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Abstract

In this paper, we develop and apply novel machine learning and sta-
tistical methods to analyse the determinants of students’ PISA 2015 test
scores in nine countries: Australia, Canada, France, Germany, Italy, Japan,
Spain, UK and USA. The aim is to find out which student characteris-
tics are associated with test scores and which school characteristics are
associated to school value-added (measured at school level). A specific
aim of our approach is to explore non-linearities in the associations be-
tween covariates and test scores, as well as to model interactions between
school-level factors in affecting results. In order to address these issues,
we apply a two-stage methodology using flexible tree-based methods. We
first run multilevel regression trees in the first stage, to estimate school
value-added. In the second stage, we relate the estimated school value-
added to school level variables by means of regression trees and boosting.
Results show that while several student and school level characteristics
are significantly associated to students’ achievements, there are marked
differences across countries. The proposed approach allows an improved
description of the structurally different educational production functions
across countries.

Keywords: Education; Multilevel model; School value-added; Regression trees;
Boosting.

JEL-code: C40, 120.



1 Introduction

The educational activity involves a complex process whereby inputs (such as
human and financial resources) are converted into outputs. By analogy with
the type of production function that is typically used to analyse the technology
of a firm, the labour and capital inputs used by a school are likely to influence
its output. But, since students themselves form both an input and output, and
since they themselves are transformed by the experience of education, such a
simple framework fails adequately to capture some key salient features of the
process. This is a very well-known challenge in the existent literature about
Educational Production Function (EPF). Indeed, the learning process of stu-
dents is influenced by students’ own characteristics, those of their family, their
peers, the neighbourhood in which they live, as well as by the characteristics of
the school that they are attending. Moreover, the way in which various inputs
(at different levels) affect output is likely to vary substantially across the edu-
cational systems that operate in different countries. A common characteristic
of all educational systems is the hierarchical structure in which students are
nested within classes, that are nested within schools, that are in turn nested
within cities and so forth. Establishing the structure of such a hierarchy is
a non-trivial exercise, not least because this structure may be different across
countries. Exploring international datasets which contain information about
students’ performance in more countries can be a rational approach to under-
stand how the differences among educational systems can have an impact on
students’ results, all else equal (see [16]).

The Programme for International Student Assessment (PISA) is a triennial
international survey (started in 2000) which aims to evaluate education systems
worldwide by testing the skills and knowledge of 15-year-old students. In 2015
over half a million students, representing 28 million 15-year-olds in 72 countries
and economies, took the internationally agreed two-hour test. Students were
assessed in science, mathematics, reading, collaborative problem solving and
financial literacy. Moreover, a wide array of data concerning a set of student and
school levels characteristics are available, thanks to questionnaires completed by
students and school principals.

Our aim in this paper is to identify which are the student and school level
characteristics that are related to students’ achievement, with the aim of in-
vestigating the impact of these characteristics on the outcome. We analyse the
school systems of nine large developed countries: Australia, Canada, France,
Germany, Italy, Japan, Spain, UK, USA. Specifically, our research questions
are:

e Which student level characteristics are related to student achievement?

e How much of the total variability in student achievement can be explained
by the difference between schools and how can we estimate the school
value-added?

e Which school level characteristics are related to school value-added and



in what way?

e How do co-factors interact with each other in determining outcomes si-
multaneously?

e How do these relationships between inputs/covariates and outputs/test
scores vary across countries?

In order to address these issues, we run a two stage-analysis, that departs
from traditional EPFs approach and embraces a Machine Learning strategy:

1. In the first stage, we apply multilevel regression trees (RE-EM tree, see
[36]) in which we consider students (level 1) nested within schools (level
2). By means of this model we can both analyse which are the student
level variables that are related to student achievements and estimate the
school value-added, as a random effect (grouping factor in the hierarchical
model).

2. In the second stage, we apply regression trees and boosting to identify
which are the school level characteristics related to school value-added
(estimated at first stage), how they are related with the outcome and how
they interact among each other.

The set of analytical tools that we use to examine these issues is new to
the literature, but is quickly gaining in popularity. Tree-based methods can be
classified as a Machine Learning (ML) approach. The main difference between
statistical and ML approaches is that while the former starts by assuming an
appropriate data model and then estimates the parameters from the data, the
latter avoids starting with a data model and rather uses an algorithm to learn the
relationships between the response and the predictors (in our setting, students’
test scores and their determinants, respectively). Furthermore, ML approach
assumes that the data-generating process is complex and unknown and tries to
identify the dominant patterns by observing inputs and the responses (see [9]).

Tree-based methods (extended to accommodate the multilevel context) fit
the problem in hand well for several reasons. First of all, this methodology takes
into account the hierarchical structure of data. The two levels of analysis are
students (level 1) that are nested within schools (level 2) and it is worth disen-
tangling the portions of variability explained at each level. Multilevel models
are well suited to this. Secondly, our tree-based methodology does not force any
particular functional form on the input-output relationship, and it allows for in-
teractions among the predictors. This point is essential because the functional
form of the relationships between the covariates and the outcome is unknown
a priori and forcing it to be linear can considerably bias the results and, crit-
ically, it does not allow discovery of the most likely relationships between the
variables. Moreover, there are reasons to believe that the educational context
is intrinsically characterised by interactions among variables, since inputs are
various and coexist in the same environment. So, tree-based models, that are



able to let the variables interact and that identify which interactions are rel-
evant in influencing the outcome, are definitely attractive (see [23]). Thirdly,
the method allows a clear graphical representation of the results that helps in
communicating them to policy practitioners. Alongside the deep interrogation
of interactive effects, we consider this to be a major benefit of this approach.

The remainder of the paper is organised as follows: in Section 2 we review
the existing literature and, in so doing, motivate our model choice; in Section
3 we present the PISA dataset and the countries that we analyse; Section 4
discusses the methodological approach (multilevel trees and boosting); in Sec-
tion 5 we report the results and in Section 6 we derive conclusions and policy
implications’.

2 Background and previous literature

In recent decades, many researchers have studied the determinants of student
achievement, in order to develop policy implications aimed at improving ed-
ucational systems across the world. The statistical methods proposed by the
literature in this perspective are various - including linear regression, multilevel
linear models and stochastic frontier analysis - in each case aimed at parame-
terising the educational production function (EPF). While a complete literature
review of previous studies that use a EPF approach is beyond the scope of this
paper, we report important points from existing contributions that can be con-
sidered as relevant for interpreting our approach. Specifically, we focus on those
studies which adopt a cross-national perspective in modelling the determinants
of students’ educational performance by means of economic models and sta-
tistical and econometric empirical tools. Indeed, our main contribution to the
academic literature stems from the relevance of the innovations brought by the
ML strategy to explore differences in educational production across countries.
The Programme for International Student Assessment (PISA) was initiated
by the OECD, and has been running since 2000. It involves standardised test-
ing of 15 year olds across a large number of countries. Over the 15 years for
which data are now available, PISA results have revealed that there are big
discrepancies across education systems. The data allow direct comparisons of
student performance in science, reading and mathematics, leading to a rank-
ing of the countries and identifying those that score the best results (see [24]).
PISA2015 data, for example, show that Singapore achieves the best results in
the scientific area, followed by Japan, Estonia, Finland and Canada. For our
purposes, the most interesting aspect of the PISA data is the possibility that
they offer to compare the marginal effects of student and school levels variables
on students’ performance. Gender, immigrant status, socio-economic status
(SES), proportion of disadvantaged students, school size and characteristics of
the school principal are all variables that have been found to be very important
in some countries but less so in others (see [26] and [38]). For example, in almost

LAll analysis undertaken in this paper is conducted using the statistical software R (see

[29]).-



all countries boys perform on average better than girls in the scientific subjects,
with the notable exception of Finland, where girls have on average higher results
than boys. As another example, after accounting for socio-economical status,
immigrant students have a double probability compared to their not immigrant
counterparts to achieve low results in scientific subjects (see [27]). Focusing on
mathematics, four Asian countries outperform all other economies - Singapore,
Hong Kong (China), Macao (China) and Chinese Taipei - and Japan is the
strongest performer among all the OECD countries.

Policy responses to internationally reported PISA results have differed among
participating countries. For example, in some country groups PISA deficits have
been associated with a push towards more centralised control, while others have
responded with much more focused reforms implemented with the specific aim
of raising PISA (or similar) test scores over time (see [42]).

What is clear to experts and analysts worldwide, therefore, is that the ed-
ucational systems, in their structural, internal complexity and in their various
aspects, vary within and across countries. Different variables play a role and
sometimes with different impacts in influencing educational results in different
contexts. Analysing international datasets like PISA therefore calls for the use
of a flexible model, able to identify the significant variables within each system
and to fit data with different patterns. Indeed, imposing the same coefficient
on the correlation between covariates and educational results in all countries is
inappropriate and even the inclusion of country fixed-effects - shifting only the
intercept - is not obviously an adequate solution. Therefore, it is necessary to
employ more flexible instruments for the analysis of patterns that go beyond
the simply “fixed-effects” which impose homogeneity of the interactions between
key variables within countries.

The EPF literature builds upon the work of Coleman, Hanushek, and others
by viewing education as a process in which students’ performance or output
(attainment or years of schooling completed) is produced from inputs including
school resources, teacher quality, family attributes, and peer quality. Because
outcomes cannot be changed by fiat, policy attention has focused on inputs.
These include inputs that are both directly controlled by policymakers (charac-
teristics of schools, teachers, curricula, etc.) and those that are not so controlled
(family, friends, the learning capacities of the student, etc.) (see [14]). While a
large part of the effect on students’ attainments is due to these “uncontrolled”
characetristics of students (see [7]), many researchers have found that schools’
and teachers’ characteristics are also of importance in determining outcomes
(see, for example, [15], [3], [32] and [43]).

In this paper, we try to find out which are the inputs that are related with
students’ performances (output) and in our perspective, three main points need
to be taken into account when modelling the educational production functions:

e Data levels of grouping: educational data have a hierarchical structure and
it is important to distinguish and disentangle the portion of variability in
student achievements due to different levels of grouping ( between and
within classes and schools).



o Realistic assumptions: since the educational system is a complex and un-
known process, the model assumptions are a sensitive issue and are one
of the main weak points of the parametric approaches to the problem.
Most of the statistical approaches force the data to be explained through
a functional form chosen a priori, but the imposition of such a functional
form may be inappropriate - either because it does not reflect the under-
lying technology in some contexts (countries) or, even in none. Therefore,
there is the need of a flexible approach that does not force any functional
relationships among the variables, where the functional form is not known
and that admits the eventuality that the relationship between a covari-
ate (for instance, school resources) and educational results (for example,
students’ test scores) may be non linear.

e Interactions: interactions between cofactors (both within and between
levels) are inevitable, as, for example, the relationship between average
socioeconomic status of students and class/school size. In such a per-
spective, modelling the educational production function would require the
inclusion of interaction factors that better describe how covariates combine
to influence educational performances.

Most of the classical statistical techniques used in the literature to model
educational data do not fulfill these requirements.

From a modelling point of view, the application of hierarchical models to
educational data is straightforward. Raudenbush (see [31]) explains the ad-
vantages of applying these models in an educational context. He states that
two primary goals have motivated application of hierarchical linear models in
education: first, researchers have used data from many groups to strengthen
estimation of random effects for each group, and the second goal is improved
inference about the fixed effects. The application of hierarchical linear mod-
elling enables researchers to go beyond the classical questions, such as why do
some schools have higher achievement than others, to ask about why structural
relationships vary across groups. These models also offer advantages in dealing
with aggregation bias long associated with nested data structure.

For these reasons, multilevel approaches have been broadly applied in the
literature. Raudenbush himself applies hierarchical models in various educa-
tional studies (see for example [6], [41] and [30]). Other examples are given by
Agasisti et al. (see [1]), Masci et al. (see [21] and [22]), Plewis (see [28]) and
Rumberger (see [33]), that apply multilevel linear models considering different
levels of grouping, such as class, school, Local Education Authority (LEA) or
geographical regions. Even where these approaches do indeed model the hi-
erarchical structure of data, however, they still force the covariates to have a
linear relationship with the outputs, without allowing possible heterogeneous
interactions among the predictors.

The innovation of the present paper involves the combination of the EPF ap-
proach with a multilevel approach to estimation using a machine learning (ML)
method. This allows us to relax the parametric assumptions and to discover



the data generating process that lies behind our data. The fundamental insight
behind ML approaches is as much statistical as computational and its success
is largely due to its ability to discover complex structure that does not need
to be imposed by the researcher in advance. It manages to find complex and
very flexible functional forms in the data without simply overfitting: it finds
functions that work well out-of-sample (see [23]).

Spurred by the need to relax the parametric assumptions and to explain
complex systems, some researchers have already adopted a ML approach for
studying some key economic and social relevant issues. Varian (see [40]) states
that

“conventional statistical and econometric techniques such as regression often
work well, but there are issues unique to big datasets that may require differ-
ent tools. First, the sheer size of the data involved may require more powerful
data manipulation tools. Second, we may have more potential predictors than
appropriate for estimation, so we need to do some kind of variable selection.
Third, large datasets may allow for more flexible relationships than simple lin-
ear models. Machine learning techniques such as decision trees, support vector
machines, neural nets, deep learning, and so on may allow for more effective
ways to model complex relationships.”

Various studies on the comparison of the performance of regression and clas-
sification trees and conventional statistical methods have already been done:
Fitzpatrick € Mues (see [10]), for example, apply different modelling approaches
for future mortgage default status and they show that boosted regression trees
significantly outperform logistic regression. Savona (see [34]) realizes an early
warning system for hedge funds based on specific red flags that help detect the
symptoms of impending extreme negative returns and the contagion effect. He
uses regression tree analysis to identify a series of splitting rules that act as risk
signals and he compares these results with the ones obtained applying logistic
regression, showing that they are consistent.

Our paper is not the first in which regression trees have been applied in
an educational context. Thomas & Galambos (see [39]) apply regression and
decision trees to investigate how students’ characteristics and experiences affect
satisfaction. The data mining approach is able to identify the specific aspects
of students’ university experience that most influence students’ satisfaction, in
a survey of students in Iowa city (IA). Ma (see [19]) analyses students’ per-
formances at middle and high schools employing a two-stage analysis, the first
stage of which involves estimation of the rate of growth in mathematics achieve-
ments of each student, by means of a hierarchical linear model (HML), while
the second stage applies classification and regression trees (CART) to students’
characteristics. Cortez & Silva (see [8]) apply some Data Mining (DM) meth-
ods such as regression trees and random forests to relate Portuguese secondary
school students’ scores in mathematics and reading to students’ characteristics.
Grayson (see [13]) merges results of students at York University in Toronto
that were surveyed at the end of the first year with information on grades from
administrative records, by means of regression trees.



In this paper, we relax the assumption of linear effects of student-level co-
variates on their performance, instead modelling this relationship by means of
flexible regression trees. In the first stage of the analysis, we therefore combine
multilevel models with regression trees. In the second stage, when exploring the
factors associated to the school value-added, we again employ regression trees,
combining this method with a boosting procedure, so gaining more precise es-
timates of determinants of school performance. This type of research is very
much in its infancy. We are aware of only one other study [12] - conducted con-
currently with and independently of the present research - that uses regression
trees in an education context. That study also draws on PISA data, but focuses
specifically on mathematics achievement in Australia.

3 The Dataset

The Programme for International Student Assessment (PISA) data assesses stu-
dent performance, on a triennial basis, in science, mathematics, reading, collab-
orative problem solving and financial literacy. In our analysis, we use PISA
data for 2015, focusing on 9 countries: Australia, Canada, France, Germany,
Italy, Japan, Spain, UK and USA. The selection of countries is motivated by
the attempt of representing different “types” of educational systems: Anglo-
Saxon, Asian, Continental-Europe and Southern Europe. Future research will
be realized to extend the analysis to other educational regimes, such as Nordic
countries, South America and Africa. We also need to keep the number of
countries quite limited, for favoring easy interpretation of results and their
comparison. PISA requires both students and school principals to compile a
questionnaire. We therefore have information both at student and school levels.
The school questionnaire contains around 30 multiple choice questions about (i)
school background information, (ii) school management, (iii) teaching staff, (iv)
assessment and evaluation, (v) targeted groups (eg how schools might organise
instruction differently for students with different abilities) and (vi) school cli-
mate. Meanwhile the student questionnaire contains around 50 multiple choice
questions about the (i) student, student’s family and student’s home (home re-
sources, parents support), (ii) student’s view about his/her life (anxiety, effort,
collaboration, perception of school climate), (iii) student’s school, (iv) student’s
school schedule and learning time and (v) student’s view on science. In addition,
students are required to undertake tests in several subjects, and, upon comple-
tion, is awarded ten scores for each subject, measuring different abilities within
each subject. For example, in science, these scores measure students’ ability to
explain phenomena scientifically, to evaluate and design scientific enquiry, and
to interpret data and evidence scientifically; in reading, they measure student’s
ability in retrieving information, forming a broad understanding, developing an
interpretation, reflecting on and evaluating the content of a text, reflecting on
and evaluating the form of a text, etc.; and in mathematics, they measure stu-
dents’ ability in identifying the mathematical aspects of a problem situated in a
real-world context and identifying the significant variables, recognising mathe-



matical structure (including regularities, relationships and patterns) in problems
or situations, simplifying a situation or problem in order to make it amenable
to mathematical analysis and so on. The ten scores are very highly correlated
within each subject (coefficient of correlation ~ 0.8/0.9). In each country, test
scores have been standardised in order to have mean = 500 and standard devi-
ation = 100. Some other variables, noted in the following tables, are indicators
built by PISA and have been standardised so that the mean = 0 and standard
deviation = 1. An example is ESCS, which is a weighted average of measures
of parental education, wealth, home educational resources and cultural posses-
sions. In our analysis, we focus on mathematics test scores, choosing just one of
the ten scores (the same one for each country) as answer variable. We report in
Tables 1 and 2 the variables used in our two-stage analysis, with full definitions?.

2We report here the students’ score in mathematics, since this will be our response variable
in the model. We do not consider students’ scores in other educational subjects in the analysis.
In order to have a complete overview of the data collected by PISA, refer to the PISA 2015
technical report in http://www.oecd.org/pisa/data/2015-technical-report/.
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Variable name Type  Explanation

MATH SCORE num Mathematics PISA test score
(mean = 0, sd = 1)
GENDER 0/1 O=male
1=female
ESCS num Socio-economical status
(mean = 0, sd = 1)
IMMIGRANT cat 0 = not immigrant student

1 = first generation immigrant
2 = second generation immigrant

TIME HOMEWORK int Number of hours of student
homework per week

HISCED cat Highest level of education of parents
(levels from 0 to 6)

VIDEO GAME 0/1 Whether the student plays video games
or not

SPORT 0/1 Whether the student plays sport or not

DISCIPLIN CLIMATE num How is the disciplinary climate in class

TEACHER SUPPORT num Teacher support in class

MMINS num Hours of mathematics lessons per week

BELONG num Subjective well-being:
sense of belonging to school

MOTIVAT num Student Attitudes, Preferences and
Self-related beliefs: Achieving motivation

ANXTEST num Personality: test anxiety

COOPERATE num Collaboration and teamwork dispositions:
Enjoy cooperation

PARENTS SUPPORT num Parents emotional support

CULTURAL POSSESSION num Cultural possession at home
HOME EDUCAT RESOURC num Home educational resources

Table 1: List of student level variables of PISA2015 survey used in the analysis,
with the relative explanations. Note: we report here only the test score in
mathematics that we use as answer variable in the first stage of the analysis. In
each country, we standardize the test score in order to have mean = 0 and sd
= 1. All variables from “DISCIPLIN CLIMATE” to the end are indicators built
by PISA and have mean = 0 and sd = 1.
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Variable name Type

Explanation

# STUDENTS num
RATIO-COMPUTER-STUD num
MANAGEMENT1 1/6
MANAGEMENT?2 1/6
STUD-ADMIT-RECORD 0/1
PRIVATE 0/1
% GOVERN FUNDS num
TEACHERS-INADEQ 1/4
MATERIALS-INADEQ 1/4
INFRASTRUCT-INADEQ 1/4
RATIO-STUDENTS-TEACHER num
RATIO-STUDENTS-TEACHERS5 num
% STUD SPECIAL NEEDS num
% DISADVANT STUDENTS num
STUDENTS TRUANCY 1/4
STUD-NO-RESPECT-TEACH 1/4
TEACHER ABSENTEEISM 1/4
% PARENTS SPEAK TEACHERS num

% PARENTS IN SCHOOL GOVERN  num

Number of students in the school
Number of available computers

per student

How much the school principal uses
student performance results to develop
school’s educational goals

How much the school principal discusses
schools’ academic goals with teachers

at faculty meetings

Whether the students are admitted

to the school depending on their
previous scores or not

0 = Public school

1 = Private school

Percentage of school funds

given by the government

How much the principal thinks that
teachers are inadequate (on a 1 to 4 scale)
How much the principal thinks that
materials are inadequate (on a 1 to 4 scale)
How much the principal thinks that
infrastructures are inadequate

(on a1 to 4 scale)

Student-teacher ratio

Student-teacher with level 5 ratio
Proportion of students with special needs
Proportion of disadvantaged students

in terms of socio-economical index
Students truancy (on a 1 to 4 scale)
Students lack respect for teachers

(on a 1 to 4 scale)

Teacher absenteeism (on a 1 to 4 scale)
Proportion of students’ parents
speaking with teachers at the meeting
Proportion of students’ parents
participating at the school government

Table 2: List of school level variables of PISA2015 survey used in the analysis,
with the relative explanations. Note: all variables of type ni/no assume integer
values ranging from nj to ng, with the maximum value corresponding to ns.

Table 3 reports the sample size in the different countries, specifying the num-
ber of students and the number of schools that participated in the PISA survey.
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The sample sizes vary somewhat across countries, but we have chosen the coun-
tries used in our analysis so as to ensure that there are sufficient observations
in each to allow robust conclusions to be drawn.

Lastly, it is worth noting that the percentage of missing data at student level
is very low (about 2 to 5 % among countries), while at school level it is slightly
higher (about 10 to 25 % among countries). We note, however, that a major
advantage of tree-based algorithms concerns their performance in the presence
of missing data - see for example [5] and [18].

Country # Students  # Schools

Australia 14,530 758
Canada 20,058 759
France 6,108 252
Germany 6,504 256
Italy 11,583 474
Japan 6,647 198
Spain 6,736 201
UK 14,157 550
USA 5,712 177

Table 3: Sample size in the 9 selected countries.

4 Methodology

We develop and employ a two-stage procedure. In the first stage, we apply
a mixed-effects regression tree (RE-EM tree), with only random intercept, in
which we consider two levels of grouping: students (level 1) nested within schools
(level 2). The response variable of the mixed-effects model is the student PISA
test score in maths, this being regressed against a set of student level characteris-
tics (fixed coefficients), plus a random intercept that describes the school effect.
By means of this model, we can both estimate the fixed coefficients of the stu-
dent level predictors on the outcome and the school value-added (corresponding
to the random intercept). In the second stage, we regress the estimated school
value-added against a set of school level characteristics, by means of regression
trees and boosting.

4.1 An introduction to tree-based methods

Given an outcome variable and a set of predictors, tree-based methods for re-
gression (see [17]) involve a segmentation or stratification of the predictors space
into a number of regions. In order to make a prediction for a given observation,
we typically use the mean of the observations in the region to which it belongs.
Building a regression tree involves two steps:

13



1. We divide the predictor space - that is, the set of possible values for
X1,X5...,X, -into J distinct and non-overlapping regions, R1, Ry ..., R;.
For simplicity, we consider these regions as high-dimensional rectangles (or
boxes);

2. For every observation that falls into the region R;, we make the same
prediction, which is the mean of the response values for the observations
in Rj.

The regions are chosen in order to minimize the Residual Sum of Squares
(RSS):

J
> (i —ir,)” (1)

j=1i€R,

where §r; is the mean of the observations within the j-th box and y;; is the
i-th observation within the j-th box.

It is useful to contrast this approach with the more conventional methods
typically used in the education economics literature - namely a linear functional
form imposed on the education production function. In particular, a linear
regression model assumes the following functional form:

FX) =B+ > X;B; (2)

j=1

(where p is the number of predictors) whereas regression trees assume a
model of the form:

M
[(X) = Z cmI(xeRm) (3)
m=1
where M is the total number of distinct regions and Ry, ..., Ry represent

the partition of feature space.

Determining which model is more appropriate depends on the problem: if
the relationship among the features and the response is well approximated by
a linear model, then an approach such as linear regression will likely work well,
and will outperform a method such as a regression tree that does not exploit this
linear structure (see [40]). If instead there is a highly non-linear and complex
relationship between the features and the response, then decision trees may
outperform classical approaches. The complex nature of educational production
renders this an ideal candidate for exploring the ability of trees-based methods
to interrogate non-linearities and interactions in the data.

In order to give an example of how to read the result of a regression tree,
let us imagine that we want to regress stadardised student test scores (that
is a continuous variable with mean = 0 and standard deviation = 1) against
three covariates: Economic Social and Cultural Status (ESCS, an indicator of
socio-economic status defined to be a continuous variable with mean = 0 and
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standard deviation = 1), number of siblings (variable assuming integer values)
and time spent on homework (variable assuming integer values) and that Figure
1 reports the result of the regression.

Outcome variable: Student test score

ESCS< 0.3
—‘é ke
S
3 5
(9]
E R
Time homework <5 2 1
| © R
@3 : 3
0.3
0.3 0.8 ESCS

Average score of students that
are in this branch

Figure 1: Example of the result of a regression tree. The answer variable is
students’ tests scores (continuous variable with mean = 0 and sd = 1) and
the three covariates are: (i) socioeconomic index (ESCS, continuous variable
with mean = 0 and sd = 1), (ii) number of siblings (integer variable) and (iii)
time of homework (integer variable counting the hours of homework at home).
The image on the left represents the partition of the covariate space into three
regions, computed by the regression tree. The image on the right represents the
regression tree. Variable “number of siblings” does not appear in either the two
images, since it does not result to be statistically relevant.

First, we notice that the number of siblings does not appear in the tree.
This means that this variable is not able to catch any variability in students’
test scores and therefore, the tree excludes it from the splits. When reading
the tree, every time the condition at the split point is satisfied, we follow the
left branch, otherwise, we follow the one on the right. On the left side of the
figure, we see the regression tree while on the right, we see the partition of the
covariate space into three regions. The most important variable turns out to be
ESCS: a student with an ESCS less than 0.3 follows the left branch yielding a
predicted student test score of —0.3; instead, if the student’s ESCS exceeds 0.3,
he/she goes in the right branch and, at this point, if he/she studies less than 5
hours per week, his/her predicted score is 0.3, while if he/she studies more, it
is 0.8. The algorithm itself identifies the threshold values in order to minimize
the Residual Sum of Squares (RSS). Focusing on the interaction between the
two covariates, it is noteworthy that the variable “time of homework” matters if
the ESCS is higher than 0.3, while it is irrelevant if the ESCS is lower than 0.3.

This brief and simplified explanation serves as a foundation for the methods
that we discuss in the following two subsections: RE-EM trees and Boosting,
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which are the ones used in the empirical analysis of this paper.

4.2 Multilevel models and RE-EM trees

RE-EM trees (see [36]) work in a similar fashion to random effects (or multilevel)
linear models (see [37]) but relax the linearity assumptions of the fixed covariates
with the response. Given N = Z;.]ZI n; individuals, nested within J groups, a
two-level linear model takes the form:

P
Yij = Po + Z Brxkij + bj + € (4)
k=1

where

i=1,..., N is the index of the i-th individual,
j=1,...,J is the index of the j-th group;

Yi; is the answer variable of the individual i within group j;
B is the (p+1)-dimensional vector of fixed coefficients;
T1ij,- - -, Tpi; are the p (fixed) predictors;

b; is the (random) effect of the group j on the answer variable (value-added
of group j)

and € is the vector of the residuals.

Both b and € are assumed to be normally distributed with mean 0 and
variance o7 and o2 respectively. The vector of fixed coefficients 3 is the same
for all the J groups, while the random intercept b; changes across groups (b; is
the value-added, positive or negative, of the j-th group). The larger is o7 the
larger are the differences across groups.

RE-EM trees merge multilevel models with regression trees, substituting the
linear regression of the fixed covariates with a regression tree. So, in place of
a linear regression, a regression tree is built to model the relationship between
the output (test scores) and the inputs (student characteristics). In our case,
the individuals are the students and the groups are the schools. If we consider
students (level 1) nested within schools (level 2), the two-levels model (with only
random intercept), for pupil ¢,i =1,...,n;, n = Zj n;, in school j,j=1,...,J
takes the form:

Yij = f(@ij1s - @ijp) + b5 + €5 (5)

with
b~ N(0,07), (6)
e~ N(0,07) (7)
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where f(X) takes the form in (3) and

yi; is the maths PISA test score of student i within school j;

Zij1,- - -, Tijp are the p-predictors at student level;

b; is the random effect of school j, which in this paper is interpreted as a
school-specific value-added (VA) to the educational performance of the student;
and

€;; is the error.

It is generally assumed that the errors e are independent across objects
and are uncorrelated with the effects b. Note, however, that autocorrelation
structure within the errors for a particular object is allowed; to do this, we
allow the variance/covariance matrix of errors to be a non-diagonal matrix.
The random effect b; is still linear with the outcome, while the fixed covariates,
that do not change across groups (schools) are related to the outcome by means
of a regression tree.

Moreover, one of the advantages of multilevel models is that we can compute
the Proportion of Variability explained by Random Effects (PVRE):

i
of + 02 ®)

PVRE measures how much of the variability of test scores can be attributed
to students’ characteristics or to structural differences across schools - in other
words, PVRE disentangles the variability of test scores between students from
that between schools. Applying RE-EM trees to data of each of the 9 countries,
we can both (i) analyse which are the student level variables that are related
with students’ achievements and in which way and (ii) estimate the school value-
added (random effect b;) to students’ achievements and compute the proportion
of student scores’ variability given by differences across schools (PVRE). With
the aim of adequatly considering the structural differences between countries,
we estimate the educational production function as specified in the equation (5)
separately for each country.

PVRE =

4.3 Regression trees and Boosting

Regression trees have a series of advantages: they do not force any functional
relationship between the response variable and the covariates; they can be dis-
played graphically and are easily interpretable; they can handle qualitative pre-
dictors; they allow interactions among the variables and they can handle missing
data. Nevertheless, they suffer from high variance in the estimation of the rela-
tionship between covariates and test scores and they are sensitive to outliers. For
these reasons, methods have been developed that serve to reduce variance and
increase predictive power; these include bagging, random forests and boosting
(see [17]).

Boosting (see [9]) is a method for improving model accuracy, based on the
idea that it is easier to find and average many rough rules of thumb, than to
find a single, highly accurate prediction rule (see [35]). Related techniques -
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including bagging, stacking and model averaging - also build and merge results
from multiple models, but boosting is unique amongst these in that it is sequen-
tial: it is a forward, stagewise procedure. In boosting, models (e.g. regression
trees) are fitted iteratively to the data, using appropriate methods gradually
to increase emphasis on observations that are modelled poorly by the existing
collection of trees. Boosting algorithms vary in exactly how they quantify lack
of fit and select settings for the next iteration. In the context of regression trees
and for regression problems, boosting is a form of “functional gradient descent”.
Consider a loss function - in this case, a measure (such as deviance) that repre-
sents the loss in predictive performance of the educational production function
due to a suboptimal model. Boosting is a numerical optimisation technique for
minimising the loss function by adding, at each step, a new tree that is chosen
from the available trees on the basis that it most reduces the loss function. In
applying the Boosting Regression Tree (BRT) method, the first regression tree
is the one that, for the selected tree size, maximally reduces the loss function.
For each subsequent step, the focus is on the residuals: on variation in the re-
sponse that is not so far explained by the model. For example, at the second
step, a tree is fitted to the residuals of the first tree, and that second tree could
contain quite different variables and split points compared with the first. The
model is then updated to contain two trees (two terms), and the residuals from
this two-term model are calculated, and so on. The process is stagewise (not
stepwise), meaning that existing trees are left unchanged as the model is en-
larged. The final BRT model is then a linear combination of many trees (usually
hundreds or thousands) that can be thought of as a regression model where each
term is a tree. A number of parameters control the model-building process: the
learning rate (Ir), that drives the velocity with which the tree is learning, that
is, it shrinks the contribution of each tree; the maximum number of trees to be
considered; the distribution of response variable; and the tree complezity (ic),
that is the maximum level of interaction among variables (see [9]).

The increase in predictive power obtained by adopting a BRT approach
comes at a cost in terms of ease of interpretation. Indeed, with boosting it is no
longer possible to display the tree graphically. But the results can nonetheless
be represented quite simply. BRT provides a ranking of the variables, based on
their ability to reduce the node purity in the tree (see [4]), that is the significance
of each variable. In order to measure the marginal impact of each predictor,
Friedman (s