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Most airline revenue optimization models assume capacity to be fixed by fleet assignment, and thus treat it as
deterministic. However, empirical data shows that on 40% of flights, capacity is updated at least once within
the booking horizon. Capacity updates can be caused by fleet-assignment re-optimizations or by short-term
operational problems. This paper proposes a first model to integrate the resulting capacity uncertainty in the
leg-based airline revenue management process. While assuming deterministic demand, the proposed model
includes stochastic scenarios to represent potential capacity updates. To derive optimal inventory controls,
we provide both a mixed-integer-program and a combinatorial solution approach, and discuss efficient ways
of optimizing the special case of a single capacity update. We also explore effects of denied boarding cost
and the model’s relationship to the static overbooking problem. We numerically evaluate the model on
empirically calibrated demand instances and benchmark it on the established deterministic approach and
an upper bound based on perfect hindsight. In addition, we show that the combinatorial solution approach
reduces the computational effort. Finally, we compare the static overbooking approach derived from the

capacity uncertainty model to existing EMSR-based approaches.
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1. Introduction

Classically, airline revenue management controls demand for capacitated, perishable products to
maximize revenue from ticket sales. A comprehensive overview of mathematical models and meth-
ods is provided by Talluri and van Ryzin (2004). The idea that capacity is limited is crucial to the

concept — one of the most basic restrictions of the revenue optimization problem is that one cannot
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sell more than there are units of capacity given. Most models consider the capacity restriction as
constant over the booking horizon.

Yet, in practice, flights’ capacity is anything but fixed. After assigning aircrafts to flights, airlines
publish a schedule and offer ticket reservations from almost one year prior to departure. Throughout
the booking horizon, aircraft assignments can change due to special sales events, adapted demand
forecasts, or changes in crew planning. Even shortly before departure, technical complications can
cause new aircrafts to be assigned.

To verify this observation, we analyze an empirical data set from a major European network
carrier, documenting the number of seats available to the economy compartment throughout the
booking horizon of 5,867 intercontinental flights departing in a single month of 2014. For 40% of
these flights, aircraft changes lead to capacity updates of at least 10% of the previous value. For 35%
of flights, capacity updates of at least 50% were reported. Domain experts indicate that more than
eight weeks prior to departure, updates are primarily caused by fleet assignment (71%), whereas
from two weeks prior to departure on, updates are primarily driven by operational difficulties (19%).
Classically, revenue management considers capacity updates only after they are announced, via
re-optimization. This approach is also applied at the airline that supplied the analyzed empirical
data: Inventory controls are optimized to maximize revenue for the initial capacity. Any announced
capacity update triggers a re-optimization. In a computational study, we benchmark the proposed
scenario-based model on this approach.

To illustrate the effects of capacity updates, consider two examples from the empirical data:
Between 201 and 172 days before departure, a re-optimization of the regular fleet assignment shrank
the economy compartment of all departures of a particular flight from Diisseldorf to New York
from 225 to 165 seats. This is unlikely to have caused denied boardings, as most bookings occur
later in the booking horizon. Nevertheless, when assuming a small capacity, revenue management
implements more restrictive inventory controls to reserve seats for valuable, late-booking customers.
Thus, the initial inventory controls were suboptimal for the actual, larger capacity. In a more
extreme example, one day before departure, the economy compartment for a flight from Munich to
New York shrank from 270 to 161 seats. This was most likely caused by operational difficulties. For
a fully booked flight, it could have caused 109 denied boardings, excluding effects from intentional
overbooking.

Existing models that do relax the fixed capacity assumption predominantly aim to integrate fleet
assignment and revenue management. For concepts such as ‘demand driven dispatch’ (Berge and
Hopperstad 1993), revenue management triggers capacity updates to adjust to demand variation.
We regard capacity updates that are controlled by revenue management as endogenous. In contrast,

this paper considers ezogenous updates. After an aircraft change, exogenous capacity updates
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are announced to the revenue management department, but the automated algorithms do not
anticipate them. The idea that such updates can cause collateral damage when not anticipated
in the optimization model motivates our work. To our knowledge, only Wang and Regan (2002,
2006) propose an earlier revenue management model to account for uncertain capacity. As that
model is motivated by the idea of aircraft swaps, it assumes a single point in time when updates
are announced and only two possible capacities. However, the empirical data shows that capacity
updates can be announced at any time in the booking horizon, as their timing depends in part on the
events that trigger capacity changes. Furthermore, more than two final capacities can result from
aircraft changes in practice. We thus identify a research gap beyond endogenous capacity updates
and revenue management models regarding capacity as a deterministic and fixed parameter.

This paper contributes to reducing this gap as follows:

e We propose a first leg-based revenue management model that explicitly considers exogenous
capacity changes occuring at multiple times in the booking horizon and leading to an arbitrary
number of potential final capacities. We term this model the quantity-based revenue management
under capacity uncertainty (RMCU) problem, and numerically analyze its sensitivity to problem
characteristics, such as the time and magnitude of update.

e To solve the RMCU problem, we provide a mixed-integer program (MIP) as well as a com-
binatorial solution approach. In a computational study, we show that the combinatorial approach
solves the problem in less than 0.5 percent of the run time required to solve the MIP via CPLEX.
Furthermore, we suggest exploiting problem characteristics to efficiently derive solutions for the
special case of updates occurring only at a single point in time.

e Last but not least, we consider the effect of denied boarding cost and relate the RMCU to
static overbooking by transforming a static formulation of overbooking into an RMCU problem.
In the numerical study, we show that RMCU-based overbooking achieves comparable results to
EMSR-based approaches reviewed in Aydin et al. (2012).

This paper is organized as follows: The next section reviews related work, both on revenue
management under capacity uncertainty and on uncertain capacity utilization. Section 3 presents
the RMCU problem, a leg-based revenue management model assuming deterministic demand and
stochastic capacity. Next to a mixed-integer program formulation, this section introduces a combi-
natorial solution approach, analyzes the special case of a single capacity update, the effect of denied
boarding cost, and the problem’s relationship to static overbooking. To prepare the computational
study, we also state an upper bound on the expected revenue and model the common approach
of only re-optimizing revenue management when capacity updates are announced. Section 4 doc-
uments the results of benchmarking solution approaches and of analyzing their sensitivity. This

section also includes results that numerically illustrate our remarks on overbooking. Finally, we
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summarize our findings and their managerial implications and point out future research opportu-

nities.

2. Related Work

Two streams of revenue management research are closely related to the idea of accounting for
capacity uncertainty. On the one hand, the concept of overbooking entails controlling a virtual
capacity to account for uncertain capacity utilization. On the other hand, approaches aiming to
integrate fleet assignment and revenue management systematically trigger capacity updates to
compensate demand variation.

Overbooking was considered as early as 1958 (Beckmann and Bobkoski 1958); dynamic overbook-
ing models exist since the 1970s (Rothstein 1971). By selling tickets beyond the physical capacity,
airlines compensate for cancellations and no-shows. E.g., Rothstein (1971) and Subramanian et al.
(1999) model cancellations as a Markov process. More recently, Aydin et al. (2012) consider static
models of class-dependent cancellations and no-shows and a dynamic model that considers book-
ings and cancellations as streams of events. Topaloglu et al. (2012) propose open loop policies for
joint overbooking and capacity controls on a single flight leg.

Upgrading passengers when a compartment is depleted is a straight-forward approach to integrate
overbooking and capacity adaptation. This idea is first proposed by Alstrup et al. (1986): The
authors solve a dynamic overbooking problem with two segments by substitution. Karaesmen
and van Ryzin (2004) describe the possibility of multiple substitutable inventory classes. Both
approaches aim to compensate demand uncertainty by adjusting virtual capacity between the
aircraft’s compartments.

Insufficient overbooking and unanticipated capacity increases may cause spoilage, as seats remain
unsold. Excessive overbooking and unanticipated capacity decreases may cause spill, where valuable
demand is rejected and denied boardings occur (Belobaba and Farkas 1999). However, cancellations
mostly happen in increments of one. Updates to the fleet assignment result in significantly increased
or reduced numbers of seats. Therefore, overbooking approaches cannot be simply adapted to
consider uncertain capacity. Our model incorporates this uncertainty in the form of stochastic
scenarios, rather than as dynamic, incremental changes considered by most overbooking research.
Nevertheless, in the last part of the next section, we formalize the relationship between the two
problems. The respective remarks may serve as an inspiration for future research in this area.

Fleet assignment ideally pairs the largest aircraft with the flights that expect the highest and
most valuable demand (Barnhart et al. 2009). When revenue management can adapt fleet assign-
ment to accommodate demand variation, this is called i.a. ‘dynamic capacity management’ (Frank

et al. 2006), ‘demand driven swapping’ (Bish et al. 2004), or ‘demand driven dispatch’ (Berge and
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Hopperstad 1993). Berge and Hopperstad (1993) refer to a 1-5% revenue improvement caused by
relaxing the assumption of a fixed capacity. De Boer (2004) proposes a dynamic version of EMSR
called EMSRd. Numerical examples show that EMSRd can be very useful, however the best results
are achieved for instances with few fare classes. Frank et al. (2006) show positive effects from
continuously adjusted fleet assignments given dependent demand.

While organizational constraints mostly preclude automization in practice, such contributions
motivate manual re-fleeting processes aiming to compensate demand variation. In practice, these
are implemented via analyst communication across planning departments. As the resulting capacity
updates are not anticipated by the revenue management model, this results in further capacity
uncertainty — albeit of a well-meaning nature.

So far, capacity uncertainty in revenue management has been explicitly addressed only by Wang
and Regan (2002, 2006). In a leg-based model with uncertain demand, Wang and Regan (2002)
allow for a single possible capacity swap, which occurs at an a priori known point of time. Extend-
ing Liang (1999), the continous-time optimization model divides the time horizon to consider a
period before and a period after the swap. Wang and Regan (2002) present an optimal policy for
dealing with two potential capacities on a flight and mathematically prove the potential revenue
improvement. Their focus is also on preventing overbooking when the revenue risk from a potential
capacity decrease is too high.

In a second paper, Wang and Regan (2006) abandon the focus on overbooking and provide
further numerical results from a simulation study considering different capacities, demand mixes
and markets. The contribution focuses on endogenous capacity swaps: The optimal policy updates
repetitively over the booking horizon and is compared with heuristics that allow for only one update
on a particular time.

The model presented in this paper takes a perspective of discrete-time and deterministic demand.
Rather than allowing for a single capacity swap at a single point of time, we consider the possibility
of more than two potential capacities and allow for capacity updates at any point of time in the
booking horizon. This is motivated by our empirical analysis of capacity changes in the airline
industry, which are neither limited to a certain new capacity nor to a single time in the booking
horizon.

In the next section, we introduce the quantity-based revenue management under capacity uncer-

tainty problem.

3. Model and Solution Approaches
The model proposed here represents an alternative to that considered in Wang and Regan (2002,

2006): It allows for potential updates to occur at any time of the booking horizon and to result
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in an arbitrary number of new capacities. Our model considers quantity- and leg-based revenue
maximization and assumes independent, deterministic demand. It anticipates only a single capacity
update per departure — however, this could be remedied by resolving the model after each expected
time of update. As the revenue management problem is frequently solved independently for phys-
ical flight compartments, we consider only a single compartment per flight. To avoid overlapping
effects, this model does not account for no-shows and cancellations; all bookings require one unit of
capacity. The resulting revenue management under capacity uncertainty (RMCU) problem antici-
pates future capacity updates when optimizing the number of tickets to offer. The goal is to define
a global strategy of fare class availability, which applies until the capacity is updated. After such an
update, the global strategy is abandoned for a scenario-based strategy, which optimizes inventory

controls for the new capacity.

e rrrrrrrrrrrrrrrrr 50 Seats, update probability 0-2
++— 50 seats, update probability 0.1
++ 110 seats, update probability 0.2

\HH\H\\IH\H\HH\H\H\\\H\H\\le1008eats,updateprobabﬂityo.5
60 7 0

Figure 1 Exemplary time line

For a small example, consider Figure 1. At the time of optimization, the global strategy considers
four possible scenarios: With probability 0.2, capacity will be updated to 50 seats at 60 days before
departure; with probability 0.1, capacity will be updated to 50 seats at 7 days before departure;
with probability 0.2, capacity will be updated to 110 seats at 7 days before departure; finally, with
probability 0.5, the initially announced capacity of 100 seats will never be updated. Whenever one

of the scenarios realizes, the corresponding scenario-based strategy is implemented.

3.1. Model Description
Let the booking horizon start at time ¢ € N and end with departure at time 0. The set F' contains
all fare classes that can be offered. Revenue r; is fixed per fare class f € F. For each fare class
f € F and every time t € T:={,...,0}, expected demand is indicated by D, € N. The number of
acceptable denied boardings is bounded by K; b; € N denotes the cost of the ith denied boarding,
ie{l,...,K}. We assume that the denied boarding cost increases, i.e., b; <...<bg. The increase
may be linear or, as in the computational study, exponential.

We model capacity updates via a set of scenarios S. These scenarios describe all relevant com-

binations of update time and resulting capacity. Every scenario s € S defines an update time



Biising, Kadatz and Cleophas: Capacity Uncertainty in Airline Revenue Management
Article submitted to Transportation Science; manuscript no. TS-2014-0293 7

t* €T and a resulting capacity ¢® € N. The probability of scenario s € S is denoted by p®, where
DsesP =1

A feasible solution of the RMCU is to define both a global strategy and for each scenario a
scenario-based strategy. The global strategy xy, defines the number of tickets to offer in fare class
f € F at time t € T. This strategy is executed until scenario s € .S updates the capacity to ¢® at
time ¢°. Scenario s € S triggers the scenario-based strategy x%,, f € F, t €T, which defines the
number of tickets offered in fare class f at time ¢<t*. If the number of tickets offered between &
and ¢* +1 exceeds capacity ¢, no further tickets can be offered, i.e., x5, =0, fe F, t €T, t <t°.
In addition, denied boardings result. In the following, the variable «f € {0,1} indicates whether
the ith boarding is denied in scenario s € S, causing denied boarding cost b;. Thus, the resulting

revenue R*(z, (x5 o)) in scenario s € S equals

t°+1 K
R*(x, )= 1y <Zxﬂ+zxﬁ> = b
i=1

feF t=ts

The model’s objective is to maximize the expected revenue R(x,(x®, a®).cs) for such a strategy

set & € NXIFL (25 %) e NOXIFI s e S, given by

t°+1 K
Rio (5 0)) = L o0 = (e 2o ) - 2ot
s€S s€S feF t=ts i=1
A global strategy = € N**IFl is called optimal, if for each scenario s € S there exists a scenario-based
strategy z* or denied boardings o® such that the expected revenue R(z, (25 a®).cs) is maximal. Let
x € NIXIFl he a global strategy that is not necessarily optimal and let cl=c’— r H ZfeF Zs be
the capacity remaining after time ¢*+1, s € S. A scenario-based strategy x° and denied boardings

a® are optimal according to x, if (z*, @®) maximizes the revenue for the remaining capacity c?.

3.2. Mixed-Integer Program Formulation

An optimal solution to the RMCU problem can be derived via a mixed-integer program (MIP). In
addition to the already introduced variables x for the global strategy, z°, s € S for the scenario-
based strategy, and «* for the denied boarding in s € S, we introduce decision variable z° € {0,1} to
indicate the necessity of denied boardings starting at time ¢® in scenario s. The following RMCU-

MIP models the RMCU problem:
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(RMCU-MIP) maXZp <Z s <Z T+ Z xft> - Z bmf)

s€S fer t=ts
t°+1
Z(fot+2xft> <c —i—Za Vse S (1)
feF t=ts
Zangzs Vse S (2)
i=1
ﬂi‘ftSth VtET,fEF (3)
15 < Dp(1—2°) VteT, feF,seS (4)
Ty, T3 >0 VteT, feF,seS
of,z® € {0,1} Vie{l,...,K},s€S.

Constraint (1) guarantees that the number of sold tickets, adjusted by potential denied boardings,
does not exceed the capacity in each scenario. Constraint (2) guarantees that z® =1 if denied
boardings occur in scenario s. Constraint (3) restricts the number of sold tickets for the global
strategy to the expected demand Dy, for each fare class f € F' at each point in time ¢t € T". Con-
straint (4) guarantees that no tickets can be offered in scenario s € S if any denied boardings
occur, i.e. z° = 1. Otherwise, the number of tickets offered is bounded by the expected demand
Dy,. Solving the RMCU-MIP produces a global strategy and scenario-based strategies maximizing
the expected revenue.

In the following, we introduce an alternative solution approach based on combinatorial opti-
mization. In general, combinatorial algorithms have the advantage of being more computationally
efficient, easy to implement, and easily adaptable as starting heuristics for more complex settings.
With regard to the RMCU, more complex settings may include extensions to a network-model or

to one of stochastic, dependent demand.

3.3. Combinatorial Solution Approach
The main idea of the combinatorial solution approach relies on the following properties of an
optimal global strategy and scenario-based strategies, which will be proven later:

1. If an optimal global strategy is known, then after the time ¢*, optimal scenario-based strategies
maximize the revenue for the remaining capacity.

2. If an optimal global strategy is not known, but the number of tickets offered until any time
t* is known, then maximizing the revenue for this number of tickets is an optimal global strategy.
Combining these properties reduces the problem of computing an optimal global strategy and

scenario-based strategies to computing the number of tickets to offer until any point t°, s € S.
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Subsequently, we formally show the two properties and design a combinatorial algorithm based on
a longest path problem to compute an optimal number of tickets to offer.

The two properties call for solving subproblems of the original revenue management problem,
considering a subinterval in time and a new capacity available during that time. More formally, we
define the restricted deterministic revenue management (RDRM) problem R(t,t,¢) by computing
the number of tickets x; to offer per fare class f € F' and time ¢ >t > ¢ respecting the expected
demand Dy, and the capacity ¢ > 0 available at  so as to maximize the revenue R, () :=
> fer S ;s a2 We denote the optimal value by R(%,t,¢). Note that the RDRM problem does
not anticipate any capacity updates. It can easily be solved by a greedy-algorithm, which sells
tickets in the most expensive fare class until either the demand or the capacity is exhausted. If
there is capacity left, it sells tickets in the next cheaper fare class and so on.

Formalizing the first property calls for additional notation: Let T}, denote the set of points in
time where an update may occur, i.e., T, :={t € T |3s € S, t* =t} U {t} = {to,t1,...,tx} with
to = t>t;>...>ty. Let 2 be a global strategy. We then define ¢;(z) as the number of tickets to
offer in the time period [t;_1,t; — 1], i.e., ¢;(z) = ZfeF Zi;_tj_l Tp,t=1,...,N.

LEMMA 1. Let T be an optimal global strategy. If ¢® — ¢;(T) >0, let T° be an optimal solution
for the RDRM problem R(t50,c¢® — ¢;(T)) with t; =1t°, s€ S. If ¢ —¢;(T) <0, define & as the
necessary number of denied boardings. Then, T and (T°,a°), s € S, mazimize the expected revenue

for the quantity-based revenue management under capacity uncertainty (RMCU) problem.

Proof. For simplicity, only consider the case of ¢® — ¢;(Z) >0 for all s € S. Start by rewriting the

expected revenue

R(z, (25 a’)ses) = Zps <er <Z myﬁ—Zx}t) —mef)

sES feF t=t t=ts
t+1
= Zps Z Tf Z Ty + ZPSR[téo,cS—ci(m)] (z%),
seS fer t=t1 SES

since a =0 for all s €. S. Assume that Z in combination with z° as defined in the lemma is
not an optimal solution. On the other hand, let Z° be scenario-based strategies such that T in
combination with Z° maximizes the expected revenue. Hence, there exists a scenario s* € S such
that R s @) (@) > Riys*0,05* —cy@)) (z*"). This contradicts the definition of Z* as an optimal
solution to R(t50,c¢® — ¢;(T)). Q.E.D.
According to this lemma, solving a deterministic revenue management problem for each scenario
generates the best scenario-based strategies for any global strategy. Now, assume that the optimal
global strategy of the RMCU is not known but that the number of tickets to offer in the periods
[ti_i,ti —1], i€ {1,...,N}, t; € Ty, to = t, is known. Lemma 2 provides a way of computing an

optimal global strategy using this information.
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LEMMA 2. Let T be an optimal global strategy. Let T be a global strategy, such that the
restricted strategy for the time period [t;_1,t; — 1], denoted by Ty, , ,—11, i an optimal solution to

R(ti—1,ti—1,¢;(x)), i=1,...,N. Then T is an optimal global strategy.

Proof. Since ¢;(T) = ¢;(%) :=¢; for all i=1,..., N, both induce the same optimal scenario-based

strategies T° (see Lemma 1). We can now re-formulate the expected revenue as

R(z, (25 a)ses) = > _p° (er (Zl‘fﬁzwﬁ)—zbiaf)

seS feF t=tS
= Zp Rty ti—1.e) (T, ti-1)) +ZP erzxft Zba
s€S s€s  feF  t=ts

If Z is not an optimal solution, there exists a period in time [t;_1,t; — 1], such that

R[ti—latiflaci] (E[ti—l’ti*”) > R[ti—l iti—1,¢4] (j[ti—htrl])‘

This is a contradiction to the choice of . Q.E.D.
Thus, solving the RMCU problem requires only finding the optimal number of tickets offered in
every time period [t;_1,t; — 1], i=1,..., N. The following algorithm computes these values as a
longest path in an acyclic graph as illustrated by Figure 2.

For any RMCU instance, define the associated RMCU longest path instance as follows: Every
vertex (t,¢) € V in the corresponding graph G = (V, A) consists of a tuple with ¢ € T, and ¢ €
{0, ..., Crnax} Cmax = Maxges{c®}. Add the source vertex (ty,0) and the terminal vertex (tx1, Cmax)
with to =# and ty4; = —1. The arc set A connects all pairs (¢;,¢) and (t,.q,¢), i € {0,..., N},
c,d €{0,...,Cmax}, ¢ <. Now, associate a revenue r((¢;,c), (ti+1,¢')) to an arc by

T((ti0)s (tivr, ) = Z P R(ti,tis1— 1, —c)+ Z P°R(ti1,0,¢" =)

seS seS
t9<tiqq t¥=tiq

and define R(t;;1,0,c°—¢) = Z;/ L biif ¢ —¢ <0. Finally, set r((t;,¢), (tit1,¢)) =0, if t; 1 =tn11.
Any ((to,0), (tn+1, Cmax) )-path visiting the vertices (ty,¢1),. .., (ty, cny) represents a global strategy
offering ¢; — ¢;_; tickets during the period [t;_1,t; — 1].

In the following, we prove that solving the RMCU longest path problem equals solving the

RMCU problem.

THEOREM 1. A longest path in the RMCU longest path instance triggers an optimal global strat-

eqy and scenario-based strategies for an RMCU instance.

Proof. Let ¢ be a ((t9,0), (tx+1, Cmax) )-path visiting the vertices (t1,¢1), ..., (tn,cn). The expected

revenue for the associated global strategy Z, offering ¢; — ¢;_; tickets during the period [t;_1,¢; — 1]
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Figure 2 RMCU longest path instance

and the corresponding scenario-based strategies z°, s € S, or a® respectively, equals the length r(q)

of this path g:

R(z, (2% " )ses) = Y 9’ (er (tsixft+za:ft> —i@-%?)

s€S feEF t=ts

= Zp‘ Z R(ti tiy1—1,¢i—cia +Zp -R(t30,c¢ —max{cl})
seS t; €Ty seS t >t5

t; >tS

N N

:ZZP ti-1,t _Lci_ci—l)"’zZPS'R(EH,O,CS—Q)
i=1 s€S i=1 s€S

t5<t; tS=t;

= ZT((ti,Ci)v (ti+1,civ1)) =7(q)

i=1
Hence, finding a path with maximum length represents an optimal global strategy. Q.E.D.

Since the graph G is acyclic, a modified version of the Dijkstra algorithm can compute such a path

in O(]A]). The number of arcs is bounded by |T}| - ¢2,,.. Fischer and Helmberg (2014) propose to
speed up solving this problem using the graph’s special layer-structure.
The appendix includes an algorithmic representation of the combinatorial approach as imple-

mented for the computational study.

3.4. Exploring the Role of Denied Boarding Cost
Clearly, the parameterization of the denied boarding cost plays an important role for the RMCU

problem. Therefore, this section theoretically explores the effects of high versus low denied boarding
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cost. To that end, we consider a given instance of the RMCU problem at time ¢ € N. For each
fare class f € F', let r; indicate the resulting revenue; for any point in time ¢t € T', let the expected
demand be indicated by D, € N. For a given parameter vector of denied boarding cost b € R¥| let
R} denote the maximum expected revenue.

We start by considering the relation of two denied boarding cost vectors on their corresponding
maximum expected revenue. The first lemma states that for higher boarding cost, the expected

revenue decreases.
LEMMA 3. Let b' € RE and b? € R¥ be two different denied boarding cost vectors. If b} < b? for
allie{l,...,K}, then Rj, <R}, .

Proof. Let z° be an optimal global strategy for b° € R¥ i € {1,2}. Let (2'*,a’) be the corre-

sponding optimal scenario-based strategies. From this, we obtain:

ZQ = R(LUQ, (IQSvo‘QS)SES)
t5—1 K
_Zp (er (Z:Uft+2x )—beo@ﬁ
s€S feF t=ts i=
t°—1 K
<o (S (T ) ot
s€S feF t=ts =1
t5—1 K
<3 (S (S 2o ) - St
ses fer t=ts i=1
= R( (v gvOZzg)sGS) = R;:.
This proves the lemma. Q.E.D.

Next, we consider properties of optimal global strategies, given very low or very high denied
boarding cost. For low cost, an optimal global strategy offers all tickets at all points of time. Note

that for bx > minscpry, this is not true.

LEMMA 4. Let the maximum denied boarding cost bx be lower than the revenue earned by the
cheapest fare class, i.e., by <mingcprs. Then, for a sufficiently large K, one optimal global strategy

x* offers all fare classes throughout the booking horizon, i.e., x5, =1 for all f€ F, t€T.

Proof. Assume that z is an optimal global strategy, where z;y =0 for f' € F and t' € T. Con-
sider a second strategy =, where Ty =1 and Ty, = Ty, otherwise. Let 2°, ° and &°, @ be the
corresponding optimal scenario-based strategies. The change in the global strategy solely influences
scenarios s € S with ¢t* +1 <t'. We denote this set by Sy, i.e., Sy ={s€ S|t*+1<t'}. Let s€ Sy
be such a scenario. Since the number of tickets sold before t° increases by 1, at most one more

denied boarding results. Thus, denied boarding cost increase by at most a.
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We then obtain
R(Z, (F,0).es) — R(Z,(8°,6"