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Noise reduction in a laser by nonlinear damping
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We consider the reduction of the intensity fluctuations in a laser by intracavity nonlinear absorption.
The optimum operating conditions for reducing the intracavity intensity fluctuations are not the same as
the conditions for reducing the intensity fluctuations in the output field. For a quite general class of
models, we show that at the optimum operating point for reducing intensity fluctuations in the output
field reduction in the intracavity intensity Auctuations is half of the maximum level that can be achieved
in the model. We also show that as the laser intensity fluctuations are reduced the phase fluctuations, as
measured by the laser linewidth, are correspondingly increased.

PACS number(s): 42.50.Dv, 42.50.Kb, 42.65.Bp

I. INTRODUCTION R,„,= —,'Q„, (1.3)

In terms of this parameter, the shot-noise limit is defined
as Q =0. Sub-shot-noise intensity fiuctuations inside the
cavity thus correspond to —1 (Q (0. Outside the cavity
a linearized intensity fluctuation spectrum characterizes
the intensity fluctuations. This spectrum is the Fourier
transform of the photocurrent two-time correlation func-
tion [4] (normalized to have units of s ') and takes the
form

S(co)=ten I+R k

k +co
(1.2)

where K is the cavity decay rate, n is the steady-state
mean photon number inside the cavity, and k is a model-
dependent parameter. In this paper we show that if the
best Q factor obtained inside the cavity is Q, the op-
timum reduction in output intensity fluctuations is given
by

Since the demonstration by Yamamoto and co-workers
[1] that the intensity fiuctuations in the output of a semi-
conductor laser can be reduced below the shot-noise limit
by feedback, there has been considerable effort given to
similar schemes to reduce quantum noise in general laser
systems [2—11]. In the work of Ritsch [6] and Walls,
Collett, and Lane [7], the possibility of reducing intensity
noise by introducing intracavity nonlinear absorbers was
discussed. The examples discussed in these papers sug-
gested that the optimum conditions for reducing intensity
fluctuations inside the cavity and outside the cavity do
not coincide. In this paper, we take up this issue and find
for a general class of nonlinear absorbers, the conditions
under which the intensity fluctuations in the intracavity
field or the external field may be reduced below the shot-
noise limit.

A convenient measure of the intensity fluctuations in-
side the cavity is given by the Mandel Q factor, defined

by

V(n) n—

which agrees with the results of Walls, Collett, and Lane
[7]. Explicit expressions for these quantities are given in
Eqs. (2.22) and (2.26).

II. LASER WITH NONLINEAR DAMPING

+—(2ApA —A Ap —pA A ) .
2

(2.1)

The linear loss term proportional to K represents coupling
to the modes external to the cavity. The nonlinear term
is assumed to be of the form

A = I(at) a~], (2.2)

where P, Q are integers and the curly brackets indicate
that the order of the operators is unspecified. Following
Ritsch [6], we define two integers M, N such that
N)M 1, and (N —M) mod 2=0 with the interpreta-
tion that X is the number of photons involved in the pro-
cess (N 2 implies a nonlinear process), while M is the
number of photons absorbed in the process (M (N indi-
cates a Raman-type process). Thus we chose

N —MI'=
2

(2.3)

(2.4)

Note that we are implicitly assuming that the absorption
is unsaturated. This gives the best noise reduction. For
the same reason we will assume later that the gain is sa-
turated. As examples we have the following.

The density operator for the state of the field inside a
cavity with a nonlinear absorber evolves according to the
master equation

Kp= —(2apa —a ap —pa a)
2
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Linear loss,

M=X=1, A =a;
two-photon absorption,

M=X=2, 3 =a d(m)= —(n —m ) = —am —yMm +Gn, ,
1

(2.12)

This equation indicates that we may replace the birth-
death master equation with a nonlinear diffusion process
with drift and diffusion coe%cients given by

three-photon Raman process,

M=1, %=3, 3 =a a
D(m)= —((n —m) ) =~m+yM m +Gn, .1

(2.13)

For specificity we will assume that

W =(a ta)~a M . (2.5)
yMn +en —Gn, =0 . (2.14)

From Eq. (2.12) we estimate the stationary mean photon
number n in the cavity as given by the solution of

W'a!,n & =(n M)" —" !,n & .
(n —M)!

(2.7)

To model the laser gain we use the model of Scully and
Lamb [12]. This is based on a four-level model in which
inelastic collisions quickly deplete the populations of the
lasing levels enabling the atomic dynamics to be adiabati-
cally eliminated. The photon-number distribution for the
field then obeys the master equation

dPn n +1
dt 1+(n + 1)ln, p„ i, (2.8)1+n/n,

This includes the examples given above. The results of
this paper do not depend on this choice, providing that N
is small compared to the mean photon number n, as it
will be in realistic cases.

In the photon-number representation we use

t 1/2

(2.6)nt

We now introduce the scaled parameters

(2.15)

(2.16)

where v=(Gl~)n, is the standard (y=0) expression for
the mean photon number well above threshold [12]. In
terms of the scaled parameters the mean is given by

yIM +p —1=0. (2.17)

In Fig. 1 we plot the mean photon number versus g for
various values of X. In general n is less than v, so that
0&/L& 1.

To proceed we consider fluctuations around the deter-
ministic steady state by approximating the nonlinear
difFusion process by a linear one (i.e., an Ornstein-
Uhlenbeck process). The drift and difFusion constant of
the process are

where G is the gain and n, is the saturation number. We
find that the best noise reduction occurs in the limit of
large gain where n )&n„ in which case the master equa-
tion may be approximated by

k = [N (N —1)p]——
p

D =n[(M+1)—(M —1)p]—
p

(2.18)

(2.19)

dpn
(2.9)

The variance of the internal photon number distribution
in the steady state is given by

The diagonal matrix elements of the field density opera-
tor then obey the master equation

p„= Gn, (p„, p„) +~[(n—+I) p„+,—np„]

(n +M)! ~ M+y pn+m

n!
( n M)(x —M)

( n —M)! (2. 1O)

0.6"

0.4"

where p„= ( n
~ p ~

n ). For the initial condition
p„(O)=5„,the short time solution is

p„(t)= 5„1—&tm yt —(m M)™Gn —t-mf

(m —M)! S
10

mt+5„,atm+5„yt '
(m —M)

(m —M)!

+6„+,Gn,, t . (2.1 1)
FIG. 1. A plot of the scaled intracavity mean photon number

p vs the scaled nonlinear absorption y for various values of N.
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D
2k

(M+1)—(M —1)p
2[N —(N —1)p]

(2.20)
—0 05

—0. 1

The deviation of the steady-state distribution from Pois-
son statistics may be quantified by the Q parameter

g —77

R
—0.15

—0.2

—0.25

—0. 3

(p —1)(2N —M —1)
2[N (N ——1)p]

(2.21)

For no nonlinearity @=1 and Q =Qo=0. If the intra-
cavity absorption (y) is large, p —+0 and

M+1Q~Q„= —1+
2X

(2.22)

which is the minimum value as found by Ritsch [6]. Note
that the best results for reducing the intracavity intensity
fluctuations occur with N large and M small. The sensi-
tivity of the absorber to intensity fluctuations is deter-
mined by the degree of nonlinearity (N) of the damping
process. This explains why large X gives the best noise
reduction. However, it is not desirable for the number of
photons absorbed in the damping process (M) to be large
because this would lower the mean photon number
n, increasing the variance to mean ratio. For the two
examples discussed above, M =N =2:Q = —

—,', as
found by Walls, Collett, and Lane [7], and
M =1,N=3:-Q„=—

—,'. These results are depicted in

Fig. 2.
The intensity fluctuations outside the cavity are deter-

mined by the Fourier transform of the normalized photo-
current two-time correlation function [4]

where

(p —1)(2N —M —
1)jM

[N (N —1)p—]
(2.24)

The parameter R in fact determines the reduction of the
output intensity fluctuations below the shot-noise limit as
is seen by evaluating the spectrum at zero frequency,

(6i (0)) =an(l+R) . (2.25)

In the limit p=1, R =RO=O. Also in the limit p~0,
R —+R =0 from below. In Fig. 3 we plot R versus p for
the case of two-photon absorption and a Raman process.
The optimum value of R is found by solving dR /d @=0.
We find

FIG. 3. A plot of the output intensity noise reduction param-
eter R vs the scaled intracavity mean photon number p. (a)

X =M =2; (b) N =3,M = 1.

k
(5i (co)) =urn 1+R

k +co
(2.23) 1 M+1

OPt

j.

(2.26)

(2.27)

—0.2

—0.4

—0. 6

—0 8"

Note that the best noise reduction obtainable by such a
nonlinear process is R = —

—,', which occurs for M small

and X large. At the optimum value for p we find

(2.28)

Thus we have shown that

R,p, =Q,p,
=

—,'Q (2.29)

This agrees with the results found by Walls, Collett, and
Lane [7] for the case of two-photon absorption.

FICx. 2. A plot of the Q parameter, which measures deviation
from Poisson statistics inside the cavity, vs the scaled intracavi-
ty mean photon number p. (a) X =M =2; (b) N = 3,M = 1.

III. LASER LINKWIDTH

One might expect that any attempt to reduce the laser
intensity Auctuations below the shot-noise limit will be at
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the expense of increasing the phase fluctuations and thus
of increasing the laser linewidth. This is indeed the case
as we now verify. We will adopt the simple procedure of
Sargent III, Scully, and Lamb [12], which consists in
finding the decay rate for the average field amplitude.
This decay is then attributed to phase diffusion since the
intensity is constant. Outside the cavity the mean electric

I

field is proportional to (a (t)). This quantity obeys the
equation

« "(t))
dt

= & (nip(t)ln+»&n +I. (3.1)

From Eq. (2.1) we find the contribution due to the non-
linear terms is

i /2

(d (t)) =~ g t/n+I 2[it(it +I)] p +I +m+t
n=o n! n+1!

(n —M)
' +(n +1—M)

i p„„+izp n! ~p (n +1)!
(n —M! n+I —M! (3.2)

(d (t)) = (irn Gn, )(—a (t)) .
1

2n
(3.3)

Rearranging sums and expanding to first order in 1/n
and using (2.14) we get

This means we keep v constant and, for a given non-
linearity, adjust 6, the gain, to make n the same as it
would be without nonlinear absorption. Thus p now
varies with G (p ~ 1/G) rather than n. We are thus led to
define a new dimensionless linewidth

The standard Scully-Lamb terms for the phase diffusion
are

2I 1

KA /ltq p
(3.10)

(a (t)) = (Gn, —GA urn)(a (t)),—
2n

(3.4)

where A is a dimensionless parameter determined by the
decay rates of the particular atomic transition model
used. When there terms are added to those arising from
the nonlinearity, we find

(d (t))= —1(a (t)), (3.5)

p=1 —5, (3.11)

where 5 is small ( «1/N), so that 2)=1+5. For it, n
fixed, we can use the dimensionless noise parameter

Evidently the linewidth is broadened by increasing the
nonlinearity as expected.

For small nonlinearity we can write

where the decay rate is (3.12)

Thus the laser linewidth is

(3.6) to compare the two models. This parameter does not
have a simple dependence on p. However, not far from
the standard laser we have

(3.7) JV= 1 —6(2N —M —1), (3.13)

At the optimum operation point we find

%+1
n,

which should be compared with the standard result

(3.8)

which demonstrates the effect of intensity noise reduc-
tion. In particular, for the simplest kind of nonlinear ab-
sorption, two-photon absorption (N =M =2), we find

(3.14)

so that

n,
(3.9) (3.15)

In order to compare the result in Eq. (3.7) with the stan-
dard laser, we wish to keep the output power constant.

which clearly indicates that decreasing the intensity Auc-
tuations is at the expense of increased phase fluctuations.
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