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Abstract

A Bayesian alternative to Zhuo (2018) is presented. The method is of general interest as it presents an explicit formula

for the local sensitivity of log marginal likelihood when observations vary by a small amount. The remarkable feature is

that the formula is very easy to compute and does not require knowledge of the marginal likelihood which is, invariably,

extremely difficult to compute. Similar expressions are derived for posterior moments and other functions of interest, including

inefficiency. Methods for examining prior sensitivity in a straightforward way are also presented. The methods are illustrated

in the context of a stochastic production frontier.
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1 Introduction

In a recent paper, Zhuo (2018) examined local influence in the context of a stochastic frontier model with normal - half-normal

errors. His approach is based on the geometric normal curvature of likelihood displacement. Unfortunately, Zhuo’s (2018) cannot

be extended easily to examine local sensitivity of certain functions of the parameters or technical inefficiency estimates. In this

paper, we derive new results relating to local sensitivity of marginal likelihood and posterior moments and we apply them in the

same context, viz. a stochastic frontier model. However, most results are more generally applicable to Bayesian analysis.

Suppose xi ∈ <k is a vector of explanatory variables, β ∈ <k is a vector of parameters and the model is:

yi = x′
iβ + vi − ui, i = 1, ..., n, (1)

where

vi ∼ N (0, σ2
v), ui ∼ N+(0, σ

2
u), i = 1, ..., n. (2)

The two error components are independent and independent from the regressors. The parameter vector is θ = [β′, σv, σu]
′.

The likelihood function of the model is given by:

L (θ;Y ) =

(
2

σ

)n n∏
i=1

ϕ
(εi
σ

) n∏
i=1

Φ

(
−λεi

σ

)
, (3)

where εi = yi − x′
iβ, σ2 = σ2

v + σ2
u, λ = σu

σv
and Y = {y, ..., yn}. Moreover, ϕ(z) = (2π)−1/2e−z2/2 and Φ(z) =

´ z
−∞ ϕ(t)dt.

Given a prior p(θ) the posterior is given by Bayes’ theorem:

p(θ|Y ) ∝ L (θ;Y )p(θ). (4)

2 Bayesian local sensitivity

The central object of interest in Bayesian analysis is posterior moments. For example, the vector of posterior means is

m(Y ) =

ˆ
θp(θ|Y )dθ. (5)

For model comparison the marginal likelihood is also of considerable interest:

M (Y ) =

ˆ
L (θ;Y )p(θ)dθ. (6)

The marginal likelihood is very difficult to obtain and often expensive numerical approximations are used (Gelman and

Meng, 1998, Han and Carlin, 2001, Kass and Raftery, 1995). Of course, it is simply the integrating constant of the posterior

density in (4). It turns out that we can examine the local sensitivity of marginal likelihood without even having to compute it.
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Indeed, the expression for local sensitivity can be derived as follows:

∂M (Y )

∂yi
=

ˆ
∂L (θ;Y )

∂yi
p(θ)dθ =

ˆ
∂ lnL (θ;Y )

∂yi
L (θ;Y )p(θ)dθ =

ˆ
∂ lnL (θ;Y )

∂yi

L (θ;Y )p(θ)

M(Y )
M(Y )dθ,

from which we obtain:

∂ lnM (Y )

∂yi
=

ˆ
∂ lnL (θ;Y )

∂yi

L (θ;Y )p(θ)

M(Y )
dθ =

ˆ
∂ lnL (θ;Y )

∂yi
p(θ|Y )dθ = Eθ|Y

{
∂ lnL (θ;Y )

∂yi

}
, i = 1, ..., n. (7)

Therefore, the local sensitivity of marginal likelihood to any given observation is a posterior expectation of the derivative

of the log likelihood with respect to the observation. This derivative is very often available analytically, and the posterior

expectation can be approximated accurately provided a Markov Chain Monte Carlo sample
{
θ(s), s = 1, ..., S

}
is available:

∂ lnM (Y )

∂yi
' S−1

S∑
s=1

∂ lnL (θ(s);Y )

∂yi
. (8)

Let us take now the case of local sensitivity of posterior moments or any function of the parameters, say f(θ). The

posterior expectation, EθY f(θ) is:

m(Y ) =

ˆ
f(θ)p(θ|Y )dθ =

ˆ
f(θ)

L (θ;Y )p(θ)

M (Y )
dθ. (9)

Taking derivatives, we have the final expression:

∂m(Y )

∂yi
= Eθ|Y f(θ)

{
∂ lnL (θ;Y )

∂yi
− ∂ lnM (Y )

∂yi

}
. (10)

In this expression, ∂ lnM (Y )
∂yi

has been computed in (7), and ∂ lnL (θ;Y )
∂yi

are also available from the intermediate computations

in (7).

It should be mentioned that Zhu and Ibrahim (2011) propose techniques organized around the perturbation manifold and

use differential geometry to examine simultaneously changes in the data, the prior and the model. Changes in the prior, for

example, are modelled using the ε-contamination class (Berger, 1990). One disadvantage of their approach is that they need

MCMC samples from both the baseline and the perturbed model and some care must be exercised when choosing the types

of perturbation to the data and / or the prior. In addition, some analytical work is needed to obtain tangent vectors of the

perturbation parameters which are closely associated to Fisher information. For complicated models it seems that the approach

in Zhu and Ibrahim (2011) requires both analytical work as well as intensive MCMC which we avoid in our approach. It seems

that the types of perturbations they consider, can be examined in the present framework using the techniques we have proposed

without additional MCMC: the only requirement is that MCMC samples are available from the baseline model.

3



3 Application to the stochastic frontier model

From the log of the likelihood of the frontier model in (3) we can obtain the derivatives:

∂ lnL (θ;Y )

∂yi
= − εi

σ2
− λ

σ

ϕ(−λεi/σ)

Φ(−λεi/σ)
, i = 1, ..., n. (11)

To illustrate the concepts, we generate n = 101 observations from a frontier model with an intercept and two regressors

(generated from standard normal distributions), σv = 0.1, σv = 0.5, β1 = −2 and the remaining coefficients set to 0.5. Our prior

is:

p(β, σv, σu) ∝ σ−1
v e−0.01/(2σ2

v)σ−1
u e−0.01/(2σ2

u). (12)

The prior for β is flat. For σv and σu the priors are improper, uninformative relative to the likelihood and take into

account the analysis in Fernandez, Osiewalski, and Steel (1997) so that the posterior is proper.

We perform MCMC analysis using a Metropolis algorithm1 with 60,000 passes the first 10,000 are discarded to mitigate

possible start up effects.2

Local sensitivity of log marginal likelihood is presented in Figure 1. Local sensitivity of posterior means of the parameters

are presented in Figure 2. Marginal likelihood is, generally, sensitive to omitting observations and particularly observation 64

resulting in a drop of 20 units in log marginal likelihood which is considerable. From Figure 2 we can see that this is because σv

increases and σu decreases considerably as the result of dropping this observation.

In Figure 2, we present also the actual effect on posterior means when an observation is omitted. MCMC is repeated

using 60,000 passes with a burn-in phase whose length is 10,000. Local sensitivity tends to overestimate the change in posterior

means and “global” sensitivity analysis tends to support the idea that the parameters are fairly robust to omission of observa-

tions. Finally, in Figure 3 we provide histograms of sensitivity for posterior means and posterior standard deviations across all

parameters so that magnitudes can be appreciated.

4 Local prior sensitivity

Beyond serious doubt, the most frequent question addressed to Bayesians is whether their results are sensitive to the prior. One

way to address the question is to change the prior and perform MCMC again to present the new results. In this section we show

that this can be avoided. Suppose the prior is indexed by certain hyperparameters α and we denote it by pα(θ). As the marginal

likelihood is:

Mα(Y ) =

ˆ
L (θ;Y )pα(θ)dθ, (13)

1The Metropolis algorithm is an independence chain whose proposal distributions are uniform for each parameter. The range of the uniform
distribution is adjusted during the burn-in phase so that approximately 25% of all candidates are accepted.

2Gauss programs are available on request.
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Figure 1: Local sensitivity of log marginal likelihood
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Figure 2: Local sensitivity of posterior means
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Figure 3: Global sensitivity of posterior means and s.d.
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it is easy to show that:
∂ lnMα(Y )

∂α
= Eθ|Y

∂ ln pα(θ)

∂α
, (14)

which involves only a derivative of the log prior with respect to the hyperparameter(s) and the posterior expectation can

be approximated accurately provided a MCMC sample is available. To illustrate in the context of the stochastic frontier model,

suppose:

p(σv, σu) ∝ σ−1
v e−0.01/(2σ2

v) (α/2)
−n/2

σ
−(n+1)
u e−α/(2σ2

u). (15)

Both priors have the form p(σ) ∝ σ−(n+1)e−α/(2σ2). For σv we have n = 0, which makes it improper. For σu we set n = 1

so that the prior is proper, and we examine sensitivity with respect to hyperparameter α ≥ 0. Since

∂ ln pα(θ)

∂α
=

n

2
− α

2
Eθ|Y

(
1

σ2
u

)
, (16)

prior sensitivity depends on
∂ lnMα(Y )

∂α
=

1

2
(n− αg) , (17)

where g = Eθ|Y

(
1
σ2
u

)
which turns out to be approximately 2 based on our MCMC simulation. Near α = 0 the sensitivity

is maximal and is negligible for α ' n
2 . The simplicity of prior sensitivity suggests that it should be possible to be used widely

in applied econometrics and resolve issues of prior sensitivity in a straightforward manner.

5 Sensitivity of efficiency

Inefficiency can be estimated using:

Ui(Y ) = Eθ|Y Ui(θ, Y ), Ui(θ, Y ) = σ∗

{
ϕ(εiλ/σ)

1− Φ(εiλ/σ)
− εiλ

σ

}
, (18)

where σ2
∗ = σ2

vσ
2
u/(σ

2
v + σ2

u), see Kumbhakar and Lovell (2000, p. 78). In turn, we have:

∂Ui(Y )

∂yi
=

∂

∂yi
Eθ|Y Ui(θ, Y ) = Eθ|Y

∂Ui(θ, Y )

∂yi
, (19)

where ∂Ui(θ,Y )
∂yi

= −λσ∗
σ

{
λ
σ εiΛi(θ, Y )− Λi(θ, Y )2 + 1

}
, and Λi(θ, Y ) = ϕ(εiλ/σ)

Φ(εiλ/σ)
, i = 1, ..., n.

This local sensitivity can be computed easily once MCMC draws are available. The results are presented in Figure 4.

Generally, local sensitivity is considerable and can be as large as ten to fifteen percentage points. In such cases, we recommend

presentation of posterior densities of efficiency estimates rather than simple sample summaries and, of course, presentation of

the local sensitivity measures.
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Figure 4: Local sensitivity (%) of efficiency
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Concluding remarks

We present several results related to local sensitivity of marginal likelihood, prior hyperparameters and other functions of interest

in Bayesian analysis. We illustrate the new concepts in the context of the stochastic frontier model arguing that Zhuo’s (2018)

local sensitivity measure does not address all issues related to sensitivity in likelihood analysis. Notably, local sensitivity of

marginal likelihood (that can be used to obtain Bayes factors for model comparison) does not depend on marginal likelihood

estimation and requires only MCMC draws from the posterior. Local sensitivity of efficiency scores is shown to be considerable

in some cases and can be as large as 10-15 percentage points. Therefore, presentation of local sensitivity measures along with

the scores themselves, is essential.
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