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1 Abstract: The effect of exogenous phosphate (P, 200 mg·kg-1 soil) on the lability and 

2 phyto-availability of arsenic (As) was studied using the diffusive gradients in thin films 

3 (DGT) technique. Lettuce were grown on the As-amended soils following the 

4 stabilization of soil labile As after 90 day’s incubation. Phosphate (P) application 

5 generally facilitated plant growth except one grown on P-sufficient soil. Soil labile As 

6 concentration increased in all the soils after P application due to a competition effect. 

7 Plant As concentration increased in red soils collected from Hunan Province, while 

8 decreases were observed in the other soils. Even though, an overall trend of decrease 

9 was obtained in As phytoavailability along with the increase of DGT-measured soil 

10 labile P/As molar ratio. The functional equation between P/As and As phytoavailability 

11 provided a critical value of 1.7, which could be used as a guidance for rational P 

12 fertilization, thus avoiding overfertilization.

13 Keywords: Diffusive gradients in thin films; phosphorus-arsenic interaction; labile 

14 P/As molar ratio
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15 1. Introduction

16 Arsenic (As) contamination is ubiquitous in all environmental mediums and a 

17 worldwide concern. It is well-characterized as highly toxic, mutagenic and carcinogenic 

18 (Sun et al. 2011) to human, plants and microorganisms (Bolan et al. 2013, Hartley et al. 

19 2008). Some areas in China, especially in Hunan province, have historical As 

20 contamination caused by realgar mine or tailing lagoon failure (Liao et al. 2005). Total 

21 As in soil contains large fractions unavailable to biota (Wang et al. 2014), therefore 

22 identifying the ‘available’ fraction of As in soils is urgently needed (McLaughlin et al. 

23 2000, Mojsilovic et al. 2011). Manipulating the bioavailability of As in soils using 

24 chemical or biological means is an universal approach in remediation of As-

25 contaminated soils (Bolan et al. 2013). Arsenate (AsO4
3-) is the thermodynamically 

26 stable inorganic form of As under aerobic condition in soils (Masscheleyn et al. 1991, 

27 Signes-Pastor et al. 2007), and is strongly retained on soil mineral surfaces. As a 

28 chemical analogue of arsenate (Terwelle et al. 1967), phosphate has been commonly 

29 used to manipulate the mobilization of As in soils for soil remediation (Bolan et al. 

30 2013), including phytoremediation (Jankong et al. 2007) and chemical washing.

31 Phosphorus (P) and As belong to the same family element and have similar 

32 external electronic structures. In environmental medium, P and As can form similar 

33 speciation phosphate (PO4
3-) and arsenate (AsO4

3-). Due to their similar chemical 

34 structures, ubiquitous competition could be found in sorption on both soil particles and 

35 plant root surfaces. Competition in sorption of phosphate and arsenate may vary greatly 

36 on different soils characterized by different mineralogy and chemical properties (Liu et 
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37 al. 2001, Peryea 1991, Roy et al. 1986, Smith et al. 2002, Woolson et al. 1973). 

38 Generally, large P addition could facilitate As solubility in soil due to the stronger 

39 affinity of P to soil particles or mass action effect (Chen et al. 2002, Smith et al. 2002). 

40 As for the competition of P and As on root surfaces, plants adsorb arsenate via 

41 phosphate uptake channel (Meharg et al. 1991, Mojsilovic et al. 2011), and the uptake 

42 of As would be affected through the effect of P on root adsorption and translocation 

43 from root to shoot. Some studies suggested that P exhibited a significant ameliorative 

44 effect on the sensitivity of plant to soil As (Lei et al. 2012, Mojsilovic et al. 2011, Pigna 

45 et al. 2009). Wang et al. (2002) and Lou et al. (2010) found that increasing P supply 

46 could greatly decrease As uptake by Chinese brake (P. vittata L.). However, some other 

47 studies have suggested that addition of P increases As solubility and mobility, thereby 

48 increasing the plant uptake of As (Bolan et al. 2013). P addition would, on one hand 

49 increase As lability in soil, and on the other hand inhibit As phyto-availability. The 

50 contribution portion of P-As competition on soil particles and on plant roots may be the 

51 key factor that affects the availability of As in soil-plant system, which are still not 

52 clear.

53 In some studies, researchers tried to correlate soil P/As ratio with As 

54 phytotoxicity/phytoavailability. Available P/As ratios reflected different corn yields 

55 between two soils with similar available As levels, and adequate growth of corn was 

56 achieved with a soil available P/As weight ratios of 6.8 in a clay loam soil (Woolson et 

57 al. 1973). Increasing P/As ratios in the solution would reduced As uptake by 70% 

58 (Esteban et al. 2003), and alleviated the toxicity of As in corn plants (Vetterlein et al. 
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59 2007). Ognjen (2009) reported that the estimated EC50 based on the effective soil P/As 

60 molar concentration ratio ranged between 2.7 and 7.1, and on the soluble P/As molar 

61 concentration ratio ranged between 1.8 and 3.8. Increasing P/As ratio would reduce As 

62 phytotoxicity/phytoavailability according to previous literatures, however, no 

63 quantitative relationship between them were reported before. One deficiency in 

64 previous studies on interactions of P and As is the methodology. Chemical extraction 

65 methods were frequently used to monitoring the changes of P and As in soil. However, 

66 extraction procedures provided an unrealistic response to given chemical agents, and 

67 the extracted P(As) species are unlikely to represent the true available fraction, 

68 especially when the speciation or complexes of P(As) changed during the P-As 

69 interaction processes. A more precise reflection of the phytoavailable pool of As could 

70 be achieved when using the method of DGT (Wang et al. 2014). DGT method, which 

71 based on Fick’s first law of diffusion, is a dynamic in-situ technique for the 

72 determination of labile metal/metalloid in soil (Zhang et al. 2001). Besides, the kinetic 

73 process between soil solid and solution phases were taken into consideration in this 

74 method. Zhang et al. (1998) mixed ferrihydrite slurry into a polyacrylamide gel as a 

75 binding agent (FH-based DGT) for measurement of phosphate. FH-based DGT had 

76 been successfully used for measurement of labile P in soils. The correlations of DGT 

77 measured P with P in plant were better than that obtained by chemical extraction 

78 methods (Mason et al. 2010, Menzies et al. 2005, Six et al. 2012, Six et al. 2013). As 

79 an analogue of P, arsenic could also be measured by FH-based DGT in various medium 

80 including soils and waters (Fitz et al. 2003, Panther et al. 2008). Wang et al. (2014) 
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81 found that DGT measured soil labile As had a better correlation with plant As. It could 

82 reveal a more precise reflection of phytoavailable As pool than chemical extracted As. 

83 Mojsilovic et al. (2011) evaluated DGT on modelling As toxicity in wheat (Triticum 

84 aestivum), indicating that DGT- measured As/P ratio could be a promising 

85 phytotoxicity predictor. The objective of this study was to investigate the effect of 

86 exogenous P on the lability and phytoavailability of As in a set of As-amended soil 

87 samples, and to explorer the relationship between DGT-measured labile P/As molar 

88 ratio and As phytoavailability.

89 2. Materials and Methods

90 2.1 Soil collection and preparation

91 Eleven uncontaminated, cultivated topsoils (0-20 cm depth) were collected from 

92 nine sites in China; six soil samples collected from Beijing (BJ), Chongqing (CQ), 

93 Gansu (GS), Guizhou (GZ), Jilin (JL), Liaoning (LN), respectively, and other five 

94 samples from Hunan (HN). The soils were air-dried, and sieved to < 2 mm for pot 

95 experiments and DGT deployments. Subsamples of the soils were air-dried and ground 

96 (<0.149 mm) for chemical analysis. Soil pH was measured in a suspension of 1:2.5 

97 soil/carbon dioxides–free water (PHS-3C, China) (Xu et al. 2018). Total organic matter 

98 content was estimated using the potassium dichromate volumetric method (He et al. 

99 2017). Soil total N content was determined using semi-micro Macro Kjeldahl method 

100 (Calvo-Fernández et al. 2018). Soil total P content was determined using UV 

101 spectrophotometry following alkali fusion (Meena et al. 2018). Soil total K content was 
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102 determined using flame photometry following alkali fusion (Xu et al. 2018). Soil 

103 Alkaline N content was determined using alkaline hydrolysis diffusion method 

104 (Bremner et al. 1966). Soil Olsen P content was determined using UV 

105 spectrophotometry following 0.5 M NaHCO3 extraction (Egan et al. 2018). Soil rapid 

106 available K content was determined using flame photometry following 1 M NH4OAc 

107 extraction (Ji et al. 2014). Soil available Fe content was determined using atomic 

108 absorption spectrometry (AAS) following DTPA extraction (Chatzistathis et al. 2017). 

109 Soil available Mn content was determined using AAS following EDTA extraction 

110 (Huang et al. 2017). The physical and chemical properties of soils used in this study 

111 were shown in Table 1.

112 Separate subsamples (2 kg) were amended with Na2HAsO4 solution at 60 mg 

113 As·kg-1 soil. All amended soils were stored in plastic boxes in dark with soil moisture 

114 of 30 % maximum water holding capacity (MWHC) at 20 ± 4 C. DGT technique was 

115 used to monitor the changes of labile As in soils during aging. After 90 days incubation, 

116 the change of labile As concentration in all soils became less marked (data not shown). 

117 The soils were used for pot experiments afterwards.

118 2.2 Bioassay

119 Pot experiments were conducted to study the effect of P application on the lability 

120 and phytoavailability of As in soil. Each soil was divided in half for two different 

121 treatments. Treatment A: the soil was applied with 200 mg·kg-1 P, where nutrients (N, 

122 NH4HCO3; P, NH4H2PO4; K, K2SO4) were added into the soils according to the ratio 
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123 N: K2O = 0.15:0.15 g/kg soil to achieve 200 mg·kg-1 soil exogenous P in total. 

124 Treatment B: non-P application, where nutrients (N, NH4HCO3; K, K2SO4) were added 

125 into the soils with the ratio N: K2O = 0.15:0.15 g/kg soil. 

126 Lettuce was sown in pot containing 500 g of soil (dry mass, triplicate for each 

127 soil). Soil moisture was maintained at approximate 60% MWHC. Soils were left to 

128 equilibrate for 7 days before seeding. Once sown, all pots were placed in a glasshouse 

129 (20 ± 4 °C, natural light). To simulate the agricultural fertilization, macronutrient 

130 solution was added to the soils to achieve the amount mentioned above at 7, 14, and 21 

131 days after seeding during plant growth. At six weeks after germination, the 

132 aboveground plant tissues were harvested, rinsed with deionized water, and oven-dried 

133 at 70°C for 72 h. Total P and As concentrations in the plant tissues were determined by 

134 inductively coupled plasma mass spectrometry (ICP-MS, Thermo X7) following 

135 microwave-assisted nitric acid digestion.

136 2.3 DGT preparation, deployment and calculation.

137 A DGT device consists of a plastic assembly containing a precipitated ferrihydrite 

138 binding gel overlaid by a layer of polyacrylamide diffusive gel, and a protective filter 

139 membrane through which ions can freely diffuse (Panther et al. 2008, Zhang et al. 2001). 

140 The binding gels and diffusive gels were prepared following a standard procedure (Luo 

141 et al. 2010).

142 DGT devices were deployed after plant harvest. The soils in each pot were wetted 

143 to 80%-100% MWHC, then the surface soil were mixed into slurry and left to 
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144 equilibrate for 24 h at room temperature. A DGT device was placed on each pot and 

145 pressed down gently to ensure complete contact between the filter membrane of the 

146 device and the soil, and then left for 24 h. Temperature were recorded during the 

147 deployment. Upon retrieval of DGT devices, the binding gels were removed and eluted 

148 with 0.25 M H2SO4 for at least 24 h prior analysis by ICP-MS.

149 After a certain period of deployment, the time-averaged concentration of solute 

150 (CDGT) at the interface of DGT device and soil can be calculated using Eq. (1) (Zhang 

151 et al. 2001):

152 CDGT = M∆g/(DAt)       (1)

153 where ∆g is the total thickness (0.81 mm) of the diffusive gel layer and the filter 

154 membrane, D is the diffusion coefficients of solute (P and As) in the diffusive gel (Luo 

155 et al. 2010, Zhang et al. 1998), A is the surface area (3.14 cm2) of the DGT sampling 

156 window, t is the deployment time (24 h), and M is the total amount of accumulated 

157 solute (P and As) in the binding gel, which was calculated using Eq. (2):

158 M = C (Vacid + Vgel)/fe    (2)

159 where C expresses the solute concentration in the elution sample as measured by 

160 ICP-MS, Vacid is the volume of acid used for elution (1 mL) and Vgel is the volume of 

161 the binding gel (0.25 mL). fe, the elution factor, is 100% for P (Zhang et al. 1998) and 

162 0.78 for As (Luo et al. 2010) when 0.25 M H2SO4 is used as the extracting solution.

163 2.4 Quality Control (QC)
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164 To control accuracy of heavy metal determination, reagent blanks, triplicate 

165 samples, and standard reference materials (GSS-1 soils and GSB-6 spinach, obtained 

166 from Center of National Standard Reference Material of China) were inserted with 

167 every batch of samples. The reference material recoveries for P and As in soil were 

168 85.4±7.6 and 90.1±1.9%, while for P and As in spinach were 90.6±5.0 and 98.3±2.7%.

169 3. Results and discussion

170 3.1 Effect of exogenous P on DGT-measured concentrations of P and As.

171 Concentrations of labile P and As measured by DGT in soils with/without 

172 exogenous P addition were shown in Table 2. After addition of large amount of 

173 exogenous P of high lability, labile P concentrations in P applied soils increased clearly. 

174 Due to the chemical similarity of phosphate and arsenate, the addition of P would 

175 compete the adsorption sites with As on soil particles. In the present study, DGT-

176 measured concentrations of the labile As increased with the increasing concentrations 

177 of labile P in P applied soils, and the percentage (PI) of increased labile P concentration 

178 compared to the blank were significantly correlated (R = 0.85, p < 0.01) with that of 

179 increased concentration of labile As. The increase of As desorption in soils after P 

180 addition was due to the stronger affinity of P to soil particles (Feldmann et al. 2002, 

181 Zhao et al. 2009).

182 3.2 Effect of exogenous P on plant growth.

183 The fresh weights of above ground part of lettuce under two different treatments 

184 of exogenous P were shown in Fig. 1. The biomass of lettuce grown in 200 mg·kg-1 P 
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185 applied soils were generally higher than those in non-P applied soils. In soils BJ, GS, 

186 GZ, HN-1, HN-2, HN-4 and HN-5, the biomass of lettuce grown in P applied soils were 

187 significantly (p < 0.05) higher than those in non-P applied soils, wherein the most 

188 significant increase (554.0 %) was found in soil GZ. In the rest of soils, slight increases 

189 (p > 0.05) were found in soils CQ, LN and HN-3, while an unexpected significant (p < 

190 0.05) decrease was found in soil JL.

191 The stepwise multiple regression analysis between fresh weights (FW) and some 

192 possible influential factors, including total accumulated mass of P and As in plant 

193 tissues (MP and MAs), and soil physical and chemical properties, were listed in Table 3. 

194 The results showed that the biomass of lettuce depends on the accumulated mass of P, 

195 and further depends on the available P status in the soil. The most significant increase 

196 in biomass after P addition was found in soil GZ, while the significant decrease was 

197 found in soil JL. From Table 1 we could observe that the content of Olsen P in soil GZ 

198 and JL before P addition were 0.1 and 127.5 mg·kg-1, respectively, which were the 

199 lowest and the highest values among all the collected soils. For soil GZ, the lowest 

200 Olsen P content resulted in a lowest biomass, while for soil JL, the highest Olsen P 

201 content resulted in a highest biomass. After addition of exogenous P, the nutrients 

202 significantly facilitated the growth of lettuce in soil GZ. For soil JL, P sufficiency made 

203 the extra applied P had little effect on plant growth, and on the other hand, the addition 

204 of P would facilitate the increase of soil labile As (see in Table 2), which resulted in a 

205 negative effect on plant growth. The growth of lettuce mainly depends on the P supply 

206 ability of soil and plant needs for P nutrient.
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207 The general increase of plant biomass after exogenous P application could be 

208 attributed to P-induced growth response, indicating that plant growth was mainly 

209 depended on the supply of available P to the plant. However, this effect was not obvious 

210 in JL soil with largest PDGT (26.3 µg·L-1). Exogenous P application would significantly 

211 increase soil labile P concentration, which would disturb the solution-solid phase 

212 distribution of As in soil, and consequently alter the lability of As. In this study, the 

213 increase of soil labile As concentration in all soils after exogenous P application were 

214 due to the competition of P and As on the sorption sites of soil particles. This P-induced 

215 As mobilization effect has also been reported previously (Bolan et al. 2013, 

216 Mkandawire et al. 2004). However, the effect of P on As phytoavailability does not 

217 equal to that on As desorption and lability in soil, and it depends on the extent of P-

218 induced As mobilization in soils and P-induced competition with As for uptake by roots 

219 (Bolan et al. 2013).

220 3.3 Relationship between soil P(As) and plant P(As).

221 The Log-Log relationship between soil labile concentration and total concentration 

222 of P and As in plant tissues were shown in Fig. 2. Both P and As concentration in the 

223 plant tissues were significantly correlated (p<0.01) with DGT measured concentration 

224 of labile P and As in soil. Similar results were obtained previously for the relationship 

225 between P(As) concentration in plant and DGT measurement of P(As) concentration in 

226 soils (Menzies et al., 2005; Mason et al., 2010; Six et al., 2012; Six et al., 2013).

227 In a previous study from our research laboratory, DGT measured As concentration 
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228 had a better correlation with plant As, and had a closer reflection of phyto-available As 

229 pool than chemical extracted As (Wang et al. 2014). For measurement of P in soil, 

230 numerous researches had demonstrated the feasibility and accuracy of DGT method 

231 (Mason et al. 2010, Six et al. 2012, Six et al. 2013), Six et al. (2014) indicated that DGT 

232 method relates best with yields compared to the established soil P tests Olsen and AEM 

233 (anion exchange membranes). DGT technique had also been adopted for simultaneous 

234 measurement of soil labile P and As (Mojsilovic et al. 2011). However, P and As have 

235 different affinities for ferrihydrite (Violante et al. 2002), which might lead to a 

236 competition of P and As on DGT binding gel.

237 3.4 Total P and As concentrations in aboveground tissues.

238 Total P and As concentrations in plant tissues under two different P treatments 

239 were shown in Fig. 3. After the addition of exogenous P, the total P concentration in 

240 plant tissues increased for all soils, compared to those in non-P applied soils. However, 

241 an interesting phenomenon was observed on the changes of total As concentration in 

242 plant tissues after P addition. For all the red soils collected from Hunan Province, the 

243 total As concentration in plant tissues increased after P application, while a decrease 

244 was observed in the other soils used in this study.

245 The increase of soil labile As after P addition did not result in increases of plant 

246 As in all the studied 11 soils, although significant positive relationship was obtained 

247 between soil labile As concentration and plant As concentration. Two opposite 

248 competition effect were observed on different types of soils. Facilitative effects on plant 
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249 uptake As was observed in the red soils collected from Hunan Province, while an 

250 inhibition effect was observed in the other soils collected from rest areas.To explore the 

251 reason why As concentration in soils and plant tissues having different changing trends, 

252 the studied 11 soils were divided into two categories: red soils collected from Hunan 

253 Province (HN-soils), and the other soils collected from other areas (Other-soils). The 

254 stepwise multiple regression analysis were introduced to study the relationship between 

255 fresh weight (FW), As concentration in plant tissues (Asplant), labile As concentration 

256 (AsDGT) and soil physical and chemical properties.

257 As shown in Table 4, the stepwise multiple regression analysis showed that soil 

258 activated Al content (A-Al) was the main factor that would affect the plant As 

259 concentration on HN-soils, while As concentration on Other-soils would be affect not 

260 only by A-Al, but also by soil pH and CEC. Activated Al compound in soil provides 

261 sorption sites for As, P application would compete with As on these sorption sites, 

262 thereby alter the mobilization and speciation of As in soil. In addition, H+ would be 

263 generated during the hydrolytic process of Al in soil, and the alteration of soil pH also 

264 had a significant influence on As lability and phytoavailability. However, A-Al was 

265 statistically the main fact that influence plant As uptake, the biodilution effects may be 

266 partly responsible for this phenomenon. After P application, the fresh weight of lettuce 

267 from soil BJ, GS, and GZ increased 2.8, 2.4, and 5.5 times, respectively, comparing 

268 with that under non-P application treatments, while the average increased times in 

269 Hunan soils was 1.3. The exact reason for the differences in different types of soils 

270 needs to be further explored using more soils.
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271 From the above results, P application could increase As availability in some certain 

272 types of soils, in which P application could be used as a mobilization tool to facilitate 

273 plant uptake by hyperaccumlators (Tu et al. 2003). While for some other types of soils, 

274 P application will not only meet the demands of crop growth but will also be conducive 

275 to decreasing the As risk in soils (Zeng et al. 2012), thereby realizing safe agricultural 

276 production.

277 3.5 Implication of DGT measured soil labile P/As molar ratio.

278 The relationship between soil labile P/As molar ratio (P/As) and total As 

279 concentration in plant tissues (Asplant) was shown in Fig. 4. The plant As concentration 

280 decreased sharply along with the increase of soil labile P/As molar ratio. The curvilinear 

281 equation between P/As and Asplant was y = 2.9073 x-0.869 (R = 0.70, n = 22, p < 0.01). A 

282 (1.7, 1.8) was the subpoint of zero point on the curve, which could be considered as a 

283 critical value. Increasing soil labile P/As molar ratio would have a negative effect on 

284 plant uptake of As from soil, and this effect would be more significant when P/As was 

285 less than 1.7.

286 The ratio of P and As concentrations in soil/solution systems provides a simple 

287 analogue of the uptake interactions (Mojsilovic et al. 2011). Under solution culture 

288 conditions, increasing P/As was found to have a positive effect on wheat growth (Hurd-

289 Karrer 1939). In the solution culture system, the effect of P on As phytoavailability only 

290 depends on the competition of P and As on plant roots uptake, and increasing P/As ratio 

291 would decrease As uptake by roots. However in soil system, the extent of P-induced As 
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292 mobilization in soils and P-induced competition for As uptake by roots would both 

293 affect As phytoavailability in soil. Due to the complexity of soils, no consistent 

294 relationships between the plant growth and the soil P/As ratios across a range of soil 

295 types from previous literatures was (Benson 1953, Mojsilovic et al. 2011). Besides, the 

296 inaccuracy and uncertainty of extraction methods may lead to an imprecise 

297 representative of the true relationship between phyto-available P and As in soil. In this 

298 study, DGT technique was employed for the determination of soil labile P/As molar 

299 ratio. The application of exogenous P increased the DGT-measured labile P/As molar 

300 ratios (P/As) in all the experimental soils. Even though increases in plant As 

301 concentration in HN-soils after P application were observed, an overall trend of 

302 decrease of plant As concentration in all soils was observed with an increasing P/As. 

303 The functional equation between DGT-measured soil labile P/As molar ratio and plant 

304 As concentration provided a critical value of 1.7, which proposed an initial concept of 

305 the threshold effect of DGT-measured soil labile P/As molar ratio on plant accumulated 

306 As concentration. This value could be used as a guidance for rational P fertilization, 

307 thus avoiding overfertilization and a series of agro-environment problems that it posed.

308 An absence of a consistent effect in studies on soil P/As ratio and its relationships 

309 with plant growth and As phytoavailability could be observed. Morphological and 

310 biochemical alterations due to the changes of soil physical and chemical properties and 

311 plant physiology after exogenous P application could also be influence factors. For 

312 example, different soil P abundance would affect the growth, which would cause 

313 changes in soil exploration, along with secretion of organic acids and phosphatase 
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314 enzymes in to the rhizosphere (Mojsilovic et al. 2011). Furthermore, fungal symbionts 

315 in the rhizosphere would also affect P-As interactions though exclusion of As, via 

316 detoxification and efflux. In this study, the overall trend of plant As along with 

317 increasing P/As was decreasing, however, As concentrations in plant tissues on HN-

318 soils increased after P application. This variation was related to soil activated Al content 

319 from stepwise multiple regression analysis. However, the reason may be various. The 

320 soils used in this study were artificially contaminated soils, which were different from 

321 long-term contaminated soils in As lability and soil properties. Overall, the sensitivity 

322 of the association between DGT-measured soil labile P/As molar ratio and As 

323 phytoavailability on long-term contaminated soils and a great range of P and As fluxes 

324 of soil deserves further research.

325 4. Conclusion

326 The results obtained in this study showed that exogenous P application could 

327 generally facilitate plant growth, yet this facilitating effect was unconspicuous in P-

328 suffcient soils. Competition was the main interaction between P and As in soil, and 

329 application of exogenous P would induce the mobilization of As in soil, thereby 

330 increase As lability in soil. Application of exogenous P facilitated As uptake by lettuce 

331 in red soils collected from Hunan Province, while P inhibited As uptake by lettuce in 

332 the other soils used in this study, which was conducive to decreasing the As risk in soils, 

333 thereby realizing safe agricultural production. Competition between P and As on plant 

334 uptake was more complicated, soil activated As content maybe an important influence 

335 factor, which still need to be further explored. Significant correlation was found 
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336 between DGT-measured labile P/As molar ratio and As phytoavailability, which 

337 provided a critical value of 1.7, proposing an initial concept of the threshold effect of 

338 DGT-measured soil labile P/As molar ratio on plant accumulated As concentration.
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Fig. 1 Mean fresh weight (above ground, triplicate) of lettuce under non-P application 
treatment and 200 mg/kg P application treatment. Error bars: standard errors (n = 3).
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Fig. 2 Dependence of log concentrations of P and As in above-ground plant tissues on the log of 
DGT-measured concentrations of soil labile P and As. The liner regression equations and 

correlation coefficients for the logarithmically transformed data are shown. The error bars are 
standard deviations of the replicate pots.
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Fig. 3 Total P and As concentration accumulated in plant tissues
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Fig. 4 Relationship between DGT measured soil labile P/As molar ratio and As concentration 
in plant tissues
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Highlights:

 Application of exogenous P would induce the mobilization of As in soil, thereby increase As 

lability in soil.

 The relationship between DGT measured soil labile P/As molar ratio and As concentration in 

plant tissues provided a critical value of 1.7, proposing an initial concept of the threshold effect 

of DGT-measured soil labile P/As molar ratio on plant accumulated As concentration.
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Table 1 Physical and chemical properties of the 11 studied soils
Soils BJ CQ GS GZ JL LN HN-1 HN-2 HN-3 HN-4 HN-5
pH 8.26 8.74 8.10 5.72 6.70 5.48 4.98 7.01 5.10 7.28 8.88

OM (g·kg-1) 15.7 19.7 26.8 21.3 31.1 19.4 20.2 29.3 19.6 32.7 7.60
CEC (cmol·kg-1) 13.6 21.5 8.31 14.4 25.3 13.1 10.7 9.02 6.50 15.0 11.7

T-N (g·kg-1) 1.13 1.04 1.29 1.33 1.64 1.10 1.19 2.32 1.32 1.84 0.79
T-P (g·kg-1) 0.586 0.667 1.28 0.364 0.901 0.530 0.642 1.08 0.602 0.711 0.723
T-K (g·kg-1) 20.6 22.9 21.4 11.1 21.1 21.0 12.3 27.7 39.9 17.8 24.1

Alkeline-N (mg·kg-1) 109 113 108 282 135 136 108 223 148 149 42.2
Olsen P (mg·kg-1) 12.5 57.9 86.1 0.112 128 26.6 32.9 65.1 54.8 14.6 10.6

A-K (mg·kg-1) 102 173 317 84.4 199 137 190 118 58.2 182 87.1
A-Fe (mg·kg-1) 11.8 72.7 10.8 23.3 45.2 81.4 32.3 38.2 71.0 37.1 5.62
A-Mn (mg·kg-1) 18.7 33.1 17.5 11.6 54.5 49.8 194 94.4 34.2 23.2 13.3
A-Al (mg·kg-1) 2.13 0.84 1.30 2.92 3.10 2.29 2.58 3.36 1.75 3.05 n/a*
T-As (mg·kg-1) 8.86 6.37 14.2 17.0 14.7 10.2 22.0 22.6 20.8 23.7 10.7

T-N: soil total N content; T-P: soil total P content; T-K: soil total K content; A-K: soil rapid available K content; A-
Fe: soil available Fe content; A-Mn: soil available Mn content; A-Al: soil activated Al content; T-As: soil total 
arsenic concentration (all the values are lower than the second level of environmental quality standard for soils (30 
mg·kg-1), PR China (GB 15618-1995)); *n/a: not available

Table 2 Labile P and As concentrations in different soils measured by DGT with/without P 
treatments

labile P concentrations labile As concentrations
Soils

P0 (μgˑL-1) P200 (μgˑL-1) PI (%) P0 (μgˑL-1) P200 (μgˑL-1) PI (%)
BJ 3.2 ± 0.2 13.9 ± 5.5 332.0 65.7 ± 0.2 160.5 ± 15.9 144.2
CQ 4.8 ± 0.5 12.7 ± 1.5 163.5 172.5 ± 2.5 200.6 ± 6.4 16.3
GS 8.9 ± 0.7 21.1 ± 2.3 137.2 152.5 ± 11.5 284.6 ± 6.4 86.6
GZ 0.7 ± 0.0 2.5 ± 0.7 260.5 3.1 ± 0.4 5.7 ± 0.3 84.1
JL 26.3 ± 0.7 112.6 ± 2.3 328.6 93.2 ± 0.7 205.0 ± 22.1 120.1
LN 2.5 ± 0.3 36.5 ± 1.4 1386.7 13.5 ± 0.2 50.3 ± 7.8 272.9

HN-1 2.0 ± 0.3 21.9 ± 0.8 1013.7 7.1 ± 1.2 21.6 ± 4.3 204.4
HN-2 9.7 ± 0.7 29.6 ± 2.4 205.3 23.4 ± 1. 8 40.3 ± 6.9 72.5
HN-3 6.4 ± 0.4 59.6 ± 6.4 829.5 67.9 ± 0.5 288.5 ± 28.4 324.8
HN-4 1.1 ± 0.1 14.0 ± 3.8 1147.3 6.1 ± 0.0 33.5 ± 8.1 448.9
HN-5 4.8 ± 0.7 13.3 ± 0.6 177.6 117.9 ± 0.7 217. 1 ± 12.4 84.1
a P0: non-P application; P200: 200 mg·kg-1 P application; PI: Percentage of increase.
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Table 3 Stepwise multiple regression analysis between fresh weight of plant tissue and total 
accumulated mass of P in plant tissue.
Treatments Stepwise multiple regression equation Correlation coefficient (R)

non-P application FW0 = 2.661 + 0.401 MP(0) 0.975
200 mgˑkg-1 P 
application

FW200 = 2.145 + 0.329 MP(200) 0.962

a FW0: fresh weight of aboveground tissues grown in non-P applied soils (g); FW200: fresh weight 
of plant tissues grown in 200 mgˑkg-1 P applied soils (g); MP(0): total accumulated mass of P in 
plant tissues grown in non-P applied soils (mg); MP(200): total accumulated mass of P in plant 
tissues grown in 200 mgˑkg-1 P applied soils (mg).

Table 4 Stepwise multiple regression analysis

Soils Stepwise multiple regression equation
Correlation 
coefficient (R)

FW = 2.457 + 4.741 A-Al 0.69
Asplant = 27.581 – 8.163 A-Al 0.95HN-soils
AsDGT = 191.513 – 50.826 A-Al 0.66
FW = –7.575 + 6.602 A-Al + 0.101 Olsen-P 0.74
Asplant = 2.109 – 10.459 A-Al + 3.639 pH + 0.515 CEC 0.97Other-soils
AsDGT = –238.685 + 42.934 pH + 0.932 Olsen-P 0.86


