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Abstract

We propose a generalization of Zhang’s coefficient of determination to generalized lin-
ear geostatistical models and illustrate its application to river-blindness mapping. The
generalized coefficient of determination has a more intuitive interpretation than other
measures of predictive performance and allows to assess the individual contribution of
each explanatory variable and the random effects to spatial prediction. The developed
methodology is also more widely applicable to any generalized linear mixed model.

Keywords: coefficient of determination; generalized linear geostatistical models; goodness-
of-fit.

1 Introduction

Generalized linear geostatistical models (GLGMs) are a class of mixed models where, condi-
tional on a realisation of a Gaussian process S = {S(x) : x ∈ A ⊂ R2} in a study area A,
the outcome of interest Yi, for i = 1, . . . , n, follows a classical generalized linear model (GLM)
(McCullagh & Nelder, 1989). Hence, the following properties hold.

• The Yi, conditional on S, are a set of mutually independent variables with mean

E[Yi|S(xi)] = miµi = mig
−1(ηi)

and variance
Var[Yi|S(xi)] = miV (µi),

where: mi is an offset (e.g. number of trials for a Binomial response); ηi is the linear
predictor; g(·) is the link function; and V (·) the variance function.
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• ηi = d(xi)
>β + S(xi) where d(xi) is a vector of explanatory variables associated with

location xi and β is a vector of regression coefficients.

• The conditional distribution of Yi belongs to the exponential family.

In this technical note, we address the following question: how should we assess the contribution
of the explanatory variables d(xi) and of the random effects S(xi) to our predictive inferences?

To answer this question, we propose a generalization of the coefficient of determination pro-
posed by Zhang (2017) to GLGMs and show its application to a geostatistical data-set on
river-blindness. For classical GLMs, Zhang’s coefficient is defined as

R2
GLM = 1−

∑n
i=1 cV (yi, ŷi{d(xi)})∑n

i=1 cV (yi, ŷ0)
, (1)

where: ŷi{d(xi)} is the prediction for Yi based on d(xi) by plugging-in the estimated regression
coefficients via maximum likelihood; ŷ0 is the prediction from a GLM with an intercept only;
and

cV (a, b) =

{∫ b

a

√
1 + [V ′(u)]2 du

}2

, a, b ∈ R

which measures the change in the variance function V (·) for a change in the mean from a to
b. When Yi is Gaussian and g(·) is the identity function, the numerator in (1) reduces to the
residual sum of squares, i.e. cV (yi, ŷi{d(xi)}) =

∑n
i=1(yi−ŷi{d(xi)})2. Zhang (2017) also shows

that (1) does not overstate the proportion of explained variance by the explanatory variables
compared to other generalizations of the coefficient of determination to GLMs that are based
on the likelihood ratio (Maddala, 1983; Cox & Snell, 1989; Nagelkerke, 1991). Furthermore,
unlike the generalization by Cameron & Windmeijer (1997) based on the Kullback-Leibler
divergence, Zhang’s coefficient of determination is also defined for quasi-models (Wedderburn,
1974) and, therefore, does not require the full specification of the likelihood function.

2 A generalization of Zhang’s coefficient of determina-

tion to GLGMs

Our generalization of Zhang’s coefficient of determination is based on the intuitive interpre-
tation of random effects as accounting for the effect of unmeasured variables.

For simplicity, consider a GLM with two explanatory variables D1(x) and D2(x), hence

ηi = β0 + β1D1(xi) + β2D2(xi), for i = 1, . . . , n.

Note that the two explanatory variables appear in the above equation in upper-case letters
because we have not yet conditioned on them. Under such model, conditioning only on one
of the two covariates might induce residual spatial correlation in the outcome Yi. Hence, if,
for example, we condition on D1(x) = d1(x), a natural model for the data would be a GLGM
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where d1(x) is used as an explanatory variable and S(x) is used to account for the residual
effect β2D2(x). This argument can also be easily extended to any number of measured and
unmeasured variables.

It follows that, conditionally on a realisation of S> = (S(x1), . . . , S(xn)), a natural approach
to quantify the total variation in Y > = (Y1, . . . , Yn) is through

n∑
i=1

cV (yi, ŷ{d(xi), S(xi)}), (2)

where ŷ{d(xi), S(xi)} is the prediction for Yi based on the vector of explanatory variables d(xi)
and the realisation of S(xi). Since S is not observed, we can use its predictive distribution,
defined as the distribution of S conditional on y> = (y1, . . . , yn) and the covariates d> =
(d(x1), . . . , d(xn)) (henceforth S|(y, d)), to compute (2). More specifically, we average (2) over
the distribution of S|(y, d), which leads to

R2
GLGM = 1−

ES|(y,d)[
∑n

i=1 cV (yi, ŷ{d(xi), S(xi)})]∑n
i=1 cV (yi, ŷ0)

(3)

In the case of a linear geostatistical model, obtained by setting mi = 1, g−1(ηi) = ηi and
V (µi) = τ 2 for all i, the expectation of (2) reduces to

(y −Dβ)>(y −Dβ) + ξ>[ξ − 2(y −Dβ)] + tr(Ω),

where: D is a matrix of covariates; ξ = Σ(Σ + Iτ 2)−1(y − Dβ), with Σ and I denoting the
covariance matrix of the marginal distribution of S and the identity matrix, respectively; and,
finally, Ω = Σ− Σ(Σ + Iτ 2)−1Σ.

For non-Gaussian responses, the expectation of (2) is generally not available in closed form.
We then propose to use a Monte Carlo Markov chain (MCMC) algorithm to simulate from
S|(y, d) and approximate (3) with

R2
GLGM ≈ 1−

1
B

∑B
j=1

∑n
i=1 cV (yi, ŷ{d(xi), s(j)(xi)})∑n

i=1 cV (yi, ŷ0)
(4)

where s(j)(xi) is the j-th out of B Monte Carlo samples for the i-th component of S|(y, d).

We can also define the coefficient of partial determination for the vector of explanatory vari-
ables d given S as

R̃2
GLGM = 1−

ES|(y,d) [
∑n

i=1 cV (yi, ŷ{d(xi), S(xi)})]
ES|(y,1) [

∑n
i=1 cV (yi, ŷ{1, S(xi)})]

, (5)

where ŷi{1, S(xi)} is the prediction for Yi based on S(xi) but excluding the explanatory
variables d(xi) from the model. We interpret (5) as the fraction of explained variation in the
response Y by the explanatory variables d but unexplained by the spatial random effects S.

In the next example, we compute (3) and (5) by plugging-in the maximum likelihood estimates
of the regression coefficients. These are obtained using the Monte Carlo likelihood method
(Christensen, 2004) implemented in the R package PrevMap (Giorgi & Diggle, 2017). We
simulate from S|(y, d) using a Laplace sampling technique described in detail in Section 2.1
of Giorgi & Diggle (2017).
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3 Example: River-blindness mapping in Liberia

River-blindness is an infectious disease caused by the parasite Onchocerca volvulus and is
transmitted by a black fly of the genus Simulium. We analyse data from 90 communities in
Liberia, where people were tested by palpation for the presence of skin nodules caused by the
disease; for an Africa-wide analysis of these data, see Zouré et al. (2014).

Let xi be the location of the i-th sampled community, where yi out of ni randomly selected
individuals tested positive. Our model for the data is a GLGM, where the Yi conditionally on
S(xi) are mutually independent Binomial variables with number of trials ni and probability
of having skin nodules p(xi), such that

log

{
p(xi)

1− p(xi)

}
= β0 + β1xi,1 + β2xi,2 + S(xi), (6)

where xi,1 and xi,2 are the abscissa and ordinate components of the geographical location xi.
The reason for using a linear trend in xi is shown in Figure 1, where the map of the empirical
nodule prevalence shows an increase in the values as we move further from the coast in the
north-east direction. Finally, we model S(x) as a zero-mean Gaussian process with isotropic
exponential covariance function having variance σ2 and scale parameter φ.

The maximum likelihood estimates of the model parameters and their 95% confidence intervals
are reported in Table 1. We observe that the use of the explanatory variables leads to a
remarkable reduction in the values of the estimated σ2 and φ. The fitted GLGM explains
about 59% of the variation in nodule prevalence compared to 27% from a classical GLM where
S(x) = 0 for all x. However, the small value of 1% for the coefficient of partial determination,
R̃2, indicates that the point estimates from the GLGM with covariates, given by (6), are
strongly similar to a model without covariates, where β1 = β2 = 0. Nonetheless, Figure 2
shows that the standard errors for the estimated nodule prevalence (computed using Monte
Carlo samples from S|(y, d) while pugging-in the Monte Carlo maximum likelihood estimates)
at the observed locations from the model with covariates are smaller almost everywhere than
those from the model with only the intercept. More precisely, the largest relative reduction
in the standard errors is of about 10%.

Table 1: Monte Carlo maximum likelihood estimates with associated 95% confidence intervals
for the regression coefficients of the model with and without covariates defined in Section 3.

Without covariates With covariates
Term Estimate 95% CI Estimate 95% CI

β0 -1.941 (-3.312, -0.571) -6.327 (-9.126, -3.528)
β1 × 103 2.761 (0.223, 5.299)
β2 × 103 4.784 (2.208, 7.360)

σ2 0.791 (0.075, 8.295) 0.145 (0.055, 0.384)
φ 395.050 (32.608, 4786.143) 68.526 (20.438, 229.755)

R2
GLM = 27%;R2

GLGM = 59%; R̃2
GLGM = 1%
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Figure 1: Map of the empirical nodule prevalence. The radius of each point is proportional the
quintile class within which the associated prevalence falls, with larger radiuses corresponding
to higher quintile clasees.
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Figure 2: Standard errors for the estimated nodule prevalence from a Binomial geostatistical
model without covariates against one with covariates as defined in Section 3. The solid line
is the identity line.
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4 Discussion

We have introduced a generalization of Zhang’s coefficient of determination to quantify the
proportion of explained variation in the outcome of interest by the covariates and/or the
residual spatial random effects. This has a more intuitive interpretation than other measures
of predictive performance, such as mean square errors, and also allows to quantify the indi-
vidual contribution of each component of the linear predictor to spatial prediction. Although
our focus was on geostatistical models, the developed methodology can be applied to any
generalized linear mixed model.

Through an example on river-blindness mapping, we have quantified the impact of the adopted
explanatory variables on the spatial estimates of prevalence. The proposed generalization of
the coefficient of partial determination, R̃2

GLGM , indicated that the impact of these on the point
estimates of prevalence was negligible. We have also shown that the reduction in the standard
errors, albeit small, was however more tangible than the change in the point estimates after
adjusting for the north-east trend in disease prevalence. Hence, our recommendation is that
R̃2

GLGM should not be used as a stand-alone tool but should be complemented with other
measures that assess the impact on the accuracy of the spatial estimates.

Future research will aim to extend the methods of Section 2 to point process models, including
log-Gaussian Cox processes.
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