.3.N GO:0006807.3.N
GO:0008150.5.N GO:0008152.4.N

3:4:1

protein protein NN1 GO:0008152.3.N GO:0019538.1.N GO:1901564.2.N GO:0071704.3.N GO:0044267.0.N GO:0008150.4.N
GO:0044260.1.N GO:0044237.2.N GO:0043170.2.N GO:0044238.2.N GO:0009987.3.N GO:0006807.3.N
GO:0008150.5.N GO:0008152.4.N

3:4:2

metabolic metabolic JJ GO:0008152.3.N GO:0019538.1.N GO:1901564.2.N GO:0071704.3.N GO:0044267.0.N GO:0008150.4.N
GO:0044260.1.N GO:0044237.2.N GO:0043170.2.N GO:0044238.2.N GO:0009987.3.N GO:0006807.3.N
GO:0008150.5.N GO:0008152.4.N

3:4:3

process process NN1 GO:0008152.3.N GO:0019538.1.N GO:1901564.2.N GO:0071704.3.N GO:0044267.0.N GO:0008150.4.N
GO:0044260.1.N GO:0044237.2.N GO:0043170.2.N GO:0044238.2.N GO:0009987.3.N GO:0006807.3.N
GO:0008150.5.N GO:0008152.4.N

3:4:4

, PUNC YCOM PUNC 0

Table 3: Gene Ontology Semantic Keyness Results
GOID Name Immune % Psych % O/U Keyness
GO:0005623 cell 33346 7.31 1524 1.02 + 10696.95
GO:0005575 Cellular Component 34577 7.58 1808 1.20 + 10332.02
GO:0007610 behavior 199 0.04 2095 1.40 - 4611.01
GO:0032501 multicellular organismal process 616 0.13 2364 1.57 - 3915.62
GO:0002376 immune system process 7253 1.59 88 0.06 + 3416.63
GO:0008150 Biological Process 7253 1.59 88 0.06 + 3416.63
GO:0006955 immune response 6992 1.53 84 0.06 + 3298.74
GO:0006955 immune response 6992 1.53 84 0.06 + 3298.74
GO:0050877 neurological system process 426 0.09 1756 1.17 - 2991.92
GO:0050896 response to stimulus 7034 1.54 192 0.13 + 2764.12
GO:0002376 immune system process 2958 0.65 28 0.02 + 1443.03
GO:0008150 Biological Process 2933 0.64 28 0.02 + 1429.29
GO:0050890 cognition 10 0.00 536 0.36 - 1402.85
GO:0050877 neurological system process 16 0.00 548 0.37 - 1394.05
GO:0005575 Cellular Component 5013 1.10 308 0.21 + 1357.84

mune disorder related corpus. The following terms were
more frequent in the psychiatric corpus (“neurological sys-
tem process” and “cognition”). Some of these terms are
expected, and help to confirm that our methodology is suc-
cessful and some categories offer routes for further inves-
tigation. We have therefore proved that in principal the
method is working and we will continue to mine the results
for biological insight.

6. Conclusion and Future Work
In this paper, we have illustrated our early explorations into
extending corpus and computational linguistics methods to
permit genomics researchers to explore their rapidly grow-
ing literature in new ways. Our main contributions are the
corpus-based explorations of the research literature on hu-
man genetics studies, a method for the creation of a seman-
tic lexicon from an existing Gene Ontology, a Gene Ontol-

ogy Semantic Tagger (GOST) to apply this to corpora of
scientific papers, and freely available annotated corpora. In
terms of future work, we will further investigate how our
new fine-grained taxonomy performs in terms of contex-
tual accuracy, and whether the level of detail introduced is
too much for our planned application. We have already in-
vestigated this type of fine-grained task in research related
to historical contexts with the Historical Thesaurus Seman-
tic Tagger (Piao et al., 2017). Here, there may need to
be a compromise between levels of accuracy and domain-
specific explainability. We also intend to carry out a corpus-
based investigation into variability of GO terms which may
not be replicated exactly in the corpora, for example inflec-
tional or derivational suffixes such as “processes” instead
of “process”, and the potential for intervening items within
multiword expressions. This will allow us to increase the



tagger’s accuracy as well as potentially offering a semi-
automatic route for updating GO itself. The corpora and
Java code to parse and annotate the dataset in addition to the
ontology lexicon are made publicly available for research
purposes.13 The Gene Ontology Semantic Tagger has also
been released via the downloadable graphical interface14.
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