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The last�25 years has seenmass spectrometry (MS) emerge as an integralmethod in the structural biology
toolkit. In particular,MShas enabled the structural characterization of proteins and protein assemblies that
have been intractable by othermethods, especially those that are large, heterogeneous or transient, provid-
ing experimental evidence for their structural organization in support of, and in advance of, high resolution
methods. Themost recent frontier conquered in the field ofMS-based structural biology has been the appli-
cationof establishedmethods for studyingwater solubleproteins to themore challenging targets of integral
membrane proteins. The power of MS in obtaining structural information has been enabled by advances in
instrumentation and the development of hyphenated mass spectrometry-based methods, such as ion
mobility spectrometry-MS, chemical crosslinking-MS and other chemical labelling/footprinting-MSmeth-
ods. In this review we detail the insights garnered into the structural biology of membrane proteins by
applying such techniques. Applicationand refinementof thesemethodshasyieldedunprecedented insights
in many areas, including membrane protein conformation, dynamics, lipid/ligand binding, and conforma-
tional perturbations due to ligand binding, which can be challenging to study using other methods.

� 2018 Published by Elsevier Inc.
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1. Introduction

Membrane proteins (MPs) represent a disproportionately large
number of therapeutic targets (�60%) [1–3] given that they com-
prise only 25–30% of the proteome [4,5]. MPs perform numerous
essential cellular functions, including signaling, transport, cell
adhesion and catalysis [6–10]. Despite their importance, structural
information pertaining to this class of proteins is relatively sparse
when compared with water soluble proteins. The so-called ‘resolu-
tion revolution’ [11,12] in cryo-electron microscopy (cryo-EM) has
meant that structural information of MPs is now accessible for
samples where X-ray crystallography has failed, or is unsuitable.
Despite this increase in capability, both of these methods rely on
trapping or enriching the conformational state of the protein of
interest prior to study, whether this be by plunge freezing or crys-
tallization. This makes it impossible to interrogate protein dynam-
ics directly and to define the functional cycles of proteins, where
conformational changes may be required and protein states are
in dynamic equilibrium. Moreover, lipid/ligand binding, lowly-
populated states, and co-populated conformations are difficult to
discern by cryo-EM and crystallization, although class averaging
in cryo-EM data analysis can be used to unpick structural ensem-
bles [13–15]. Structural mass spectrometry (MS) methods do not
require freezing or crystallization, the lack of ensemble-averaging
in native MS enables ready detection of co-populated conforma-
tions [16,17] and ligand bound states [18–23], and the methods
are not (often) restricted by protein size (especially methods which
utilize bottom-up analyses) [24–26]. Real-time MS measurements
also enable kinetic information to be determined regarding protein
interactions with ligands or binding partners [27–30]. Conse-
quently, MS-based methods are being increasingly applied in
structural studies of both water soluble proteins and MPs.
Fig. 1. Structural Mass Spectrometry. Summary of structural mass spectrometry metho
IMS-MS involves analyzing proteins intact, whilst maintaining non-covalent interaction
mapping the labelling sites onto the protein structure.
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The burgeoning field of structural MS has flourished over recent
years, with instrumental and methodological advances spawning
new approaches to interrogate both water soluble and MP struc-
tures and their interactions [31–35]. Broadly speaking, the struc-
tural MS approaches that have been developed can be separated
into two classes, namely native (or non-covalent) MS and
labelling-MS (Fig. 1). Native MS exploits the ability of electrospray
ionization (ESI) to maintain non-covalent interactions upon ioniza-
tion, thereby preserving tertiary and quaternary structure for inter-
rogation in vacuo [34,36]. This approach allows protein subunit
stoichiometry and architecture to be studied (the latter when cou-
pled with ion mobility spectrometry, IMS) [33,37]. Labelling
approaches include chemical crosslinking (XL) [26,38–41], hydro-
gen/deuterium exchange (HDX) [42,43], and surface labelling
methods, including chemical labelling (CL) [44–46], and hydroxyl
radical footprinting (HRFP) by methods such as synchrotron radiol-
ysis [47] or fast photochemical oxidation of proteins (FPOP) [48,49].
In these methods, the protein is labelled in solution, and is subse-
quently proteolysed before the resultant peptides are analyzed by
MS either qualitatively or quantitatively. Each of these MS-based
approaches provides a different type of structural information
and, in many cases, integrating data from several of these methods
(perhaps supplemented by other data) can be informative [50].
Whilst these approaches provide low resolution structural informa-
tion, the challenging nature of numerous biological systems (e.g.
size, conformational dynamics, intrinsic disorder, low abundance,
heterogeneity and transiency), including those for proteins embed-
ded in membranes (which have the added challenge of protein
solubility), often precludes the use of high resolution methods such
as X-ray crystallography, cryo-EM or nuclear magnetic resonance
(NMR) spectroscopy. In many instances, the approaches used to
study MPs by structural MS have been developed from those
ds, workflows and the information obtained from each experiment. Native MS and
s. The other methods depicted typically involve analyzing peptide fragments and
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utilized to study water soluble proteins, but the methods have had
to be refined in order to overcome challenges unique to MPs, espe-
cially the requirement for solubilization by detergent micelles,
membrane bilayers or other amphiphiles [51,52].

In this review, structural MS methods that have been utilized
and/or developed to study MPs are described, demonstrating the
vast array of applications where MS can provide unique insights
into the biochemical processes mediated by MPs. MS studies have
yielded insights into MP conformation, the stoichiometry of MP
complexes, lipid/ligand binding, and conformational perturbations
due to ligand binding, amongst others. The rapid advances made in
the field of structural MS of MPs, especially the fast pace with
which instrumentation is advancing, make MS uniquely placed to
enable future discoveries, with the consequence that MS-based
methods are bound to remain a pivotal component of the struc-
tural biology toolkit.

2. Native mass spectrometry to study membrane protein
structure

Native (or non-covalent) mass spectrometry relies on the trans-
fer of proteins into the gas-phase whilst retaining intermolecular
Fig. 2. Components of a typical mass spectrometer. Mass spectrometry analyses begin wi
applied to a fine tapered capillary containing the sample. This results in the formation of
mass analysis. Alternative ionization methods have been used for analysis of MPs by nativ
a mass filter to select ions of particularm/z. Ions can be collisionally activated by a numbe
an inert buffer gas, which leads to protein unfolding, ejection of subunits from complex
resulting in disassembly of complexes). Ion mobility (green box) can be used as an ad
through a buffer gas filled cell under the influence of an electric potential. A number of io
IMS [87], and trapped IMS [88]. Instruments may also be configured with IMS devices befo
example, time-of-flight, quadrupole or Orbitrap devices. (For interpretation of the refere
article.)
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interactions, and thus (some aspects of) tertiary and quaternary
structure [36]. This has been enabled by the advent of soft ioniza-
tion methods, especially electrospray ionization (ESI) [53]. ESI pro-
duces multiply charged analyte ions, with each protein species
represented in a mass spectrum by a series of peaks, each of speci-
fic mass-to-charge ratio (m/z) termed a charge-state distribution,
which usually resembles one or more Gaussian distributions [54].
Multiple Gaussian distributions for a single species indicates the
presence of several conformations [55,56]. Compact states acquire
fewer charges during ESI compared with expanded structures, as
fewer ionizable sites are solvent exposed [57]. The fundamental
principles of ESI have been extensively studied to date, and several
mechanisms for ion formation have been proposed [53,58]. Typi-
cally, a miniaturised version of ESI, termed nano-ESI, is the ioniza-
tion method of choice for native MS analyses, as it only requires
sample flow rates of nL/min (compared with mL/min for conven-
tional ESI), reducing sample consumption (�1 mL) (Figs. 1 and 2).
Nano-ESI is also more sensitive and tolerant to buffer contami-
nants than conventional ESI [59], and since the droplets formed
by nano-ESI are smaller, low source/desolvation temperatures
can be used, enabling non-covalent interactions to be retained
which may be destabilized as a result of heating [60]. Combined,
th sample ionization (red box). Typically, ESI is used, whereby an electric potential is
charged droplets containing the analyte, which liberates ions into the gas-phase for
e MS, including LILBID and DESI (see text). A quadrupole (orange box) can be used as
r of means (yellow box), including CID (where ions are accelerated in the presence of
es and/or peptide bond cleavage), or SID (where ions are accelerated into a surface,
ditional gas-phase separation technique. It separates ions based on their mobility
n mobility devices are available including travelling wave IMS [85,86], conventional
re the quadrupole mass filter. Finally, ions must be mass-analyzed (blue box) by, for
nces to color in this figure legend, the reader is referred to the web version of this
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these unique properties of nano-ESI mean that is the method of
choice for native MS analyses. Buffers typically used for in vitro
studies of proteins (e.g. Tris-HCl, phosphate, HEPES, MOPS, MES
etc.) are non-volatile and, therefore, generally not compatible with
ESI-MS as they lead to adduct formation and/or ion suppression
[60]. Consequently, MS compatible solutions, such as aqueous
ammonium acetate, ammonium bicarbonate or ammonium for-
mate, are commonly used for native MS applications, and buffer
exchange must be stringent [60]. Ammonium acetate is typically
utilized for native MS applications, as ammonium bicarbonate
has been shown to generate high protein charge states (relatively
unfolded ions) when analyzed at pH 7, but this can be regulated
by changing the capillary voltage and source temperature [61–
63]. It is important to note that at pH 7, ammonium acetate does
not function as a buffer at all, but is effective around pH 4.75 and
9.25 (pKa values of the CH3COOH/CH3COO� and NH4

+/NH3 acid/
base pairs, respectively) [64].

The requirement to use specific non-volatile buffers for native
MS studies can be problematic for the analysis of proteins/com-
plexes that are stabilized by specific or non-specific ion adduction,
or in instances where high (or low) ionic strength conditions pro-
mote complex formation or dissociation. Moreover, ionic strength,
salt composition and pH are carefully tuned in vivo, and many bio-
chemical studies use buffers that attempt tomimic such conditions.
Aqueous ammonium acetate solutions are often insufficient for this
purpose. Several strategies have been developed that enable the
Fig. 3. Native mass spectrometry of membrane proteins. (a) In order to observe ions c
collisions after transfer into the gas-phase. Applying insufficient energy results in only pa
collision voltage in the mass spectrometer results in increased peak resolution as a result
(d) amphipol A8-35 [89]. In c the charge state distribution comprises two Gaussian di
collision energy of 100 V. (e-h) nano-ESI mass spectra of DgkA solubilized in (e) DDM, (f)
with permission. Parts c and d are reproduced from Ref. [89]. Parts e-h are reproduced

Please cite this article in press as: A.N. Calabrese, S.E. Radford, Methods (2018
presence of mM concentrations of non-volatile salts in nano-ESI
analyses. These include adding supercharging reagents [65], addi-
tives [66–68], or high ammonium acetate concentrations to prevent
salt-induced ion suppression/adduction [60,69,70]. More recently it
has been shown that using submicrometer nano-ESI capillaries
(<0.5 mm compared with conventional emitter sizes of 1–10 lm)
enable the detection of well-resolved charge state distributions
for native proteins and protein complexes analyzed from high-
salt biochemical buffers (e.g. 25 mM Tris-HCl, 150 mM NaCl and
phosphate buffered saline) [71,72]. This technology has also been
demonstrated to be applicable for the analysis of detergent solubi-
lizedMPs by nano-ESI (in 150 mMNaCl, 25 mMTris-HCl, 1.1% (w/v)
n-octyl-b-D-glucoside) [73]. Further developments in this area will
enhance the range of proteins/assemblies that can be studied by
nano-ESI-MS and ensure that native MS becomes more synergistic
with other biochemical analyses.

There is much experimental evidence to demonstrate that
protein conformations in vacuo are not significantly affected by
the ionization process and the loss of the solvent [74,75], although
some data suggest that a degree of reorganization does occur [76].
Indeed, there is evidence that structural compaction occurs in
unstructured loop regions [77,78], in the case of intrinsically disor-
dered proteins [79,80], and where large cavities may be structural
features of proteins/assemblies [81]. Moreover, the lack of the
hydrophobic effect in the gas-phase, which stabilizes protein struc-
tural states and protein complexes, means that some assemblies
orresponding to a MP, the solubilizing amphiphile must be removed by energetic
rtial amphiphile removal and a poorly resolved spectrum (see b). (b) Increasing the
of detergent removal. (c,d) nano-ESI mass spectra of PagP solubilized in (c) DDM and
stributions, suggesting two conformations are present. Spectra were acquired at a
amphipol A8-35, (g) bicelles and (h) nanodiscs [90]. Part b is adapted from Ref. [84]
from Ref. [90] with permission.

), https://doi.org/10.1016/j.ymeth.2018.02.020
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Fig. 4. Example structures of polymers and detergents used to solubilize MPs. Several structures of amphipols, detergents, and the styrene maleic acid co-polymer are shown.
A8-35 is the most well characterized amphipol and it comprises free acids for solubility (x), whilst hydrophobicity is provided by octyl (y) and isopropyl (z) grafting [91,92].
Taurine (z) groups are used in SAPol to confer solubility at low pH [91,92]. NAPol uses glucose-based moieties to confer solubility. In the case of C8E4 and C12E8, ‘‘C8” and
‘‘C12” denotes an aliphatic chain length of 8 and 12, respectively, whilst ‘‘E4” and E8” refer to the number of repeats of the ethylene glycol unit. The styrene maleic acid co-
polymer is generated by hydrolysis of a styrene maleic anhydride co-polymer [93].
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may be too labile, and will not retain their native fold during nESI,
although this is not always the case [82,83]. In the analysis of water
soluble proteins using native MS, gentle ionization and instrument
conditions are typically used to preserve non-covalent interactions
[60]. However, for MPs, mass analysis requires the dissociation of
the MP from the solubilizing amphiphile, which must occur after
transfer of the MP-amphiphile complex into the gas-phase
(Fig. 3a,b). This requires the optimization of a number of instrument
parameters to ensure the transmission, detection and characteriza-
tion of MPs by nESI-MS [84].
2.1. Detergent-based reconstitution methods for native MS

Most structural methods used to study MPs exploit the ability of
detergents to retain the structural and functional integrity ofMPs in
solution, and much work has been conducted to find detergents
compatible with native MS analyses. MS-compatible detergents
must be able to solubilize the protein efficiently, maintaining a
functional, stable MP in solution, but additionally must be able to
be removed from the MP after transfer into the gas-phase without
significantly impacting the structure/stoichiometry of the MP
[84]. Initial studies were conducted using n-dodecyl-b-D-
maltoside (DDM) as the detergent (Fig. 4) [94], but in many
instances this detergent has proved unsuitable as the activation
Please cite this article in press as: A.N. Calabrese, S.E. Radford, Methods (2018
energies required to dissociate the detergent micelle and liberate
the ‘naked’MP result inMP destabilization and unfolding. Typically,
the sampling cone, collision energy, collision gas pressure and
source pressure must be optimized, and in many cases increased
from values typically utilized to analyze soluble proteins by MS,
to permit detergent removal whilst retaining native protein struc-
ture (Fig. 3a,b) [84]. For water soluble proteins, the cone voltage
and collision energy are typically set to �10–50 V, whilst for MPs
the optimal voltage/energy is often up to 200 V. A published proto-
col describes in detail the optimization procedure to be undertaken
in order to studyMPs by native MS [84]. Recently there has been an
upsurge in the use of other non-ionic detergents for nativeMS anal-
ysis of MPs, for example, Triton X-100, tetraethylene glycol mono-
octyl ether (C8E4), octaethylene glycol monododecyl ether (C12E8),
lauryldimethylamine N-oxide (LDAO), and n-octyl-b-D-glucoside
(b-OG) (Fig. 4) as it has been shown that these detergent micelles
dissociate at much lower activation energies, often resulting in
MP ions that aremore native-like [95–97]. These detergentmicelles
may be dissociated more easily than those formed by DDM as their
non-ionic nature means that the only stabilizing forces are
hydrophobic interactions which are weakened in the gas-phase,
whilst DDM and b-OG micelles are also stabilized by hydrogen-
bonding [95]. It has also been proposed that the relative ease of
detergent removal may relate to the stability of the protein within
), https://doi.org/10.1016/j.ymeth.2018.02.020
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the detergent micelle, i.e. harsher detergents require lower activa-
tion energies [97]. This means that different proteins solubilized
in the same detergentmay require different energies to be liberated
into the gas phase. It has been shown that the detergent used can
influence significantly the observed charge states of a MP, and it
has been posited that detergents may act as charge-carriers that
result in nano-ESI droplets and MP ions with reduced charge (so
the MP ions observed are more native-like) [97]. It should be noted,
however, that it still remains the case that screening must be per-
formed to determine empirically the optimal detergent to study a
given MP by native MS [84]. This can be a significant bottleneck
in native MS workflows [84].

2.2. Detergent-free methods for native MS

It is becoming more andmore apparent (from EM, X-ray crystal-
lography and MS studies [22,96,98–100]) that there is an intimate
relationship between MPs and the surrounding lipid environment,
whereby the binding of key lipids is important for maintaining MP
structure and function [98]. Detergents are a poor mimic of the
native bilayer, may not permit the retention of MP-lipid interac-
tions [101], and in many cases disturb the correct, functional oligo-
meric state of MP assemblies [90,95,96]. Consequently, a variety of
detergent-free methods have been developed to solubilize MPs for
biophysical analyses, namely nanodiscs [102], bicelles [103], lipo-
somes [104], styrene maleic acid lipid particles (SMALPs) (also
called lipodisq) [93] and amphipols (Fig. 4) [91,92]. Each of these
methods has advantages and disadvantages, and only amphipols
and the membrane ‘discs’ of nanodiscs and bicelles have been uti-
lized as vehicles to deliver native MPs into the gas-phase to date
[105].

2.2.1. Amphipols
Amphipols are amphipathic polymers that wrap around the

hydrophobic regions of MPs, binding in a quasi-irreversible fashion
[91,92]. A range of amphipols has been developed, but the most
well characterized, and the only one commercially available, is
A8-35, which is synthesized by grafting isopropylamine and octy-
lamine groups onto a polyacrylic acid polymer precursor (Fig. 4)
[91,92]. The solubility of MP-amphipol complexes is conferred by
the remaining free acids, whilst a hydrophobic environment for
MP stabilization is formed by the isopropyl and octyl moieties.
MPs solubilized in amphipol have improved thermal, chemical
and kinetic stability when compared with those solubilized in
detergent micelles [106,107]. The synthetic route to A8-35 means
it is highly heterogeneous in mass and the degree of grafting, but
the polymer has been shown to form relatively homogeneous par-
ticles of �40 kDa [91,92,107]. The name A8-35 is derived from the
chemical composition of the polymer: it was initially presumed to
have a mass of �8 kDa (however further evidence has shown it to
have a mass of �4.5 kDa), and �35% of free acid groups remain
ungrafted [92,108,109]. A variety of other amphipols has been
developed that differ in the average mass of the polymer, the pro-
portion of acid groups left unmodified and also the chemistry of
the polymer itself [91,92,107]. For example, a sulfonated amphipol
(SAPol) has been developed in which taurine is grafted in place of
the isopropyl amine (Fig. 4), and a structurally dissimilar non-ionic
APol (NAPol) (Fig. 4) has been synthesized that uses glucose-based
moieties to maintain solubility.

The first reported examples of successful native mass spectra of
MPs solubilized in a non-detergent medium were the b-barrel
outer membrane proteins (OMPs) OmpT and PagP (Fig. 3 c,d) that
were successfully refolded directly into A8-35 [110]. Further stud-
ies revealed that the monomeric a-helical inner membrane pro-
teins Mhp1 and GalP could also be liberated from amphipol A8-
35 [89], and whilst the trimeric E.coli diacylglycerol kinase (DgkA)
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could be liberated from amphipol A8-35, the dominant species was
the monomer (Fig. 3f) [90]. This suggested that amphipols may not
be the optimal medium for promoting the retention of oligomeric
MPs in native mass spectrometry. However, a direct comparison
with DDM suggested that monomeric MPs (inner and outer MPs)
solubilized in A8-35 are more resistant to gas-phase unfolding
than their detergent-solubilized counterparts, possibly because
the amphipol-MP complex dissociates more slowly than a
detergent-MP assembly (so the naked protein is not subjected to
the harsh MS conditions for as long) [89]. Further systematic study
of a collection of amphipols revealed no obvious trends when alter-
ing the charge or size of the amphipols used [111], suggesting that,
like detergents, no one amphipol could prove the ‘magic bullet’
solution for MS studies of MPs, and that screening of amphipols
is required to optimize native MS conditions on a sample-by-
sample basis.
2.2.2. Disc technologies for native MS
A variety of methods for generating membrane discs for MP

reconstitution has been developed, each of which has found appli-
cations in EM, X-ray crystallography, NMR and MS
[93,102,112,113]. All of these membrane discs comprise a lipid
bilayer (either native or synthetic) that is solubilized by some
means. Thus, membrane discs are a more favorable mimic of the
native environment experienced by MPs in vivo (compared with
detergents). Bicelles comprise a planar lipid bilayer surrounded
by a rim of detergent or short-chain lipid. The ratio of long-chain
lipid to detergent/short-chain lipid can be tuned to control the size
of the discoidal particle [114]. By contrast, the bilayers of nan-
odiscs are solubilized by two copies of amphipathic membrane
scaffold proteins (MSPs), that have been specifically engineered
to form a disc of a defined size (several MSPs have been described
to date) [102].

Seminal work described the utility of bicelles and nanodiscs as
vehicles for the delivery of MPs into the gas-phase by ESI [90]. In
this work, bicelles and nanodiscs (along with amphipols) were
used to solubilize the trimeric MP DgkA, which could be observed
intact after high energy collisional activation of the assemblies
(although some dissociation to the monomer and dimer was
observed) (Fig. 3 e-h). Monomeric LacY and sensory rhodopsin II
(pSRII) could also be liberated from nanodiscs and bicelles. In the
case of DgkA, the detergents studied (DDM and n-decyl-b-D-
maltoside, DM) did not stabilize the native trimer (Fig. 3e), sug-
gesting that either the trimer dissociated in solution in these deter-
gents or the energies required to liberate the protein from the
micelle destabilize the complex. Overall, these results thus high-
light the importance of the lipid environment in stabilizing some
MP assemblies for study in the gas-phase.

This earlier work focused on the use of high collision energies to
liberate intact MP assemblies devoid of adducts, however a more
recent study, enabled by the development of high-resolution
instrumentation, has focused on using lower collision energies to
study MP-lipid interactions in nanodiscs [115]. This study revealed
that collision induced dissociation (CID) of MP-reconstituted nan-
odiscs (containing the MPs AmtB and AqpZ) occurs in a stepwise,
sequential manner, with the MSP and bulk lipid being the first enti-
ties removed from the complex, leaving the annular lipid shell, for
the most part, attached to the MP. Higher energies can further dis-
sociate lipids from the MP, with ionic lipids removed last. These
spectra are complex, due to the heterogeneity of the MP-lipid com-
plexes observed (MPs with 0 to 120 bound lipids were co-
populated), and require deconvolution algorithms to assign the
complex series of overlapping peaks [116]. Such analyses could
be leveraged to further understand how MPs interface with their
surrounding lipid environment. Empty nanodiscs have also been
), https://doi.org/10.1016/j.ymeth.2018.02.020
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studied by native MS allowing, for example, the precise lipid com-
position to be determined [117–120].

2.3. Alternative ionization methods

Whilst most native MS studies of MPs have employed standard
nano-ESI as the ionization method, other studies have explored the
use of alternative methods with promising results. Two methods
have emerged as most promising, laser induced liquid bead ion
desorption (LILBID) [121,122] and desorption electrospray ionisa-
tion (DESI) [123,124] (Fig. 2).

In LILBID, microdroplets are generated which are then irradi-
ated with a mid-infrared laser. This causes the droplet to explode
and release ions into the gas-phase, which can then be analyzed
by MS (Fig. 2). Unlike ESI, ions in LILBID spectra are more lowly
charged (often singly charged, negative ions are observed) and
molecules typically present over fewer charge states. The charge
a protein/complex acquires upon LILBID has been shown to corre-
late qualitatively with its net solution charge (as determined from
its amino acid sequence) [121], suggesting that the ions generated
may be more native-like than those from ESI methods, which pro-
duce highly and non-natively charged ions. The current generation
of LILBID instruments has relatively poor spectral resolution, mak-
ing ligand identification in binding studies challenging [125]. Like
ESI, the method was first attempted utilizing detergent solubilized
MPs, and a range of MP assemblies has been studied [121,126].
Recently, it was demonstrated that MP complexes reconstituted
in nanodiscs could be analyzed by LILBID [125]. Interestingly, com-
plexes of the MPs studied in nanodiscs together with the scaffold
protein were observed in the spectrum, which the authors posit
is due to membrane destabilization during droplet explosion. By
comparison, in ESI mass spectra of nanodisc reconstituted MPs, it
was demonstrated that at low collision energies, the scaffold pro-
teins and bulk lipids are ejected from the complex, with the MP
retaining lipids of its surrounding annular belt [115]. Increasing
the collision energy results in dissociation of these bound lipids.

In DESI, a buffer solution is electrosprayed and a sheath gas is
used to direct the charged droplets to a surface at which the ana-
lyte has been previously deposited. The analyte is dissolved when
the droplets impact with the surface. Droplets are subsequently
ejected from the surface, desolvation occurs and the ions are drawn
into the mass spectrometer (Fig. 2) [123,127]. Using DESI, MPs pre-
pared in detergents and deposited onto glass surfaces could be des-
orbed by electrospraying a detergent-containing solution onto the
surface [128]. Analysis by high resolution MS revealed that the
charge state distributions observed depend on the detergent used
in the desorption plume, suggesting that on-surface detergent
exchange was occurring. Moreover, specific binding to MPs could
be observed by adding ligands to the desorption spray [128]. Excit-
ingly, this opens up the possibility for the study of membrane-
embedded MPs on surfaces directly by DESI-MS.

2.4. Stoichiometry, ligand and lipid binding and thermodynamics
revealed by native MS

The earliest applications of the use of MS to analyze MPs was in
elucidating/confirming subunit stoichiometry of MP complexes. It
is important to note, however, that the subunit stoichiometry
observed by MS has been shown to be influenced by the detergent
used to solubilize the MP assembly [95,96]. Native MSmethods can
also be used to detect lipid, drug, or other molecules binding to
MPs. Intriguingly, MS has been used to show that delipidation of
certain MP complexes results in their destabilization and
dissociation into their constituent components [22]. This is related
to the strength of the oligomerization interface, with complexes
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comprising interfaces with low buried surface areas and few salt
bridges requiring lipid binding for stabilization [22]. Additionally,
the binding of lipids that have been carried through purification
protocols has been observed in native mass spectra for several
MPs [20,21,89,129]. For example, in the case of the F0F1 ATPase
from Enterococcus hirae, the membrane embedded ring was identi-
fied as a decamer with ten cardiolipin molecules bound. In com-
parison, the homologous ATPase from Thermus thermophilus has a
12-subunit membrane embedded ring, to which six phos-
phatidylethanolamine lipids were bound, consistent with a 6-fold
symmetry and suggestive of a structure comprising a hexamer of
dimers with each dimer containing a lipid binding site [130]. Lipid
interactions could be important for understanding how the inner
dimensions of the ring are controlled and how the ring interacts
with other subunits of the rotary ATPase. More generally, specific
lipid binding events carried through the purification pipeline
despite stringent MP purification/delipidation protocols could hint
at a regulatory role [20,23]. Studies of the ABC transporter P-gp
[27] revealed that this protein preferentially binds to negatively
charged lipids and cardiolipins (over zwitterionic lipids), and that
binding to an inhibitor enhances cardiolipin binding, demonstrat-
ing that native MS could be used to probe synergistic binding
events. Native MS has also been used to capture off-target drug
interactions with MPs [131] and, excitingly, to monitor ligand
binding to G-protein-coupled receptors (GPCRs), enabling native
MS methods to be applied to GPCR drug discovery [132].

In the past, resolution has prevented MS from being applied to
studies of small molecule binding to MPs and MP assemblies, espe-
cially for the study of multiple lipid binding and lipid and drug co-
binding events. However, the advent of Orbitrap instrumentation
with higher sensitivity and resolving power has enabled applica-
tions to be developed that would be impossible with older gener-
ations of instruments. For example, the Orbitrap has enabled the
study of multiple concomitant binding events to MPs for lipids that
differ in mass by as little as 12 Da [133], allowing the relative bind-
ing affinities of different lipids/ligands to be quantified, the study
of lipids co-purified with a MP, and drug binding in the presence
of lipids [131,133]. Indeed, the resolving power of the Orbitrap
instrument may also assist with the identification of proteoforms,
glycoforms and post-translational modifications. It is also possible
to analyze more complex samples, for example, nanodisc-
embedded membrane proteins (see above) [115], thus permitting
the identification of lipids which comprise the annular belt which
would be difficult on lower resolution instruments (given the peak
overlap in the spectra).

Temperature controlled ESI sources have also been developed
that enable the thermodynamics of individual ligand binding
events to proteins to be determined [134]. This has allowed the
thermodynamics of individual lipid binding events to the ammonia
channel (AmtB) to be studied, revealing that the thermodynamic
signature (DH and �TDS values) of binding varies for different
lipid types. This is complementary to the more typical experiment
to determine binding affinity, in which titrations are used to deter-
mine binding affinities. For example, in the case of trimeric porin,
OmpF, a peptide was shown to bind to each subunit by threading
through the pores, and the affinity measured by a MS titration
was in agreement with that determined by isothermal titration
calorimetry (ITC) [135]. Such an approach has also been used to
study the relative affinities of lipids and drugs for MPs, and the
synergistic effects of binding on affinity [27]. These ligand binding
analyses can be augmented with collision induced unfolding (CIU)
analyses, which exploit the power of IMS-MS to resolve conforma-
tional changes upon collisional activation, that provide a measure
of the structural stabilization imparted by binding (see following
sections) [98,136].
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2.5. Ion mobility spectrometry-mass spectrometry

IMS separates ions by their mobility through a cell filled with a
buffer gas (He or N2) under the influence of an electric field (Fig. 2)
[33,37,57,137]. The drift time of an ion under these conditions is
dependent on its mass, charge and size/shape. Larger, more
extended ions experience more collisions with the buffer gas and
therefore take longer to traverse the drift cell. The converse is true
for smaller ions. Also, more highly charged ions are accelerated to a
greater extent through the drift cell, and so have a higher mobility
(lower drift time). For each ion species an arrival time distribution
(ATD) is recorded, which separates, for example co-populated con-
formations. Importantly, the drift time of an ion can be converted
to its collision cross-section (CCS), either directly or by calibration
(when using a travelling wave IMS device) [74,138,139]. It should
be noted, however, that care should be taken when calibrating
travelling wave IMS data for membrane proteins, as CCS values
Fig. 5. Ion mobility spectrometry-mass spectrometry to study protein structure. (a) Nati
colored lines indicate the expected m/z values for the pentameric complex (red), and the
detergent removal was not achieved. The structure of the pentameric MscL channel (PD
(right panel). Upon binding MTSET (inset) the CCS increases indicating channel opening
nano-ESI mass spectra of Skp in the presence of tOmpA (upper panel) and in the presenc
with the larger tBamA, but only 1:1 assemblies with the smaller tOmpA. Inset are the mo
in yellow, and Skp is shown in green and blue) [81]. Part a is adapted from Ref [95], with
the references to color in this figure legend, the reader is referred to the web version of
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can be underestimated [52,144]. For globular proteins, ions of the
lowest charge state (highest m/z) typically represent the most
compact native-like conformation, whereas higher charge state
species are more expanded due to Coulombic repulsion [74].
Experimentally determined CCS values can be compared with
those of structural models or high-resolution structures to provide
insights into protein architecture. Several software packages,
implementing different methodologies, have been developed to
determine CCS values in silico. The most reliable CCS calculation
method is the trajectory method, which is implemented in the soft-
ware MOBCAL and other packages [141,142]. Recent work has
demonstrated that alternative, less computationally intensive
approaches can provide data of similar quality (e.g. the corrected
projection approximation implemented in IMPACT [140], or the
projection superposition approximation [143]).

Comparison of the measured CCS with that of a high-resolution
(or model) structure determined in silico can then be performed
ve mass spectrum of the MscL pentamer solubilized in Triton X-100 (left panel). The
complex with detergent molecules attached (other colors), indicating that complete
B: 2OAR) [148] (middle). The CCS distribution for the 16+ ions of pentameric MscL
, addition of DTT causes the CCS to revert to that of the closed state [95]. (b) Native
e of tBamA (lower panel), showing the complexes formed. Skp forms 2:1 assemblies
del structures that agree favorably with the IMS data (tOmpA and tBamA are shown
permission. Part b is adapted from Ref [81], with permission. (For interpretation of
this article.)
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Fig. 6. Collision Induced Unfolding. (a) Example of a CIU experiment. An ion is
selected in the quadrupole and IMS data are acquired after applying increasing
energies. This results in gas-phase unfolding. At each collision energy an ATD is
recorded, with the data typically plotted as a heatmap. On the right hand side are
three ATDs at three different collision energies (indicated by the dashed lines of
corresponding color in the heatmap), demonstrating that in this case an interme-
diate species is populated upon unfolding. (b) IMS-MS analysis of AmtB in the
presence of phosphatidylglycerol (PG). Up to four lipid binding events are observed
in the spectrum. Peaks labelled with a yellow triangle correspond to AmtB, each
green circle represents a bound lipid. (c) Quantified stabilization of AmtB bound to
different lipids (CDL: cardiolipin, PA: phosphatidic acid, PC: phosphatidylcholine,
PS: phosphatidylserine, PG: phosphatidylglycerol, PE: phosphatidylethanolamine).
The most significant stabilizing effects are observed for CDL and PG. The N72A/
N79A mutant disrupts the PG binding site, which also removes the stabilizing effect
of PG [98]. Parts (b) and (c) are reproduced from Ref. [98] with permission. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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[140–143], to provide insights into protein architecture. Combin-
ing IMS with low resolution modelling [145], conventional, or
steered molecular dynamics (MD) simulations [81,129] is also
gaining traction as a method for obtaining structural insights into
proteins/assemblies. IMS also enables structural perturbations,
for example, as a result of ligand binding, to be studied (see below).

As IMS-MS reports on the ensemble of structures adopted, it is a
promising tool to study the dynamics and conformational hetero-
geneity of both water soluble and MPs and their assemblies. For
example, study of the V-type ATPase from T. thermophiles revealed
that the membrane-embedded V0 subcomplex explored more con-
formations than the water soluble V1 assembly and that ATP bind-
ing dampened the motions of V0 [146]. IMS can also be used to
investigate the conformational changes/transitions of MPs. For
example, the homopentameric mechanosensitive channel of large
conductance (MscL) from E. coli (Fig. 5a) opens in response to
increases in membrane tension as a result of hypoosmotic shock.
Despite the functional importance of such channels, it was impos-
sible to monitor the global structural changes that occurred during
channel gating. Nano-ESI-IMS-MS, combined with molecular
dynamics simulations, provided the ideal solution to study this
phenomenon. MscL was solubilized in Triton X-100 and analyzed
by native MS [95]. Cys-containing monomers of MscL were then
incorporated step-wise into the pentamer. The introduced Cys resi-
due reacts with the molecule [2-(trimethylammonium)ethyl]
methanethiosulfonate bromide (MTSET) (Fig. 5a, inset), allowing
the incorporation of up to 5 positively charged MTSET moieties
in the MscL pore, which results in pore opening due to Coulombic
repulsion [147]. Incorporation of MTSET in the pore led to step-
wise opening of the pore, which could be detected by IMS, with
up to four co-populated states observed (Fig. 5a). The assemblies
of unfolded outer membrane proteins (OMPs) with the periplasmic
chaperone Skp have also been studied by nano-ESI-IMS-MS, to
understand how the chaperone accommodates its many client pro-
teins of a range of sizes in its hydrophobic cavity [81]. Once chap-
erone bound, these complexes are water soluble, so no detergents
are required for their characterization by IMS-MS. The data
demonstrated that larger OMPs bind additional Skp molecules to
sequester them successfully and prevent their aggregation. IMS
data were compared with models generated in silico by MD, to
understand the architecture of these assemblies, revealing that
the chaperone functions by both expanding its central cavity and
by multivalent chaperone binding to accommodate larger sub-
strates (Fig. 5b).

2.6. Collision induced dissociation and collision induced unfolding

Collisional activation of MP complex:detergent assemblies
often leads to dissociation (Fig. 2). However, this can result in use-
ful information concerning the arrangement of the assembly. For
example, ESI-MS of the E. coli b-barrel assembly machinery
(BAM), a heteropentameric complex that comprises subunits A, B,
C, D and E, revealed dissociation into subcomplexes, AB and ACDE
[149]. This is consistent with the known architecture of BAM – it
comprises two subcomplexes, AB and CDE, with A being the central
subunit [150,151].

Pairing collisional activation by CID (Fig. 2) with IMS has led to
the development of collision induced unfolding (CIU) [152,153],
which has given an extra dimension to the information that can
be obtained from ligand binding experiments. In CIU, a native-
like ion is activated by CID prior to ion mobility separation, result-
ing in unfolding of the ion which can be monitored by its CCS
derived from IMS. CIU is repeated at increasing collision voltages
and the CCS of the ion plotted under each condition (Fig. 6a). CIU
has found several applications. For example, it can be used to infer
the domain structure of proteins [154], or for studying the effect of
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ligand binding on protein stability [136]. Software packages have
been developed for the quantitative comparison of CIU trajectories
for this purpose [136,155], and to assist in data collection and
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Fig. 7. Chemical crosslinking. (a) Structure of the common crosslinking reagent
DSS. Its water soluble counterpart BS3 comprises sulfonated NHS-ester reactive
groups. The reaction of the NHS-esters with amines on a protein is shown. (b)
Common crosslinked peptides that can be identified after proteolysis. Typically it is
the intermolecular crosslinked peptides (type 2) that provide the most informative
structural information, especially when the two peptides involved originate from
different proteins of an assembly. (c) A crosslinker containing hydrazide reactive
groups reacts specifically with activated carboxylic acids. (d) Photoactivatable
crosslinking groups that can be incorporated into crosslinker designs.
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analysis [156]. Recently, Laganowsky et al. used a CIU approach to
quantify the stabilization imparted on MPs by bound lipids, and
found that lipids important for function enhance the resistance
of MPs to CIU (e.g. phosphatidylinositol phosphate imparts the
highest stabilisation on MscL, consistent with its proposed role in
mechanosensation, and cardiolipin which modulates the function
of AqpZ also performs a stabilizing role). Additionally, crystalliza-
tion of AmtB in the presence of the lipid that imparted the highest
CIU-measured stabilization in the MS screen (Fig. 6b,c) yielded a
new conformation of AmtB, suggesting a role for lipid binding in
modulating both the structure and function of MPs [98].

Complementary to CID, surface induced dissociation (SID) has
also been used to dissociate protein assemblies (Fig. 2) [157], and
has also shown promise as a tool to study MPs [158]. SID involves
directing ions to a surface, where each ion experiences a single,
fast, energetic collision, unlike CID where multiple energetic colli-
sions with a buffer gas occur [157]. Typically, subcomplexes
formed by SID are more native-like (when compared with those
formed by CID) and IMS data for the trimeric MP complexes AmtB
and AqpZ suggest that the monomer and dimer formed upon SID of
the intact trimers populate native-like CCSs [158]. IR laser activa-
tion has also shown promise as an alternative method to liberate
MPs from detergent micelles [159].

2.7. Discussion

Native MS-based structural methods have been instrumental in
the characterization of numerous biochemical processes. Whilst
initial experiments focused on the use of native MS as a tool to dis-
cern protein complex stoichiometry [60], the advent of IMS-MS has
significantly enhanced the structural information accessible
[37,74,138,145,153]. Despite the relatively low structural resolu-
tion afforded from IMS measurements, knowledge of a protein’s
collision cross section can provide critical information that can
be used to refine structural models and to map conformational
changes [16,33,79,80,145,160–162]. This is especially useful in
the study of protein dynamics and structural interconversions, as
co-populated species with different m/z and/or CCS can be interro-
gated individually without ensemble averaging. It is important to
note, however, that the range of complexes which can be studied
by native MS methods is restricted to those that survive intact in
the gas phase which, in turn, is determined by the nature of the
non-covalent interactions involved in complex formation. For
example, since hydrophobic interactions are weakened in the gas
phase, macromolecular complexes that rely on hydrophobic con-
tacts for assembly may not survive intact during the transfer to
the gas phase [82,83]. In addition, the loss of a solvation shell
may result in structural reorganization, as evidenced for water sol-
uble proteins, including intrinsically disordered proteins or com-
plexes with ‘open’ topologies as found in extended polyproteins,
such as IgGs or ring-like subunit assemblies [76,81,163]. In these
cases it is advisable to perform molecular dynamics simulations
to model the behavior of molecules in the gas phase.

In the case of MPs, CCS values obtained by calibration of travel-
ling wave IMS data must be analyzed with caution. Whilst changes
in structure monitored by travelling wave IMS may be inter-
pretable, the energies required to liberate the MP from the deter-
gent micelle/nanodisc, and the lower net charge acquired by MPs
upon ESI (relative to water soluble proteins) mean that calibration
of MP drift time data with CCSs of water soluble proteins can be
erroneous [52,144]. In such cases caremust be taken to choose suit-
able soluble protein calibrants, or it may be necessary to measure
CCSs directly from drift tube (conventional) IMS devices, or to per-
form a calibration using CCSs of MPsmeasured previously on a drift
tube (conventional) IMS device [144]. However, a lack of commer-
cially available MPs and the absence of a suitable CCS database that
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can be utilized for calibration makes such a task challenging, at
least at the current time. In cases where native MS may not be
suitable, or may provide insufficient resolution, structural studies
using solution-based labelling methods such as FPOP-MS, HDX-
MS, or other approaches, followed by MS detection (and quantifica-
tion) can be used to provide powerful information about structures,
protein complexes and conformational changes in solution, includ-
ing for MPs in different amphiphiles, as discussed in the sections
below.
3. Labelling methods to study membrane protein structure

Covalent labels have been used in structural MS studies for
many years, with many of these methods having been applied to
the study of MPs, as detailed below. All of these approaches share
a common generic workflow; (1) a labelling experiment is
performed in solution, (2) the proteins are digested with a protease,
and (3) the sites of modification are identified by MS. These sites of
modification can then be used to infer binding interfaces,
solvent accessible regions, and/or conformational dynamics of a
protein/complex.
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3.1. Chemical crosslinking

Chemical crosslinking (XL) has been employed for decades to
study protein interactions, but the advent of high resolution MS
and robust proteomics workflows has enabled this methodology
to be reborn as a technique that provides residue-level structural
information [26,38–41]. After reaction with a suitable XL reagent,
a protein/complex is proteolysed and the crosslinked peptides
identified by MS. There are many commercially available XL
reagents, but they all involve the same basic structure of two reac-
tive groups separated by a spacer arm of defined length (Fig. 7a)
[26,38–41]. Additional functionalities may be incorporated in the
spacer arm, such as functional groups that are cleavable (either
chemically or by CID) [164] or groups that can be used for crosslink
enrichment (e.g. biotin or alkynes) [165,166]. Crosslinked peptides
can also be enriched by size exclusion or strong cation exchange
chromatography [167,168]. Enrichment is often necessary to
enable efficient detection of crosslinked peptides amongst their
more highly abundant non-crosslinked counterparts. Intermolecu-
lar crosslinks, which are the most structurally informative, com-
prise two peptides covalently joined by the XL reagent (Fig. 7b).
MS/MS methods can be used to identify the peptides involved,
and the residues that are covalently joined. The spacer arm
imposes a distance restraint which can then be used for structural
modeling, model validation, or comparison with high-resolution
structural data [26,38–41]. Analytical challenges have meant that
significant effort has been spent on refining XL-MS methodologies,
especially to enrich for XL peptides (they are of inherently low
abundance), and to develop automated (or semi-automated) meth-
ods of spectral assignment and XL identification [168–172].

A variety of reactive group chemistries can be incorporated into
crosslinker designs, but by far the most commonly encountered
ones are the N-hydroxysuccimide (NHS)-esters, which react pri-
marily with Lys side-chains, but also Ser, Thr and Tyr (Fig. 7a)
[173,174]. Bis(sulfosuccinimidyl)suberate (BS3), or its membrane
permeable counterpart disuccinimidyl suberate (DSS) (Fig. 7a),
are probably the most frequently used XL reagents. Both comprise
two NHS-ester reactive groups (in BS3 the NHS-esters are also
derivatized with sulfonyl groups to confer water solubility) sepa-
rated by a 11.4 Å spacer arm. The utility of hydrazides as reactive
groups that target carboxylic acids (i.e. side chains of Asp and
Glu) has also been demonstrated; however, their low reactivity
means that they must be activated with a coupling reagent
[175]. The reagents adipic acid dihydrazide (11.4 Å spacer arm)
(Fig. 7c) and pimelic acid dihydrazide (12.3 Å spacer arm), com-
bined with the coupling reagent 4-(4,6-dimethoxy-1,3,5-triazin-2
-yl)-4-methyl-morpholinium chloride (DMTMM), have been used
recently to study the TRiC/CCT chaperonin and 26S proteasome
complexes [175]. Photoreactive groups (e.g. diazirine, benzophe-
none) (Fig. 7 d,e) can also be incorporated into crosslinker designs,
which have an (essentially) non-specific side-chain reactivity (but
do have some preferences) [176]. Cell permeable reagents can also
be used to define the interfaces of protein assemblies in a cellular
context [165,166]. Additionally, photoactivatable groups (ben-
zophenones or diazirines) (Fig. 7 d,e) can be incorporated into pro-
teins in vivo by the cellular machinery (by using an aminoacyl-
tRNA synthetase/tRNA pair that incorporates unnatural amino
acids at an amber stop codon), and used for interaction/interac-
tome analysis [177,178].

Application of XL-MS to study the architecture of water soluble
protein assemblies is now well-established, with many impressive
studies of proteasomes, ribosomes, polymerases, the mediator
complex, and transcription factors, amongst others [179]. Reports
of XL-MS of MPs are few and, generally speaking, limited to large
assemblies with extra-membrane regions of significant size. XL
has been applied in integrative studies to investigate signaling
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complexes of GPCRs. In one example, the b2 adrenergic receptor
and b-arrestin 1 complex was characterized by combining XL-MS,
HDX-MS and negative stain EM [180]. The structure of the complex
between the b2 adrenergic receptor and a GPCR kinase was also
studied by XL-MS, again using an integrated approach, combined
with HDX-MS, negative stain EM, mutagenesis, molecular
dynamics and docking, allowing a dynamic model of the complex
to be derived [181]. XL-MS has also been used to study the archi-
tecture of complexes involved in photosynthesis [182–184],
demonstrating the organization of the individual components of
the photosynthetic apparatus when they form a megacomplex in
a cyanobacterium [182].

Comparative XL has also been developed, whereby isotopically
encoded crosslinkers are used to crosslink a protein in different
states, for example in the absence or presence of different addi-
tives/components/post translational modifications. The relative
intensities of the crosslinked peptides can be then quantified and
used to determine structural alterations. For example, the F0F1
ATPase has been probed by comparative XL, revealing that phos-
phorylation is involved in regulating nucleotide binding [40,41].

3.2. Hydrogen/deuterium exchange

Hydrogen/deuterium exchange (HDX)-MS can be used to study
protein conformation, dynamics, ligand binding sites and allosteric
effects [42,43]. Typically, in HDX-MS experiments, the protein
solution is diluted in deuterated buffer, resulting in the labile
hydrogen atoms being exchanged for deuterium (only main chain
amide hydrogens are observable as side chain amines and car-
boxylic acids exchange too rapidly to measure). Exchange is
allowed to take place for defined, measured, time periods and
the reaction then quenched by reducing the pH to �2.5 (where
the intrinsic rate of HDX is minimized) [43]. Samples are digested
with a protease that is active at low pH (typically pepsin, but other
enzymes, e.g. nepenthesin [185,186] can be used), and the resul-
tant peptides are then separated by LC (at low temperature and
pH, again to prevent back-exchange), analyzed by MS, and the
extent of deuterium incorporation determined [43]. Interest in
HDX-MS has been enhanced recently by the commercialization of
integrated HDX-MS platforms, which can be interfaced with liquid
handling robotics to automate the labelling, quenching and injec-
tion steps [187,188]. As with all structural MS techniques, working
with MPs has its own unique challenges. For example, the
hydrophobic transmembrane segments of MPs can be inherently
difficult to digest and observe by LC-MS, although this is often pro-
tein and digestion condition dependent [189], and does not always
preclude structural analyses. Recent studies on detergent and lipid
solubilized proteins have demonstrated that both are compatible
with HDX-MS [181,190–195].

As with most analytical methods used to study MPs, MPs solu-
bilized in detergent have been the primary targets for HDX-MS
analyses. A variety of systems has been studied revealing many
structural insights. For example, BmrA, an ABC transporter that
adopts open and closed conformations in its transport cycle, was
solubilized in DDM and HDX-MS was used to study the protein’s
conformational transitions (Fig. 8) [190]. The conformational
changes in green cone opsin upon light activation have also been
studied [196], as well as the alternating access mechanism of the
Na+/H+ antiporter NhaA [191].

A particular interest in the field of HDX-MS has been the study
of protein complexes involved in signaling cascades. In this area of
work, the interaction of the b2 adrenergic receptor with the tri-
meric G protein Gs was investigated by HDX-MS, revealing that
the Ga subunit is the principle binding site (and not Gb or Gc)
[197]. The binding of b-arrestin to the b2 adrenergic receptor has
also been studied by HDX, combined with chemical crosslinking
), https://doi.org/10.1016/j.ymeth.2018.02.020
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Fig. 8. HDX-MS of BmrA. The BmrA structure was switched from the open (left) to the closed (right) conformation by the mutation E504 [190]. The structures shown are 3D
models of dimeric BmrA, one subunit is shown in white the other in cream. Regions are colored according to the percentage of deuterium exchange after 1 hr (see key on
right). Upon closing, regions of BmrA are significantly protected from exchange. TMD = transmembrane domain, ICD = intracellular domain, NBD = nucleotide binding
domain. Figure is reproduced from Ref. [190].
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and low resolution EM, allowing a model of the complex to be con-
structed [180].

If HDX of MPs is performed in the presence of lipids (e.g. nan-
odiscs, bicelles or liposomes), the lipids are often removed prior
to MS analyses to prevent them interfering with ionization and
LC separation [43,198], though more recent work suggests that this
is not always necessary [181,192–195,199]. HDX-MS in nanodiscs
has been used to study propeptide binding to c glutamyl carboxy-
lase [192], and to study the conformational dynamics underlying
the alternating access mechanism of LeuT [193]. Bicelles have been
used to study the complex of b2-adrenergic receptor with a GPCR
kinase, combined with data from other methods, including chem-
ical crosslinking [181]. Interestingly, GPCRs solubilized in bicelles
yielded better sequence coverage in HDX-MSworkflows than those
solubilized in detergent [199]. The conformational dynamics of the
F0F1 ATP synthase during catalysis have also been studied by HDX-
MS using protein solubilized in inside-out membrane vesicles,
revealing that the rotor shaft is destabilized when pumping pro-
tons against a transmembrane gradient [194]. More recently, the
SMALP platform was implemented to study the rhomboid protease
GlpG in different lipid conditions, to identify regions of the protein
sensitive to the lipid environment [195].

The rate of HDX depends both on the chemical step of break-
ing and making NH and ND bonds, respectively, as well as the
probability than an NH will be solvent exposed. Whilst the intrin-
sic rate of HDX will depend on the dielectric constant of the envi-
ronment, for MPs the dominant determinant of the rate of HDX
will be solvent exposure, meaning that HDX-MS is well-suited
to study MP folding, and also motions even in complex lipid envi-
ronments [42,43,200]. One of the areas in which HDX has pro-
vided significant insights has been the field of protein folding
[200–203]. Application of HDX-MS to the study of MP folding
has been limited to date. However, recent work has used HDX-
MS complemented with HDX-NMR experiments to study the fold-
ing of E. coli OmpX into detergent [204]. However, deuterium
incorporation measured by MS was at the intact protein level,
while residue-specific information was obtained by NMR. Never-
theless, this study demonstrates the feasibility of using HDX-MS
as a method of probing MP folding.
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3.3. Hydroxyl radical footprinting

Generation of hydroxyl radicals (�OH) for hydroxyl radical foot-
printing (HRFP) of proteins can be achieved by a number of means,
including electrochemical methods, corona discharge methods and
Fenton chemistry [205,206]. However, present day experiments
are typically performed using synchrotron radiolysis or laser irra-
diation, as they permit the greatest temporal control of the radical
dose. Synchrotron radiolysis of water can be utilized to generate
�OH for reaction with the solvated protein in standard buffered
solutions without additives [207,208]. The length of the syn-
chrotron pulse can be used to control the time that the sample is
exposed to �OH, so that dose–response curves can be generated
over ms-ms ranges [47]. Alternatively, in fast photochemical oxida-
tion of proteins (FPOP), a protein solution is prepared in the pres-
ence of low concentrations of H2O2. Irradiation at 248 nm with a
pulsed laser leads to the generation of �OH that can react with sol-
vent accessible side-chains [209]. The presence of scavengers (glu-
tamine or histidine) tunes the lifetime of the �OH such that a
majority of the labelling reactions occur on timescales faster than
protein folding/unfolding (�1 ls) [209–211], although recent evi-
dence suggests that radicals may be longer-lived [212]. Alterna-
tively, the scavenger dose can be tuned to extend/reduce the
labelling pulse, allowing dose-response experiments to be per-
formed [213].

Characteristic modifications of +16 Da are typically detected
following FPOP or radiolysis experiments (other, less common
modifications are possible [214], e.g. +14 Da modifications as a
result of aldehyde/ketone formation). These modifications can be
quantified by LC-MS at either the peptide or residue level. Whilst
solvent accessibility is the primary driver of modification, different
side-chains also exhibit different reactivities, with the most reac-
tive being sulphur-containing (Cys and Met) and aromatic (Trp,
Tyr, Phe and His) residues (the reaction rates of the side-chains
with hydroxyl radicals span four orders of magnitude) [47,214].
Given that the modifications in HRFP experiments are covalent,
rigorous sample workups (e.g. protein precipitation, detergent
removal and addition of denaturants), and varied protease diges-
tion protocols (alteration of protein:protease ratios and digestion
), https://doi.org/10.1016/j.ymeth.2018.02.020
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Fig. 9. FPOP-MS analysis of OmpT solubilized in either DDM detergent micelles or
amphipol A8-35. Graphs show the % modified of four peptides in DDM (blue) or
amphipol (orange). Arrows show the residues modified in each case. Residues in the
extra-membrane region are more readily labelled in DDM, whilst residues at the
lower boundary of the trasmembrane region are more readily labeled in amphipol.
Figure is reproduced from Ref. [218]. (For interpretation of the references to color in
this figure legend, the reader is referred to the web version of this article.)
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times) can be utilized to maximize sequence coverage and thus the
information obtainable (unlike HDX where the labile nature of the
label makes this more challenging). This is particularly pertinent in
the study of MPs, which can be difficult to digest for LC-MS analy-
ses [189].

Typically, FPOP experiments involve flowing the sample of inter-
est through a capillarywhich is irradiatedwith a laser to induce �OH
formation. Coupling this fluidics setupwith rapid onlinemixing has
allowed the folding mechanisms of proteins to be studied (by initi-
ating folding on-line and irradiating at defined time-points there-
after). In the case of MPs, this has allowed the kinetic folding
mechanism of bacteriorhodopsin to be studied [215], and topology
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mapping/validation of MPs [216,217]. A comparative study also
investigated the difference in the solvent accessibility of the outer
membrane protein OmpT in amphipol A8-35 compared with the
detergent DDM [218]. This study revealed additional intermolecu-
lar contacts with the amphipol (Fig. 9), consistent with the known
abilities of amphipols to stabilize MPs compared with detergents
[219,220].

Ligand binding [221], conformational dynamics [222] and con-
formational changes [223,224] of MPs can also be studied using
synchrotron radiolysis HRFP. This method also has the advantage
of being able to study ordered water molecules in protein struc-
tures [225,226]. Such water molecules are particularly important
for MPs, as tightly bound water molecules in the membrane-
spanning regions of the protein will be activated upon irradiation
and thus label the protein in these regions (which would likely
not be accessible in FPOP experiments, as these require H2O2 to dif-
fuse to the labelling site).

More recently, in cell FPOP has emerged as a possibility
[227,228], with a modification of this approach being used to study
the conformation of the Cystic Fibrosis Transmembrane Conduc-
tance Regulator (CFTR) [229]. Excitingly, this opens up new possi-
bilities to obtain structural information on MPs in their native
environment by FPOP-MS.

3.4. Other chemical labelling methods

Other chemical labels with relatively promiscuous reactivities
have been developed to study the architecture of MPs. Recent work
has revealed that a small hydrophobic, trifluoromethyl aryl-
diazirine probe could be used to footprint the membrane spanning
regions of trimeric E. coli OmpF, with the trimerisation interface
remaining relatively unlabeled when compared with the remain-
der of OMP [230,231]. A complementary approach to label proteins
with trifluoromethyl radicals (�CF3) has also been described
recently [232]. Utilizing an FPOP platform, addition of NaCF3SO2

in addition to H2O2 prior to laser irradiation triggers a series of rad-
ical reactions that generate �CF3, which reacts with amino acid
side-chains. This approach is complementary to FPOP, as �CF3 labels
side-chains that are relatively unreactive with �OH. Application to
MPs again resulted in the observed modifications being localized
to the extra-membrane regions [232].

Other probes of solvent accessibility with increased residue
specificity, when compared with radical based labelling methods,
are also well-established [44]. Cys specific labelling has long been
employed in the study of MP structure [233]. In particular, detec-
tion and quantification of labelling of solvent-exposed Cys residues
by the Cys-specific reagent N-ethylmaleimide (NEM) using MS is a
widely used strategy to inform on the structural state of a MP
[234–238]. In one recent example, the conformational transitions
of the secondary active transporter Mhp1 was studied using
NEM-labelling detected by MS [239]. Mhp1 utilizes an alternating
access mechanism in its transport cycle, whereby the protein
adopts both inward- and outward- facing conformations, and has
a Cys residue in a defined position that is only exposed in the
inward-facing form [239]. Substrates were shown to switch the
conformational equilibrium of the protein, and point mutations
were studied in the ligand binding site, revealing that whilst some
abrogate binding others cause structural destabilization [239].

The solvent accessibility of Lys residues can be interrogated by
using succinic anhydride, which has been used to study the ligand
induced conformations of the b2 adrenergic receptor [237], or sulfo-
succinimidyl acetate, which has been used to study the interaction
of rhodopsin with the G protein transducin [240]. NHS-esters have
also been used to study the solvent accessibility of Lys residues (e.g.
so-called ‘dead-end’ (Fig. 7b) crosslinks formed during XL-MS
experiments) [40,41]. The reagent butane-2,3-dione can be used
), https://doi.org/10.1016/j.ymeth.2018.02.020
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to probe Arg accessibility, and has been used to study the conforma-
tional transitions in LacY, in combination with diisopropyl carbodi-
imide labeling of carboxyl groups [241]. Diethylpyrocarbonate
(DEPC) is also a commonly encountered modifying reagent, and
whilst it primarily targets His it also has the potential to react with
Lys, Arg, Tyr, Thr and Cys residues [242,243]. DEPC, along with all
other covalent labels, is able to provide restraints for integrative
modeling workflows, as exemplified in recent work on the F0F1
ATPase from spinach chloroplasts (in combination with XL-MS
data) [243]. In this work, the data were used as restraints in molec-
ular dynamics simulations to determine regions of the protein with
intrinsic flexibility and to study the conformational dynamics of the
peripheral stalk.

3.5. Discussion

When using labelling strategies to characterize MP structure
and conformational changes utilizing structural MS studies, the
labelling reagent(s) used must be carefully chosen. For example,
water soluble reagents can readily probe, and hence identify,
regions of a protein complex that are exposed to solvent, and more
lipophilic reagents can be used to modify residues buried within
the membrane [231]. Quantitative comparison of residue accessi-
bility in such cases can be misleading, however, if the reactivity
of the probe in the different environments is not already known
and hence calibrated. More generally, the timescales required for
many of the chemical reactions to reach a suitable yield are often
incompatible with motions on a biologically-relevant timescale.
In the case of XL and, indeed, most covalent labelling methods,
samples are often incubated with the reagents for up to 1 h
[26,38,41,174]. Given that many global motions of proteins occur
on the ms – ms timescale this significantly limits the conforma-
tional dynamics that can be investigated by such techniques, and
the information obtained often comprises distance restraints that
may be consistent with multiple conformations. Presently, this
remains a challenge for interpretation using computational meth-
ods, and it can be difficult, or impossible, to unpick conformational
families consistent with the data, the relative population of those
conformational families and the rates of their interconversion.
Here again, however, data from other methods, such as single
molecule Förster Resonance Energy Transfer (FRET) [244,245],
small angle X-ray scattering (SAXS) [246,247], and double elec-
tron–electron resonance (DEER) electron paramagnetic resonance
(EPR) [248], can provide independent information that comple-
ments MS data so that the two approaches can be used in synergy
(so-called ‘integrated structural biology’ [249]) to create molecular
models. This issue is not unique to MS footprinting methods, with
structural techniques such as NMR and cryo-EM also potentially
being resolution limited by dynamic averaging [13–15,250,251].
Powerful NMR methods, such as relaxation dispersion, however,
can provide structural, kinetic and thermodynamic information
about rare species in dynamic equilibrium, in favorable cases even
for large (MDa) protein complexes [250,251]. In the same vein, par-
ticle classification methods in cryo-EM can be used to tease out dif-
ferent protein structures within a dynamic ensemble provided that
each conformer is significantly represented so that medium to high
resolution data can be obtained [13–15].

In the case of FPOP labelling, the lifetime of the hydroxyl radi-
cals is in the order of ms [209–211]. Thus, online mixing can allow
conformational dynamics in response to ligand binding or another
stimulus to be probed on stopped-flow (ms) timescales [252,253].
Such methods have enabled MP folding to be monitored [215].
These fast reacting functional groups have recently been extended
further to include diazirines which are also activated by laser irra-
diation [230,231]. This approach has the advantage that the diazir-
ine probes used are membrane permeable, as shown by a recent
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study in which the majority of modifications were shown to be
located in the transmembrane region of the MP, OmpF [231].
Hence, this diazirine is unique amongst the reagents shown to be
suitable for footprinting of MPs.

In the case of HDX, the timescales accessible are limited by back
exchange, in which the deuterium labels introduced are exchanged
with protons from the bulk solvent during sample workup (an
issue that is not encountered using the covalent labelling methods
discussed above). Moreover, the time required for mixing with
deuterated solvents means that labelling times lower than a sec-
ond are unachievable using manual (and most automated) meth-
ods. Stopped-flow and microchip devices can be used to shorten
the labelling pulse, significantly reducing the timescales accessible
to HDX-MS, however, such devices remain non-routine [203,254].

Finally, it should be borne in mind that methods which require
covalent modification of a protein of interest may trap artificial,
non-native, protein conformations, for example if modification of
an amino acid induces a conformational change and formation of
a conformer not formed by the unmodified sequence. While there
is evidence that XL of proteins does not globally impact their struc-
ture, some local changes have been reported [255]. It is important
that this be kept in mind when analyzing any data, but given the
resolution of the distance constraints often obtained from XL-MS
(Ca-Ca distances typically in the order of 30 Å, depending on the
XL reagent used) [256], it is not clear that this is a significant con-
cern. Moreover, the population of modified (relative to unmodi-
fied) residues is often low, especially in FPOP, meaning that any
structural perturbations are likely to be difficult to detect. In any
case, for FPOP given that the labelling pulse (ms) is over before
any major structural changes can occur this potential concern is
probably immaterial [209–211]. However, if conformational
changes upon modification are suspected (e.g. in the case of
dynamic systems), these could be assessed in control experiments,
for example by IMS-MS or HDX analyses of the covalently modified
proteins, or by NMR, as previously conducted for the water soluble
proteins carbonic anhydrase and alcohol dehydrogenase 1 [255].
What is clear is that covalent labeling of proteins monitored quan-
titatively by MS is now an essential part of a structural biologists
toolkit, able to provide important information in residue-specific
detail on the nature of protein structures, their dynamics, binding
and folding/unfolding transitions. Further development of reagents
with enhanced chemical properties (e.g. faster reaction rates) will
expand the repertoire of conformational changes of water soluble
proteins and MPs that can be studied by footprinting MS methods
and the range of biological questions which can be addressed.
4. Conclusions and outlook

Significant advances have been made in the study of MPs by
structural MS methods. In particular, work to determine the opti-
mal amphiphiles to be used, and the suitability of membrane discs
for MS analyses has been essential. Despite these successes, inte-
grating the range of data obtained by MS into a structural model
can be complex, especially for dynamic systems, wherein model
building guided by computer simulations is an essential compo-
nent of the MS toolkit. Nevertheless, advancements in these areas
have been many-fold over recent years, paralleled by impressive
advancements in instrument design. Moreover, the integration of
MS data with those from other structural methods, including
cryo-EM and NMR, presents an opportunity to study increasingly
complex systems using an integrative structural biology approach.

The future potential of in-cell MS methods is also an exciting
and growing area of MS capability. The use of XL-MS to investigate
the interaction networks of proteins, and the structure of assem-
blies in cells, along with FPOP to study conformation and confor-
), https://doi.org/10.1016/j.ymeth.2018.02.020
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mational changes, remain areas wherein significant advances are
likely to be made in the months and years ahead. Such analyses
will enable MPs to be studied directly in cellular membranes,
rather than in vitro and in reconstituted systems. Given that the
native membrane surrounding a MP in vivo is highly complex,
and much more so than in reconstituted systems, this represents
a significant advantage for MS over other approaches, especially
given that the composition, lateral structure and thickness of each
membrane (cellular and organellar) differs. To this end, further
exploitation of MPs solubilized in SMALPs (that have been directly
excised from the membrane along with endogenous lipids) pro-
vides an exciting opportunity to study MPs by MS in a near-
native lipid environment.

Structural biology is increasingly becoming integrative [249], in
that information from a range of complementary techniques is
combined to not only determine the structure of a protein/assem-
bly, but also to interrogate conformational dynamics and study
other motions important for function. Rapid developments in
instrumentation and methodologies to date, together with pro-
mises for future advances, guarantee that MS will remain an inte-
gral component of the structural biology toolkit, that is sure to
reveal the secrets of how MPs perform the vast array of functions
and interactions essential for life.
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