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Summary 12 

 13 

Capsule: Carbon dioxide (CO2) concentrations in the burrows of sand martins Riparia 14 

riparia increase with depth but have no detectable impact on fledging success. 15 

Aims: To investigate whether burrow depth and CO2 concentrations influence reproductive 16 

success in sand martins. 17 

Methods: We monitored two Sand Martin colonies along the River Lune, Lancashire (UK) to 18 

investigate the effect of burrow depth on reproductive success. We also measured CO2 levels 19 

in a sample of burrows to test whether burrow depth predicts CO2 concentration, and to test 20 

for a relationship between CO2 concentration and breeding success. 21 

Results: Burrow depth was significantly correlated with fledging success, but the correlation 22 

was positive in first broods and negative in second broods. The highest CO2 concentration 23 

recorded was 73 650 ppm and the mean concentration across burrows was 31 757 ppm. 24 

However, while CO2 concentrations were positively correlated with burrow depth after 25 

controlling for the number and age of nestlings, they were not correlated with reproductive 26 

success. 27 

Conclusion: There are reproductive costs associated with deeper burrows in second broods, 28 

but these could not be attributed to CO2 concentrations despite the exceptionally high levels 29 

recorded. This study highlights the need for further investigation into gas exchange and the 30 

potential impacts of, or adaptations to, CO2 accumulation in avian burrows. 31 

  32 
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Introduction 33 

The construction of a burrow to sleep or reproduce in has evolved in many species from 34 

a range of vertebrate taxa, chiefly to reduce predation and to buffer against extreme 35 

environmental conditions (Cowles & Bogert 1944, Clutton-Brock et al. 1999, Randall et al. 36 

2000, Shenbrot et al. 2002, Ke & Lu 2009). Digging a burrow is energetically demanding and 37 

many studies have tried to quantify this (Vleck 1979, Lovegrove 1989, Seymour et al. 1998, 38 

Ebensperger & Bozinovic 2000). It has also been shown that the cost of digging is positively 39 

correlated with burrow depth and complexity (Vleck 1979), but this may be offset by the 40 

greater protection from outside conditions which these characteristics typically provide 41 

(Cowles & Bogert 1944, Shenbrot et al. 2002, Ke & Lu 2009). 42 

Gas exchange presents another significant physiological challenge to burrowing animals. 43 

Models suggest that in burrows with narrow entrances, the main source of air flow is through 44 

the soil, potentially leading to a significant accumulation of carbon dioxide (CO2) and 45 

corresponding decrease in oxygen (O2) concentration (Wilson & Kilgore 1978, Withers 46 

1978). The CO2 concentration of free air is typically around 400 ppm but concentrations over 47 

50 000 ppm have been recorded in the burrows of some species and these levels are likely to 48 

have severe physiological effects (Boggs et al. 1984, Schmidt-Nielsen 1997). The 49 

concentration of CO2 is positively correlated with the metabolising mass of the burrow’s 50 

occupants due to respiration (White et al. 1978, Wickler & Marsh 1981), but even in 51 

unoccupied burrows CO2 concentrations are higher than in free air (Birchard et al. 1984), 52 

presumably due to soil microbe and root respiration in the substrate. The levels also depend 53 

on abiotic factors such as the substrate, season, burrow depth and structure (Wilson & 54 

Kilgore 1978, Arieli 1979, Birchard et al. 1984), but more work is needed to understand how 55 

biotic and abiotic influences interact. 56 
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Most studies investigating the impact of exposure to high CO2 concentrations on 57 

burrowing animals have addressed physiological responses, specifically how fossorial and 58 

semi-fossorial species (i.e. animals which spend all or some of their lives underground, 59 

respectively) may be adapted to such conditions. Burrowing birds, for example, have a lower 60 

ventilatory response to elevated CO2 concentrations than non-burrowing species (Boggs & 61 

Kilgore 1983; Boggs et al. 1984). Comparisons between closely related fossorial and non-62 

fossorial mammals have shown higher skeletal muscle myoglobin concentrations and slower 63 

metabolisms in the former (McNab 1966, Lechner 1976). Other research has examined the 64 

effects of elevated CO2 levels on survival in poultry farms, where concentrations are high due 65 

to bird densities and low ventilation. In these farms, CO2 levels greater than 2500 ppm 66 

increase the risk of heart disease (Frame et al. 1999) and when greater than 4000 ppm can 67 

cause chick mortality through lethargy and reduced feeding (Donaldson et al. 1995). 68 

Despite the implications of this research, very little is known about the potentially 69 

adverse effects of CO2 on the reproductive success of animals which raise their young in 70 

burrows. The young of semi-fossorial species may be particularly susceptible because they 71 

are exposed to high CO2 and low O2 concentrations for extended periods of time, yet may not 72 

show the same adaptations to these conditions as fossorial species (Soholt et al. 1973). A 73 

study of the European Bee-Eater Merops apiaster showed that chicks raised in burrows with 74 

CO2 concentrations above 60 000 ppm had noticeably laboured and rapid breathing, 75 

averaging about 100 breaths/min compared with 68 breaths/min for chicks exposed to 76 

concentrations of 30 000 ppm (White et al. 1978). Being exposed to such high concentrations 77 

could inhibit development (Scheid 1982) and reduce begging and feeding (Donaldson et al. 78 

1995). This could be especially problematic in birds, where adults take direct cues from 79 

begging chicks when making choices about food distribution and feeding frequency (Kilner 80 

& Johnstone 1997, Leonard & Horn 2001). However, only a small number of other studies 81 
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have measured CO2 levels in the burrows of wild birds (Birchard et al. 1984, Ar & 82 

Piontkewitz 1992, Lill & Fell 2007) and the relationship between burrow depth and CO2 83 

accumulation has rarely been investigated. 84 

Sand Martins Riparia riparia are colonial Afro-Palearctic migrant birds that nest in 85 

burrows excavated into river banks and man-made quarries. They are a Species of European 86 

Conservation Concern (BirdLife International 2004), but the underlying causes of within-87 

colony variation in reproductive success are poorly known. Sand Martins arrive in Europe 88 

from West Africa in spring and start digging new burrows or renovate pre-existing ones 89 

(Szép et al. 2003, Turner & Rose 2010). Each burrow has a single entrance and the nest is 90 

placed in a small chamber at the far end at a depth varying from 30cm to over 100cm 91 

(Heneberg 2003, Turner & Rose 2010). In a comparative study of three burrowing bird 92 

species – Sand Martins, Rhinoceros Auklets Cerorhinca monocerata and Burrowing Owls 93 

Athene cunicularia – the burrows of Sand Martins had the highest mean CO2 concentrations 94 

(32 000 ppm), the highest overall CO2 concentration (67 000 ppm) and the widest range 95 

(4000 ppm to 67 000 ppm, Birchard et al. 1984). They are therefore an ideal model system 96 

for understanding the relationship between burrow depth, CO2 concentration and 97 

reproductive success. 98 

Wickler and Marsh (1981) took gas samples from Sand Martin burrows and reported 99 

a positive correlation between CO2 content and burrow depth. Burrow depth is likely to 100 

exacerbate CO2 accumulation because air convection, due to either wind or the movement of 101 

occupants, is typically the most important mechanism of gas exchange in animal burrows yet 102 

may be restricted at greater depths (White et al. 1978, Wilson & Kilgore 1978, Withers 1978, 103 

Wickler & Marsh 1981, Birchard et al. 1984, Lill & Fell 2007). Another previous study of 104 

Sand Martins reported a negative correlation between burrow depth and breeding success, but 105 

CO2 concentrations were not measured (Cruickshank 2013). In our study, we monitored all 106 
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nesting attempts at two colonies during a single season in order to: (1) investigate how 107 

different components of reproductive success vary with burrow depth; (2) test whether 108 

burrow depth predicts CO2 concentration after controlling for other influences; and (3) test 109 

whether CO2 concentration is correlated with breeding success.  110 

 111 

Materials and methods 112 

STUDY POPULATION AND NEST MONITORING 113 

Fieldwork was carried out during the 2015 breeding season at two Sand Martin colonies 114 

along the River Lune near Whittington, Lancashire, UK (54°182’N, 2°597’W); these colonies 115 

were 250 m apart with no suitable breeding habitat in between. Each colony was divided into 116 

approximately equal sections and photographed, and all burrows were then individually 117 

labelled on the photographs to create reference maps. Burrows were inspected and their depth 118 

measured (in cm) using a Micro CA-100 endoscope (RIDGID, Ohio, USA). Inspections 119 

started in mid-April before laying had commenced and ended after the last chicks had fledged 120 

on the 2nd September; the first nest containing eggs was found on the 27th April. A maximum 121 

of one hour was spent in front of any given colony section in order to limit the amount of 122 

time that chicks and eggs were left unattended; birds from neighbouring sections continued to 123 

visit their nests during this time. 124 

Every burrow in both colonies was inspected once every two to four days until laying 125 

commenced, and then left unchecked for at least five days in order to record clutch size on 126 

the following visit. Nests were then checked regularly around the time that hatching was due 127 

(allowing for a typical incubation period of 14-15 days) and on average once every four days 128 

thereafter until the nest failed or fledged. A nest was considered fledged if at least one 129 

nestling survived until 16 days old, after which time juveniles leave the nest but may return 130 

regularly to their own or neighbouring burrows (Szabó & Szép 2010, Turner & Rose 2010). 131 
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Most failed nests were found empty and it was therefore impossible to be sure of the cause of 132 

death, not least because adults may remove broken eggs or dead chicks to prepare the nest for 133 

a second brood. In other cases, dead chicks or their remains were found in burrows but the 134 

cause of death could not be determined from visual inspection with the endoscope. Once a 135 

nest had failed or fledged, the burrow was checked every three days in order to obtain laying 136 

dates for any replacement clutches or second clutches, respectively; these were then 137 

monitored in the same way as first breeding attempts. Burrow depth was recorded whenever a 138 

new clutch was found because depth sometimes varied between breeding attempts. 139 

The following parameters were recorded for every breeding attempt (i.e. where at least 140 

one egg was found): lay date, clutch size, hatch date, brood size and fledgling number. Lay 141 

date was the date on which the first egg in a clutch was laid and was calculated 142 

retrospectively once incomplete clutches were found (assuming one egg was laid per day; 143 

Turner & Rose 2010). Clutch size was determined once the number of eggs remained the 144 

same on successive visits to a nest which was not subsequently found to have failed at the 145 

egg stage. Hatch date was estimated to within a day using the physical attributes of chicks 146 

(Fernaz et al. 2012). Where hatching was missed by more than six days, hatch date was 147 

estimated based on the lay date, an incubation period of 15 days and the modal clutch size for 148 

these colonies (5 eggs), assuming one egg was laid per day and incubation started with the 149 

penultimate egg (Turner & Rose 2010). Partial brood mortality occurred in a small proportion 150 

of nests, so brood size was taken as the maximum number of chicks recorded on any visit 151 

prior to fledging. Fledgling number was the brood size recorded on the final visit before 152 

fledging (between day 12 and 16 of the nestling period) or zero for nests that failed. 153 

A total of 824 nests were monitored throughout the breeding season. All dates were 154 

converted to a Julian Date (JD, days since 1st January) for analyses. Active nests were 155 

sometimes found late in the season in burrows that had previously been unoccupied; these 156 
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were considered unlikely to be first breeding attempts, especially as pairs are known to 157 

sometimes change burrow between broods (Cowley 1983). Second broods were therefore 158 

classified as follows: ‘true’ second broods were first identified as a second breeding attempt 159 

in a nest that had previously fledged; the lay date for the earliest known true second brood 160 

was 15th June (JD 165) and this was then used as a threshold for determining second broods 161 

in other burrows. All eggs laid on or after this date were considered part of a second brood 162 

and all those before, a first brood (i.e. including replacement clutches). 163 

 164 

CARBON DIOXIDE CONCENTRATION 165 

CO2 was measured (in ppm) throughout the breeding season using a GM70 166 

CARBOCAP probe (Vaisala, Vantaa, Finland) calibrated to 10% CO2 concentrations. The 167 

probe was placed directly alongside the nest at the end of the burrow and left in place until 168 

the reading stabilised (approximately five minutes), and the time of day was then recorded. 169 

The probe was allowed to return to ambient CO2 concentrations (measured as 380-450 ppm 170 

during each day of the study), before the next sample was taken; 228 samples were taken 171 

throughout the season. Many nests were only sampled once (n = 122) but repeat 172 

measurements were made for those nests which survived long enough (n = 53 nests, each 173 

sampled twice). Repeat measurements were taken once within the first part of the nestling 174 

period (day 1-10) and once within the last nine days before fledging (day 11-20). For burrows 175 

in which chicks may have been old enough to fly (age 16-20), all chicks were counted and the 176 

CO2 probe inserted only if all were present. CO2 concentration was also measured in a sample 177 

of unoccupied burrows (n = 66) for which depth was measured. Ambient air temperature was 178 

obtained to the nearest 0.01°C from TGP-4017 Tinytag data loggers (Gemini, Chichester, 179 

UK) placed in trees between the colonies and set to record every 30 minutes throughout the 180 
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entire breeding season. These were calibrated in a United Kingdom Accreditation Service 181 

approved laboratory using 0 and 30°C calibration points.  182 

 183 

STATISTICAL ANALYSES 184 

Burrow Depth and Reproductive Success 185 

 The effect of burrow depth on reproductive success, controlling for lay date, brood 186 

number (1 or 2) and colony (north or south), was analysed using a mixed modelling 187 

approach. Analyses were restricted to those nests for which complete data were available (n = 188 

768). Collinearity between the explanatory variables was assessed using correlation plots and 189 

variance inflation factors (VIFs, following Zuur et al. 2009). Lay date and brood number 190 

were highly positively correlated (r > 0.9) and so only brood number was retained in 191 

subsequent analyses. This was partly because retaining lay date would have reduced the 192 

sample size by over 100 nests (for which lay date was unknown) but also because variation in 193 

breeding success between broods was of greater interest than temporal variation more 194 

generally. All other correlations were weak (r < 0.4) with small associated VIFs (< 2) and so 195 

the remaining explanatory variables were fitted as fixed effects. Any effects of burrow depth 196 

may vary between broods, especially if the accumulation of carbon dioxide is an important 197 

factor, and so the interaction between burrow depth and brood number was also fitted. 198 

Burrow depth was both centred and standardised, and brood number and colony were centred 199 

(Schielzeth 2010). Burrow identity was fitted as a random effect in order to account for 200 

repeated measures. 201 

The distribution of the number of fledglings showed high zero inflation and so a hurdle 202 

model was fitted (Zuur et al. 2009). The glmmADMB package (Fournier et al. 2012) in R 203 

version 3.2.3 (R Core Team 2015) was used to fit two separate generalised linear mixed 204 

effects models (GLMMs). In one, the response variable was a binary indicator of whether or 205 
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not the nest fledged at least one chick, hereafter ‘fledging success’. In the other, restricted to 206 

successful nests, the response variable was the number of chicks fledged, hereafter ‘fledgling 207 

number’. 208 

For the analysis of fledging success, models were fitted with a binomial error distribution 209 

and logit link function. All possible candidate models (excluding those containing the 210 

interaction term but not the constituent main effects) were compared using the AICc value 211 

(the second order Akaike Information Criterion). No candidate models were within 2 AICc 212 

units of the full model, so the full model was retained after validation using an index plot of 213 

residuals and a binned plot of the scaled average residuals against expected values (Collett 214 

2002). Models for the analysis of fledgling number were fitted with a truncpoisson error 215 

distribution (Zuur et al. 2009) and the log link function. All possible candidate models were 216 

fitted and ranked by AICc using the dredge function in the MuMIn package (Bartoń 2015). 217 

AICc is the Akaike’s Information Criterion corrected for sample size. Models within 2 AICc 218 

units of the best-fitting model were then averaged (Bartoń 2015). To obtain relative 219 

importance values for each explanatory variable, the Akaike weights (the normalised relative 220 

likelihoods of each model) were calculated and summed across all models which contained 221 

the variable (Bartoń 2015). The best-fitting model was validated by plotting the distribution 222 

of the residuals, the residuals versus fitted values and the residuals versus each explanatory 223 

variable. 224 

 225 

Burrow Depth and Carbon Dioxide Concentration 226 

Linear mixed effect models (LMEs) were used to investigate the relationship between 227 

burrow depth and CO2 levels; models were fitted with the lme4 package (Bates et al. 2015). 228 

CO2 concentration was fitted as the response variable and burrow depth, brood number (1 or 229 

2), colony (north or south), brood size and chick age (measured in days from hatch date) were 230 
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fitted as fixed effects (number of  samples per age group: age 0-5, n = 55; age 6-10, n = 69; 231 

age 11-15, n = 59; age 16+, n = 45); the latter two were included together with their 232 

interactions with burrow depth because these factors were considered likely to influence CO2 233 

levels based on previous work (Wickler & Marsh 1981). Time of day (timing of the samples 234 

throughout the day: 07.00-10.00, n = 36; 11.00-14.00, n = 54; 15.00-18.00, n = 121; 18.00 or 235 

later, n = 17) and ambient air temperature are also likely to affect CO2 concentrations due to 236 

the impact of light levels and temperature on soil microbe respiration (Lloyd & Taylor 1994), 237 

and so were included as fixed effects together with their interactions with burrow depth. 238 

Burrow identity was included as a random effect in order to control for repeated measures. 239 

Continuous variables were centred and standardised before analysis; brood number and 240 

colony were centred (Schielzeth 2010). All variables were included in the analyses because 241 

correlations between them were weak (r < 0.3) and VIFs small (< 2; Zuur et al. 2009). 242 

Models were compared, averaged and validated using the same approach described above. To 243 

compare CO2 concentrations in occupied and unoccupied burrows, the mean level per burrow 244 

was analysed using a Mann-Whitney U Test. A linear regression was used to investigate the 245 

relationship between unoccupied burrow depth and CO2 concentration.  246 

 247 

Carbon Dioxide Concentration and Reproductive Success 248 

GLMMs were used to investigate the relationship between carbon dioxide concentration 249 

and fledging success using the lme4 package (Bates et al. 2015). The effect of CO2 on 250 

fledgling number was not considered as fledgling number was very strongly correlated with 251 

brood size, an important determinant of CO2 concentration. Due to missing fledging success 252 

data, analyses were carried out using a sub-sample of the dataset (n = 221 samples from 175 253 

nests). Fledging success was fitted as the response variable in a model with a binary error 254 

distribution and logit link function. CO2 concentration, brood number (1 or 2), colony (north 255 
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or south) and the interaction between CO2 concentration and brood number were fitted as 256 

explanatory variables. The interaction term was included because reproductive costs are 257 

likely to differ between broods, and the potential costs associated with CO2 concentrations 258 

may therefore also differ. Burrow identity was included as a random effect to control for 259 

repeated measures. CO2 concentration was centred and standardised before analysis; brood 260 

number and colony were centred (Schielzeth 2010). All variables were included in the 261 

analyses as correlations between them were weak (r < 0.4) and VIFs small (< 2; Zuur et al. 262 

2009). Models were compared, averaged and validated using the same approach described 263 

above. 264 

 265 

Results 266 

BURROW DEPTH AND REPRODUCTIVE SUCCESS 267 

Fledging success varied with burrow depth after controlling for differences between the 268 

colonies, but this relationship was significantly different between the two broods (Table 1, 269 

Table A1, Fig. 1). In first broods, fledging success was significantly higher and positively 270 

correlated with burrow depth, but there was a negative correlation between fledging success 271 

and burrow depth in second broods (Fig. 1). 272 

The best-fitting models of fledgling number contained burrow depth and brood number 273 

as fixed effects, but no interaction between them (Table 2, Table A2). Fledgling number 274 

differed significantly between broods (Table 2), with the number of chicks fledged in 275 

successful nests being higher in first broods than second broods (first brood mean: 2.53 ± 276 

1.92 sd, second brood mean: 1.67 ± 1.80 sd). Although burrow depth was retained in the best-277 

fitting models, the effect size was very small and unlikely to be biologically meaningful 278 

(Table 2). 279 

 280 
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BURROW DEPTH AND CARBON DIOXIDE CONCENTRATION 281 

The average CO2 concentration in occupied burrows was 31 757 ppm (± 17 152 sd), but 282 

ranged from 570 ppm to 73 650 ppm. In the analysis of the factors affecting these levels, all 283 

fixed effects and interactions were contained in the model set used for averaging (Table 3, 284 

Table A3). Brood number had the largest effect, with CO2 concentrations significantly lower 285 

in nests containing second broods (Table 3, first brood mean: 35 356 ppm ± 16 905 sd, 286 

second brood mean: 24 557 ppm ± 15 053 sd). Time of day and air temperature were 287 

negatively and positively correlated with CO2, respectively (Table 3). CO2 concentration was 288 

also positively correlated with chick age, brood size and burrow depth (Table 3). The 289 

interaction between brood size and burrow depth revealed a more marked effect of depth on 290 

CO2 in smaller broods (Fig. 2), but the effect sizes for all other interactions were extremely 291 

small (Table 3). 292 

In unoccupied burrows, CO2 concentration ranged from 350 ppm to 33 180 ppm with a 293 

mean of 6700 ppm, significantly lower than in occupied burrows (W = 27866, P < 0.001). 294 

CO2 concentration in unoccupied burrows was also positively correlated with burrow depth 295 

(linear regression: r = 0.415, P < 0.001). 296 

 297 

CARBON DIOXIDE CONCENTRATION AND REPRODUCTIVE SUCCESS  298 

Fledging success was not correlated with burrow CO2 concentrations. Colony and brood 299 

number were retained in the best-fitting model set but effect sizes were low and therefore 300 

unlikely to be biologically meaningful (Table 4, Table A4). 301 

 302 

Discussion 303 
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Burrow depth was positively correlated with fledging success in first broods but 304 

negatively correlated in second broods, and there was no correlation with fledgling number in 305 

either. A previous study of the same colonies by Cruickshank (2013) reported a negative 306 

relationship between burrow depth and fledgling number but the sampling was far less 307 

comprehensive and the effect size was small. Here, the results suggest that while the depth of 308 

a burrow may impact on whether or not a nest is successful, there is no further effect on the 309 

productivity of successful nests. Alternatively, the magnitude of any such effect may be small 310 

and difficult to detect, especially in this study as there were relatively few nests that fledged a 311 

very small or large number of chicks. 312 

The positive correlation between burrow depth and fledging success in first broods is 313 

likely due to the greater protection from predators and more stable microclimates that deeper 314 

burrows provide (Randall et al. 2000, Shenbrot et al. 2002, Ke & Lu 2009). The causes of 315 

nestling mortality were difficult to identify but environmental conditions may be particularly 316 

important earlier in the season when it is colder and wetter. Some studies of other animals 317 

have found positive correlations between burrow depth and reproductive success (e.g. 318 

Patricia & Passmore 1996, Heg & Rasa 2004), whereas others have found no correlation (e.g. 319 

Hampton et al. 2009). Further work is needed to understand this interspecific variation. 320 

Whatever the mechanism behind the positive relationship between burrow depth and 321 

reproductive success in first broods, the benefits of a deeper burrow are apparently 322 

outweighed by the associated costs in second broods. Declines in reproductive success 323 

throughout the season are not uncommon in birds, for example due to reduced food 324 

availability (Crick et al. 1993, Møller 2002) or the energetic costs associated with second 325 

breeding attempts (Verhulst & Tinbergen 1991). However, this does not explain the negative 326 

effect of burrow depth on reproductive success in second broods. It could be that birds using 327 

deep burrows for their first brood, in which there was generally higher fledging success, face 328 
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trade-offs which lead to reduced success in their second. Such trade-offs are difficult to 329 

determine because Sand Martins often change burrows between broods (Cowley 1983), but 330 

they may be driven by the accumulation of ectoparasites which impose significant costs on 331 

nestlings (Szép & Muller 2000). The relationship between parasite load and burrow depth 332 

requires further study.  333 

CO2 concentrations in occupied burrows were significantly higher than in unoccupied 334 

burrows and, in common with other studies, increased with the age and number of chicks 335 

(Wilson & Kilgore 1978, Withers 1978, Wickler and Marsh 1981, Birchard et al. 1984). High 336 

CO2 levels can reduce begging and feeding behaviour, leading to lower growth rates and 337 

increased mortality through reduced food consumption (Donaldson et al. 1995, Frame et al. 338 

1999). Indeed, it was expected that high CO2 would be one of the primary drivers of reduced 339 

fledging success in deeper burrows. Our findings suggest, however, that it had no influence 340 

on fledging success. CO2 concentration in burrows was positively correlated with ambient air 341 

temperature, and warmer temperatures are likely to correspond with a higher abundance of 342 

the insects on which Sand Martins feed (Bale et al. 2002, Turner & Rose 2010). It could be 343 

that this increase in prey abundance offsets any negative effects of elevated CO2 344 

concentration, meaning that chicks remain well fed despite having reduced begging 345 

capabilities. Alternatively, the effects of CO2 concentration on chicks may not have been 346 

detected in our study. CO2 varied significantly throughout the day and those in deeper 347 

burrows may be exposed to higher concentrations for longer periods of time; this would not 348 

be reflected in our measures of CO2 concentration. It could also be that Sand Martins are 349 

unaffected by high CO2 levels due to physiological adaptations (Boggs et al. 1984), or that 350 

there are post-fledging fitness costs such as reduced offspring survival. Investigating these 351 

possibilities would increase our understanding of avian behaviour and physiology in 352 

burrowing species. 353 



16 
 

The positive correlation between burrow depth and CO2 concentration was stronger in 354 

small broods, perhaps indicating that large broods produce enough CO2 to mask any effect of 355 

depth. This may be because airflow in shallower burrows can reduce CO2 levels providing 356 

that broods are relatively small. It is also possible that a significant proportion of CO2 357 

accumulation is accounted for by bacteria within the burrows; bacteria may be enhanced by 358 

large broods producing more faecal matter. This might explain why temperature is highly 359 

correlated with CO2 concentration as soil microbe respiration is greater at higher 360 

temperatures (Lloyd & Taylor 1994). The large overall effect size of burrow depth indicates 361 

that, even after accounting for other abiotic and biotic factors, it is an important determinant 362 

of the gas composition of burrows, as suggested by previous studies (Maclean 1981, Wickler 363 

& Marsh 1981). In fact, as far as we are aware, the CO2 concentrations reported here are the 364 

highest found in burrows of any vertebrate species to date, and far greater than those thought 365 

to be dangerous for birds in poultry farms (Donaldson et al. 1995). This makes the absence of 366 

any relationship between CO2 concentration and reproductive success all the more intriguing. 367 

  368 
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Appendices 505 

Table A1. The full set of GLMMs of the factors affecting fledging success in Sand Martins. Burrow identity was fitted as a random effect in 

each case. Model averaging was carried out on the models within 2 AICc units of the best-fitting model (shown in bold). Int = Intercept, BN 

= Brood Number, Col = Colony, BD = Burrow Depth. 

Model ID Int BN Col BD BN x BD AICc ∆AICc Weight 

16 1.299 + + 0.200 + 944.896 0.000 0.992 

4 1.310 + + - - 955.178 10.282 0.006 

8 1.289 + + -0.053 - 956.825 11.928 0.003 

14 0.867 + - -0.008 + 972.243 27.346 0.000 

6 0.865 + - -0.246 - 983.980 39.084 0.000 

3 0.893 - + - - 984.703 39.807 0.000 

7 0.862 - + -0.098 - 985.372 40.476 0.000 

2 0.867 + - - - 992.363 47.467 0.000 

5 0.536 - - -0.263 - 1006.703 61.807 0.000 

1 0.528 - - - - 1017.062 72.165 0.000 
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Table A2. The full set of GLMMs of the factors affecting fledgling number in Sand Martins. Burrow identity was fitted as a random effect in 

each case. Model averaging was carried out on the models within 2 AICc units of the best-fitting model (shown in bold). Int = Intercept, BN = 

Brood Number, Col = Colony, BD = Burrow Depth. 

Model ID Int BN Col BD BN x BD AICc ∆AICc Weight 

2 1.261 + - - - 1644.352 0.000 0.401 

6 1.262 + - 0.009 - 1646.282 1.930 0.153 

4 1.266 + + - - 1646.344 1.992 0.148 

1 1.221 - - - - 1647.481 3.129 0.084 

8 1.271 + + 0.013 - 1648.192 3.840 0.059 

14 1.262 + - 0.007 + 1648.308 3.956 0.055 

5 1.222 - - 0.012 - 1649.310 4.958 0.034 

3 1.214 - + - - 1649.354 5.002 0.033 

16 1.271 + + 0.011 + 1650.232 5.880 0.021 

7 1.217 - + 0.009 - 1651.288 6.936 0.013 
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Table A3. The set of LMEs within 5 AICc units of the best-fitting model of the factors affecting carbon dioxide concentration in Sand Martins. Burrow 

identity was fitted as a random effect in each case. Model averaging was carried out on the models within 2 AICc units of the best-fitting model (shown in 

bold). For an electronic copy of the full set of LMEs, contact the corresponding author. Int = Intercept, BN = Brood Number, AT = Air Temperature, CA = 

Chick Age, BS = Brood Size, Col = Colony, BD = Burrow Depth, T = Time of Day. 

Model 

ID 

Int BN AT CA BS Col BD T AT X 

BD 

CA x 

BD 

CN x 

BD 

BD x T AICc ∆AICc Weight 

240 33773.3 + 2987.6 3703.3 2625.6 - 4800.7 -6221.2 1733.9 - - - 5009.4 0 0.07 

752 33858.6 + 3013.1 3719.8 2597.4 - 5124.5 -6233.3 1636.9 - -1489.5 - 5009.6 0.145 0.065 

624 33893 + 3019.4 3748.5 2631.8 - 5100.9 -6009.4 - - -1598 - 5009.9 0.47 0.055 

112 33803.2 + 2992.3 3732.6 2664.4 - 4750.4 -5982 - - - - 5010.1 0.639 0.051 

256 32623.5 + 2843 3677.6 2663.5 + 4290.5 -6312.7 1831.8 - - - 5010.1 0.647 0.051 

768 32767.7 + 2875.4 3694.8 2634.3 + 4628.9 -6319.4 1733.4 - -1429.2 - 5010.4 0.969 0.043 

640 32926.9 + 2897.5 3727.8 2666.4 + 4659.9 -6074 - - -1550.1 - 5011 1.578 0.032 

128 32779.6 + 2863.7 3711.1 2700.1 + 4293 -6051.6 - - - - 5011 1.595 0.031 

880 33757.2 + 3017.8 3729.8 2640.3 - 5084.6 -6105.8 - 712.7 -1681 - 5011.5 2.062 0.025 

496 33748.4 + 2987.2 3700.5 2628.5 - 4793.2 -6232.5 1690.7 129.7 - - 5011.6 2.19 0.023 
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1264 33773.5 + 2992.1 3706.7 2624.3 - 4800.9 -6223 1742.9 - - -36.6944 5011.6 2.207 0.023 

1008 33802.6 + 3012.8 3713.6 2603.2 - 5116 -6260.4 1532.2 305.7 -1532 - 5011.7 2.27 0.022 

239 32398.3 - 2983.5 4014.8 2931.5 - 4889.3 -6541 1702.6 - - - 5011.7 2.329 0.022 

1776 33858.7 + 3014.1 3720.5 2597.1 - 5124.6 -6233.7 1638.8 - -1489.3 -7.78201 5011.8 2.374 0.021 

368 33692 + 2989.9 3717.2 2672.5 - 4723.1 -6057.3 - 564.4 - - 5011.9 2.441 0.021 

1648 33890.1 + 2982.7 3720.4 2640.8 - 5101.8 -6005 - - -1600.6 294.8258 5012 2.569 0.019 

751 32447.6 - 3010.8 4040.2 2906.8 - 5192.1 -6558.9 1607.2 - -1417.3 - 5012.1 2.689 0.018 

1136 33800.3 + 2956.8 3705.4 2673.2 - 4750.7 -5977.7 - - - 284.3556 5012.1 2.727 0.018 

111 32440.8 - 2991.1 4042.7 2962.6 - 4833 -6302.5 - - - - 5012.2 2.831 0.017 

512 32575.3 + 2841.1 3673.1 2668.1 + 4274.4 -6330.7 1767.3 196 - - 5012.2 2.833 0.017 

1280 32623.8 + 2844.9 3678.9 2662.9 + 4290.7 -6313.4 1835.4 - - -15.0268 5012.3 2.876 0.017 

623 32494.7 - 3017 4065.3 2937.7 - 5168.3 -6335.9 - - -1524.5 - 5012.3 2.893 0.016 

896 32720.5 + 2888.6 3706 2677.8 + 4616 -6184.1 - 784.7 -1638.7 - 5012.5 3.06 0.015 

1024 32683.6 + 2872.8 3687 2641.9 + 4610.8 -6352.9 1610.7 362.7 -1478.7 - 5012.5 3.072 0.015 

1792 32767.5 + 2873.9 3693.7 2634.8 + 4628.8 -6318.8 1730.6 - -1429.4 11.55793 5012.6 3.218 0.014 

384 32603.2 + 2854.7 3692.4 2711.1 + 4239.7 -6140.8 - 644 - - 5012.7 3.3 0.013 
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255 31346.3 - 2861.3 4007.8 2971.8 + 4443.7 -6632.3 1783.6 - - - 5012.8 3.368 0.013 

1664 32912.1 + 2855.3 3696.3 2676.8 + 4655.6 -6069.9 - - -1552.4 327.3966 5013.1 3.672 0.011 

1152 32764.9 + 2822.4 3680.3 2710.4 + 4288.2 -6047.6 - - - 319.2677 5013.1 3.676 0.011 

879 32428.8 - 3014.9 4009 2921.5 - 5138.5 -6444.7 - 1028 -1651.1 - 5013.2 3.783 0.011 

767 31462.8 - 2892.4 4029.7 2949.1 + 4769 -6643.9 1689 - -1363 - 5013.3 3.878 0.01 

367 32382.2 - 2986.9 3991.7 2952.2 - 4787.1 -6393.7 - 879.2 - - 5013.5 4.048 0.009 

127 31519.2 - 2881.1 4035 3002.5 + 4443.6 -6372.7 - - - - 5013.5 4.111 0.009 

495 32368.4 - 2981.8 3988.9 2928 - 4856.8 -6569.7 1536.9 499.8 - - 5013.6 4.231 0.008 

1904 33761.4 + 2995.3 3713.4 2645.5 - 5085.8 -6098.9 - 681.5 -1678.9 180.8622 5013.7 4.251 0.008 

639 31635.9 - 2913.8 4057.2 2976 + 4797.2 -6400.3 - - -1481.8 - 5013.7 4.306 0.008 

1007 32411 - 3010.3 4006.7 2900.6 - 5169.1 -6598.6 1377.5 676 -1515.8 - 5013.8 4.38 0.008 

1520 33747.6 + 2993.6 3705.1 2626.7 - 4793.1 -6235.6 1701.3 135.9 - -51.8564 5013.8 4.415 0.008 

1263 32399.2 - 2989.2 4018.8 2930.3 - 4890.7 -6543.4 1715.3 - - -50.1515 5013.9 4.514 0.007 

2032 33801.9 + 3018 3717.3 2601.8 - 5115.9 -6262.8 1540.8 310.6 -1531.6 -41.612 5013.9 4.518 0.007 

1392 33696.6 + 2965.7 3699.4 2678.1 - 4724.9 -6049.9 - 530.8 - 195.1827 5014 4.603 0.007 

1775 32447.7 - 3011.9 4041 2906.5 - 5192.1 -6559.4 1609.5 - -1417 -9.32123 5014.3 4.897 0.006 
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1135 32436.7 - 2956.5 4016.6 2970.7 - 4832.4 -6298.5 - - - 278.085 5014.3 4.905 0.006 

1647 32491.2 - 2981.1 4038 2946.7 - 5169.2 -6331.8 - - -1527 287.9306 5014.4 4.979 0.006 
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Table A4. The full set of GLMMs of the effect of CO2 on fledging success in Sand Martins. Burrow identity was fitted as a random effect in 

each case. Model averaging was carried out on the models within 2 AICc units of the best-fitting model (shown in bold). Int = Intercept, BN = 

Brood Number, Col = Colony. 

Model ID Intercept BN CO2 Col BN xCO2 AICc ∆AICc Weight 

1 13.038 - - - - 63.674 0 0.314 

5 13.741 - - -3.389 - 64.890 1.216 0.171 

2 13.639 + - - - 65.350 1.675 0.136 

3 13.042 - 0.135 - - 65.719 2.045 0.113 

6 14.538 + - -3.747 - 66.370 2.696 0.082 

7 13.781 - 0.421 -3.596 - 66.863 3.189 0.064 

4 13.659 + -0.090 - - 67.419 3.745 0.048 

8 14.676 + 0.466 -4.150 - 68.360 4.686 0.030 

16 26.879 + 0.316 -25.778 + 68.691 5.016 0.026 

12 13.638 + 0.160 - + 69.489 5.815 0.017 
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Table 1. The results of the best-fitting GLMM of the factors affecting fledging 

success in Sand Martins. Analyses were restricted to those nests for which 

complete data were available (n = 768). 

Fixed effect Estimate SE 

Intercept 1.299 0.137 

Brood number  -0.847 0.162 

Burrow depth 0.200 0.112 

Colony -0.958 0.179 

Brood number x burrow depth -0.608 0.166 

Random effect Variance  

Burrow identity 8.681e-06  
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Table 2. The results of the best-fitting GLMMs of the factors affecting 

fledgling number in Sand Martins. Analyses were restricted to those nests for 

which complete data were available (n = 768). Details of fixed effects were 

obtained by averaging the models within 2 AICc units of the best-fitting model. 

The random effect variance was obtained from the best-fitting model. Relative 

importance values are the sum of Akaike weights over all the models 

containing the explanatory variable.   

Fixed effect Estimate Adjusted SE Relative 

importance 

Intercept 1.262 0.033  

Brood number -0.127 0.057 1.00 

Burrow depth 0.002 0.013 0.22 

Colony -0.003 0.027 0.21 

Random effect Variance   

Burrow identity 1.13e-7   
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Table 3. The results of the best-fitting LMEs of the factors affecting carbon 

dioxide concentration. Analyses were restricted to those nests for which complete 

data were available (n = 228). Details of fixed effects were returned from 

averaging the models within 2 AICc units of the best-fitting model. The random 

effect variance was obtained from the best-fitting model. Relative importance 

values are the sum of Akaike weights over all the models containing the 

explanatory variable. 

Fixed effect Estimate Adjusted SE Relative 

importance 

Intercept 33406.5 1365.8  

Brood number -4409.0 2034 1.00 

Air temperature 2949.3 938.5 1.00 

Chick age 3714.4 967.6 1.00 

Brood size 2641.7 946.1 1.00 

Burrow depth 4754.0 1006.6 1.00 

Time of day -6160.3 943.2 1.00 

Colony 924.5 1713.9 0.39 

Air temperature x burrow depth 992.6 1159.8 0.57 

Brood size x burrow depth -743.8 1052.9 0.49 

Random effect Variance   

Burrow identity 6.70e-6   
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Table 4 The results of the best-fitting GLMMs of the effect of CO2 on breeding 

success. Analyses were restricted to those nests for which complete data were 

available (n = 221). Details of fixed effects were returned from averaging the models 

within 2 AICc units of the best-fitting model. The random effect variance was 

obtained from the best-fitting model. Relative importance values are the sum of 

Akaike weights over all the models containing the explanatory variable. 

Fixed effects Estimates Adjusted SE Relative 

importance 

Intercept 13.363 2.287  

Colony -0.933 3.283 0.28 

Brood number -0.366 1.452 0.22 

Random effects Variance   

Burrow identity 1985   
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Legends to figures 541 

 542 

Fig. 1 The relationship between fledging success and burrow depth in broods 1 and 2. Lines 543 

show predicted values from a GLMM; shaded areas show 95% confidence intervals. 544 

Fig. 2 The relationship between carbon dioxide concentrations and burrow depth in large 545 

broods (5 chicks) and small broods (2 chicks). These brood sizes are one standard deviation 546 

higher and lower than the mean and rounded to the nearest whole number. Lines show 547 

predicted values from an LME; shaded areas show 95% confidence intervals. 548 

  549 



38 
 

Figures 550 

 551 

Figure 1 552 
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Figure 2 554 


