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Non-Shannon inequalities in the entropy vector approach to causal structures

Mirjam Weilenmann∗ and Roger Colbeck❸

Department of Mathematics, University of York, Heslington, York, YO10 5DD, UK.
(Dated: 6th October 2017)

A causal structure is a relationship between observed variables that in general restricts the possible
correlations between them. This relationship can be mediated by unobserved systems, modelled by
random variables in the classical case or joint quantum systems in the quantum case. One way to
differentiate between the correlations realisable by two different causal structures is to use entropy
vectors, i.e., vectors whose components correspond to the entropies of each subset of the observed
variables. To date, the starting point for deriving entropic constraints within causal structures
are the so-called Shannon inequalities (positivity of entropy, conditional entropy and conditional
mutual information). In the present work we investigate what happens when non-Shannon entropic
inequalities are included as well. We show that in general these lead to tighter outer approximations
of the set of realisable entropy vectors and hence enable a sharper distinction of different causal
structures. Since non-Shannon inequalities can only be applied amongst classical variables, it might
be expected that their use enables an entropic distinction between classical and quantum causal
structures. However, this remains an open question.

We also introduce techniques for deriving inner approximations to the allowed sets of entropy
vectors for a given causal structure. These are useful for proving tightness of outer approximations
or for finding interesting regions of entropy space. We illustrate these techniques in several scenarios,
including the triangle causal structure.

I. INTRODUCTION

A common challenge in science is to make predictions
based on incomplete information. Full details of the
mechanism by which correlations between two or more
variables come about is often not apparent and there may
be several competing causal explanations. Experimenta-
tion with interventions is one way to decide between the
candidate explanations [1]. However, in many situations
such intervention is difficult (or unethical), for instance
if certain involved systems are outside our control.

Considering a particular causal structure generally im-
poses restrictions on the set of correlations that can be
produced. A well-known example of such a constraint
is a Bell inequality [2]. That such relations can be vio-
lated using measurements on quantum states motivates
the consideration of more general quantum causal struc-
tures. Correlations that can be generated in such struc-
tures but not in their classical analogue are the basis for
several important cryptographic tasks [3], in particular
for device-independent protocols for key distribution [4–
7] or the generation of private randomness [8–11]. In
a cryptographic scenario, an adversary is usually able to
exert influence at particular points in the protocol, which
can be conveniently encoded using a causal structure.
Characterising the set of possible classical, quantum and
post-quantum correlations within a specific causal struc-
ture provides a basis to understand further tasks and
possible quantum and post-quantum advantages, which
were initially studied in specific cases [12–16].
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For a general causal structure with unobserved vari-
ables, deciding whether a given set of correlations can be
generated is computationally difficult and only feasible
for small examples [17, 18]. One way to get around this,
is to use entropy to simplify the characterisation of the
corresponding sets of correlations [19–30]. Rather than
looking at the distributions themselves, we consider en-
tropy vectors whose components are the joint entropies
of each subset of the observed variables. This often1 has
the advantage that the set of entropies realisable in a
given causal structure is convex, in contrast to the set
of compatible distributions. In addition, the causal con-
straints can be represented by linear relations between
entropies instead of polynomial constraints. It is also sig-
nificant that entropic constraints on possible correlations
in a causal structure are independent of the dimension
of the involved random variables. Hence, the method
enables the derivation of constraints that are valid for
arbitrarily large alphabet sizes of all involved observed
and unobserved systems. These properties make entropy
vectors a convenient means to distinguish different causal
structures in many situations.
In this paper we report the use of non-Shannon in-

equalities for distinguishing causal structures. After a
short outline of the entropy vector approach and after
introducing the necessary notation in Section II, we go
on to show in Section III that non-Shannon inequalities
play a central role for the distinction of causal structures.
This is illustrated with the triangle causal structure (Sec-
tion IIIA), one of the simplest causal structures in which

1 For classical causal structures, the set is always convex, but for
quantum causal structures it is not known whether this is always
the case.
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there is a separation between classical and quantum at
the level of correlations. For this example, we present
numerous new entropic constraints, which involve several
infinite families of valid inequalities, that together form
the tightest entropic characterisation of the classical tri-
angle causal structure known to date. This also leads us
to disprove a claim that previously known entropic ap-
proximations to this causal structure were tight [22, 26].
Whether our new inequalities are sufficient to separate
classical and quantum versions of causal structures is left
as an open problem.
In Section III B, we analyse a number of other causal

structures, taking into account non-Shannon inequalities
for their entropic characterisation. These inequalities are
relevant for distinguishing different classical causal struc-
tures as well as for settling the question of whether there
is a classical-quantum separation in the entropy vector
approach.
We further analyse the role of non-Shannon inequali-

ties for the entropic characterisation of the causal struc-
ture relevant in the context of information causality [31]
in Section III C, where the combination of non-Shannon
inequalities with post-selection allows us to derive nu-
merous new entropy inequalities.
In Section IV, we provide the first inner approxima-

tions to the entropy cones of causal structures. These
are useful for certifying that particular entropy vectors
are realisable in a causal structure as well as for showing
that for certain entropy cones we have fully characterised
their boundary with linear constraints, e.g. for some of
the causal structures analysed in Section III B. In scenar-
ios where this is not the case, we find inner approxima-
tions that share extremal rays with our outer approxi-
mations, which allows us to identify regions of the true
entropy cone as well as those regions where identifying
the cone’s actual boundary requires further analysis.
For comparison with the classical case, we also briefly

consider non-Shannon inequalities in the context of quan-
tum and hybrid causal structures in Section V, which is
illustrated with the example of the triangle causal struc-
ture, before concluding in Section VI.

II. ENTROPIC CONES AND THE ENTROPY
VECTOR APPROACH TO CAUSAL

STRUCTURES

In this section, we briefly outline the entropy vector
approach and introduce the required notation. An elab-
orate introduction to the topic can for instance be found
in the review [32].

A. Entropic cones

For a set of n jointly distributed random variables Ω ={X1, X2, . . . ,Xn} taking values in the alphabet XΩ =X1 × X2 × ⋯ × Xn we denote the set of all possible joint

probability distributions as Pn. For a set of variables
with joint distribution PΩ ∈ Pn its Shannon entropy [33]
is

H(Ω) ∶= − ∑
x∈XΩ

PΩ(x) log2 (PΩ(x)).
The Shannon entropy of Ω and of all its subsets can be
expressed in an entropy vector,

H(P ) ∶= (H(X1), H(X2), . . . , H(Xn),H(X1X2),
H(X1X3), . . . , H(X1X2 . . . Xn)) ∈ R2n−1.

The closure of the set of all possible entropy vectors, Γ∗n,
is a convex cone, denoted as Γ∗n [34].2 While for n ≤ 3, the
entropy cone Γ∗n is polyhedral 3 [35], an infinite number

of linear inequalities are required to characterise Γ∗n for

n ≥ 4 [36]. Hence, considering approximations to Γ∗n is
common practice.

1. Approximations to Γ∗n

Before specifying approximations to Γ∗n, we define a
few quantities, that are relevant in the following. The
conditional entropy of two disjoint subsets XS , XT ⊆ Ω
is defined as

H(XS ∣XT ) ∶=H(XS ∪XT ) −H(XT )
and for three mutually disjoint subsets XS , XT , XU ⊆ Ω
the conditional mutual information of XS and XT con-
ditioned on XU is

I(XS ∶XT ∣XU) ∶=H(XS ∣XU) −H(XS ∣XT ∪XU).
Note that the entropy of the empty set is H(∅) = 0,
so that H(XS) = H(XS ∣ ∅), for example. Two other
entropic quantities we will make use of in this article
are the interaction information [37] of three mutually
disjoint subsets XS , XT , XU ⊆ Ω,

I(XS ∶XT ∶XU) ∶= I(XS ∶XT ) − I(XS ∶XT ∣XU),
and the Ingleton quantity of four mutually disjoint sub-
sets XS , XT , XU , XV ⊆ Ω,
IING(XS ,XT ;XU ,XV ) ∶= I(XS ∶XT ∣XU)
+ I(XS ∶XT ∣XV ) + I(XU ∶XV ) − I(XS ∶XT ). (1)

For any entropy vector of a joint distribution of the
random variables Ω the following Shannon inequalities
hold:

2 The closure is taken because there isn’t in general a good reason
to put an upper bound on the alphabet sizes and it is known
that Γ∗n ≠ Γ∗n for n ≥ 3 [34].

3 In fact Γ∗
3
equals the corresponding Shannon cone, Γ3, intro-

duced below.
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❼ For any XS ⊆ Ω, H(XS) ≥ 0.
❼ For any disjoint XS , XT ⊆ Ω, H(XS ∣XT ) ≥ 0.
❼ For any disjoint XS , XT , XU ⊆ Ω,
I(XS ∶XT ∣XU) ≥ 0.

They are known to constrain a convex polyhedral cone,
the Shannon cone, Γn [38]. Because the Shannon inequal-

ities hold for any entropy vector we have Γ∗n ⊆ Γn.
The first entropy inequality that is not of Shannon type

was found in [34] and is presented in the following.

Proposition 1 (Zhang & Yeung). For any four discrete
random variables X1, X2, X3 and X4 the following in-
equality holds:

I(X1 ∶X2∣X3) + I(X1 ∶X2∣X4) + I(X3 ∶X4) − I(X1 ∶X2)
+I(X1 ∶X3∣X2) + I(X2 ∶X3∣X1) + I(X1 ∶X2∣X3) ≥ 0.

In the following the lhs of this inequality is abbreviated
as ◇X1X2X3X4

.

The first account of infinite families of inequalities was
given in [36].

Proposition 2 (Matúš). Let X1, X2, X3 and X4 be
random variables and let s ∈ N. Then the following in-
equalities hold:

s[I(X1 ∶X2∣X3)+I(X1 ∶X2∣X4)+I(X3 ∶X4)−I(X1 ∶X2)]

+I(X1 ∶X3∣X2)+s(s+1)
2
[I(X2 ∶X3∣X1)+I(X1 ∶X2∣X3)]≥0,

(2)

s[I(X1 ∶X2∣X3)+I(X1 ∶X2∣X4)+I(X3 ∶X4)−I(X1 ∶X2)]
+ s [I(X2 ∶X3∣X1) + I(X1 ∶X2∣X3)] + I(X1 ∶X3∣X2)

+ s(s − 1)
2

[I(X2 ∶X4∣X1) + I(X1 ∶X2∣X4)] ≥ 0.
(3)

For s = 1 both inequalities are equivalent to◇X1X2X3X4
≥ 0. For the current state of the art on

non-Shannon inequalities we refer to [39]. To our knowl-
edge, all known non-Shannon entropy inequalities in four
variables that are not (known to be) rendered redun-
dant by tighter ones can be written as the sum of the
Ingleton quantity and (conditional) mutual information
terms [35, 36, 39–42].

Complementary to outer approximations (such as the
Shannon cone, Γn) it is also interesting to consider inner

approximations, ΓI
n, to the n-variable entropy cone Γ∗n.

Such approximations can be defined in terms of so-called
linear rank inequalities. In the case of n = 4 the Shannon
inequalities and the Ingleton inequality, i.e.,

IING(X1,X2;X3,X4) ≥ 0 (4)

(and its permutations), define such an inner approxima-
tion ΓI

4 [43]. ΓI
5 is defined by the Shannon inequalities,

all instances of the Ingleton inequality and 24 additional
classes of inequalities [44]. For 6 or more variables, a
complete list of all linear rank inequalities is not known,
and it is even unknown whether such a list of inequali-
ties would be finite. A list of over a billion inequalities
(counting permutations) has been found [45].4

B. The entropy vector approach to causal
structures

A causal structure, C, is a set of variables arranged
in a directed acyclic graph (DAG). The parents, X↓1 , of
a variable X in a DAG are the variables from which an
arrow is directly pointing at X, and the descendants, X↑
of X are all variables that may be reached from X along
a directed path within the DAG. We use CC and CQ to
denote the classical and the quantum version of a causal
structure respectively.

1. Classical causal structures

The graph of a classical causal structure, CC, with
random variables X1, X2, . . . , Xn, encodes the inde-
pendence relations of X1, X2, . . . , Xn in the sense that
the distribution PX1X2...Xn

is said to be compatible with
CC if it can be decomposed as

PX1X2...Xn
=∏

i

P
Xi∣X↓1i .

This interpretation of classical causal structures follows
the theory of Bayesian networks [1]. The set of all com-
patible distributions is in the following denoted P(CC).
The compatibility requirement is equivalent to the con-
dition that for each variable Xi,

I(Xi ∶X� ∣X↓1i ) = 0. (5)

X�i denotes the non-descendants of Xi, i.e., all variables
in the causal structure except for the variable itself and
its descendants. 5

The entropic description of causal structures has first
been considered in [19, 21]. The n equalities (5) restrict

the n-variable entropy cone Γ∗n to the cone of all entropy

vectors compatible with CC, denoted Γ∗ (CC). An outer

approximation to Γ∗(CC) is constructed by supplement-
ing Γn with the same n equalities, which leads to the
cone Γ (CC).

4 Note that we can always obtain some inner approximations with
other methods, e.g., by constructing a set of achievable entropy
vectors and taking their convex hull.

5 In particular, all other (conditional) independence relations of
variables in the causal structure are implied by these n equalities.
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When k out of the n variables of CC are observed,
we take these to be the first k variables, X1,X2, . . . ,Xk,
without loss of generality. For k < n we are then in-
terested in deriving constraints for the observed vari-
ables only. For a compatible distribution, PX1X2⋯Xn

∈
P (CC), this is achieved by marginalising over the unob-
served variables Xk+1,Xk+2, . . . ,Xn which yields a dis-
tribution in the set of all compatible marginal distribu-
tions PX1X2⋯Xk

∈ PM (CC). Entropically, marginalisa-
tion corresponds to a projection of the entropy cone to
the corresponding k-variable marginal cone Γ∗M (C

C) ⊊
R

2k−1, which would be obtained by dropping all com-
ponents involving any of the n − k unobserved variables
from each vector in Γ∗ (CC). The outer approximation

Γ (CC) can be analogously projected to an approxima-

tion, ΓM (CC), of Γ∗M (C
C). Computationally, ΓM (CC)

is usually found by considering Γ (CC) characterised by
means of bounding hyperplanes and applying a Fourier-
Motzkin elimination algorithm to the system of linear
inequalities [46].

2. Quantum causal structures

A quantum causal structure CQ differs from its classi-
cal analogue in that the unobserved nodes correspond to
quantum systems. Here, we only consider causal struc-
tures with two generations of nodes, where the nodes
of the first generation are unobserved quantum systems
whereas the nodes of the second generation represent ob-
served (classical) variables. Note that this also allows for
the description of causal structures with observed input
nodes, as is illustrated in Figure 1.
For such causal structures, each edge has an associ-

ated Hilbert space, which can be labelled by the parent
and child, e.g., for a DAG with an edge X → Y , there
is an associated HXY

. Each unobserved node is labelled
by a quantum state, a density operator on the tensor
product of the Hilbert spaces associated with the edges
originating at that node. For each observed node there
is an associated POVM that acts on the tensor product
of the Hilbert spaces associated with the edges that meet
at that node. The distributions of the observed vari-
ables that are compatible with a causal structure CQ,
P ∈ PM (CQ), are those resulting from performing the
specified POVMs on the relevant systems via the Born
rule.
A technique to analyse these sets entropically was pro-

posed by Chaves et al. [26] and is outlined in the follow-
ing, where the idea of considering entropy cones of multi-
party quantum states goes back to Pippenger [47]. The
set of compatible observed distributions P ∈ PM (CQ)
can be mapped to a set of compatible entropy vectors, the
closure of which is denoted Γ∗M (C

Q). To approximate
this set, a system is assigned to each observed variable as
well as to each outgoing edge of each unobserved node.
As opposed to the classical case, where we can always

(a)
X2

X1

(b)
X2

X1

A

Figure 1. For a quantum causal structure with an observed
input node, X1—meaning a parentless node from which there
is only one arrow to another observed node, X2—there al-
ways exists another (quantum) causal structure that allows
for exactly the same correlations and where the observed in-
put is replaced by a shared quantum parent of X1 and X2.
To simulate any correlations in (a) within scenario (b) we can
use a quantum system that sends perfectly correlated classi-
cal states to both nodes X1 and X2, distributed as X1. On
the other hand, any correlations obtained in scenario (b) can
be created in scenario (a) by having a random variable X1

sent to node X2, where the relevant quantum states (the re-
duced states that would be present in (b) conditioned on the
value of X1) are locally generated. Note that these consid-
erations are not restricted to quantum causal structures but
apply also in the classical case (or even if considering states
from a generalised probabilistic theory).

define a joint distribution over all variables in a causal
structure CC, there is in general no joint quantum state
over all systems in CQ. In particular, the systems cor-
responding to the edges that meet at an observed node
do not coexist with the outcome at that node and hence
there is no joint quantum state from which a joint en-
tropy could be derived. The approach is therefore based
on a notion of coexistence: two systems are said to coexist
if neither is a quantum ancestor of the other in CQ, and
a set of systems that pairwise coexist form a coexisting
set. For each coexisting set, XS ⊆ Ω, the von Neumann
entropy H(XS) ∶= − tr(ρXS

log2 ρXS
) of their joint state

ρXS
is defined; all of these von Neumann entropies are

considered as components of an entropy vector.

For each coexisting set the entropies of all its sub-
sets as well as all conditional mutual informations of its
systems are positive [48]. The conditional entropy may
not be positive in general, but for three mutually dis-
joint subsets of a coexisting set, XT , XU , XV ⊆ XS ,
H(XT )+H(XU) ≤H(XT ∪XV )+H(XU ∪XV ) holds in-
stead. These three types of inequality hold for the com-
ponents of any entropy vector. For the von Neumann
entropy of a multi-party quantum state no additional
entropy inequalities are known. It has been suggested,
however, that any classical ‘balanced entropy inequal-
ity’ [49] (which includes all known non-Shannon inequal-
ities) may also hold for multi-party quantum states [50].
It is worth remarking that the lack of a joint state for all
nodes within a quantum causal structure would restrict
the applicability of such inequalities in the causal context
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if they were to hold.6

In many circumstances the conditional entropy of cer-
tain sets of systems is known to be positive, e.g. if all
systems in a coexisting set are classical. Such constraints
on the entropy vectors are also added (cf. [32] for further
details). The causal restrictions encoded in the graph are
accounted for by the condition that two subsets of a coex-
isting set are independent (and hence have zero mutual
information between them) if they have no shared an-
cestors.7 To relate the entropies of systems in different
coexisting sets, data processing inequalities (DPIs) are
used: Let ρXSXT

∈ S(HXS
⊗HXT

) and E be a completely
positive trace preserving (CPTP) map on S(HXT

) lead-
ing to a state ρ′XSXT

. Then

I(XS ∶XT)ρ′
XSXT

≤ I(XS ∶XT)ρXSXT
. (6)

Results on the redundancy of certain DPI have been pre-
sented in [32]. All constraints on the possible entropy
vectors taken together define a polyhedral cone, which we
denote Γ (CQ). Its projection to the observed variables,

ΓM (CQ), is an outer approximation to Γ∗M (C
Q), that

can be computed from Γ (CQ) with a Fourier-Motzkin
elimination algorithm [46].

III. IMPROVING CURRENT ENTROPIC
CHARACTERISATIONS WITH NON-SHANNON

INEQUALITIES

In this section we show how non-Shannon inequali-
ties allow us to improve the previous outer approxima-
tions to the entropy cones of classical causal structures.
We give an improved entropic description of the triangle
causal structure of Figure 2(e) (Section IIIA), discuss
the application of non-Shannon inequalities to further
causal structures (Section III B) and demonstrate that
non-Shannon inequalities are also applicable in combina-
tion with post-selection using information causality as an
example (Section III C).
The computational procedure that we use in order to

derive these new inequalities is roughly outlined in the
following. (1) We take the Shannon inequalities for the
joint distribution of all variables in a causal structure
CC, (2) we add a set of valid non-Shannon inequalities to
these, (3) we add all conditional independence equalities
that are implied by CC, (4) we eliminate all entropies of
unobserved variables from the full set of inequalities (by
means of a Fourier-Motzkin elimination algorithm [46]),

6 In the triangle causal structure, for instance, even if the known
non-Shannon inequalities held for arbitrary quantum states, they
would not allow us to derive any new entropy inequalities for the
quantum version of this causal structure.

7 Since a node and its (quantum) ancestors never coexist, con-
ditional inependences don’t have to be taken into account in
two-generation causal structures.

(a)
X Y

Z

(b)
X Y

Z

A

(c)
X Y

Z

A

(d)
X Y

Z

AB

(e)
X Y

Z

AB

C

Figure 2. Assuming no ancestral relations between any of
the three observed variables X, Y and Z (i.e., no member of
{X,Y,Z} is an ancestor of any other), the above are the only
possible causal structures (up to relabelling). A, B and C

correspond to unobserved variables.

which leads to constraints on the entropies of the ob-
served variables only.
Note that the same procedure, but missing out step (2)

corresponds to the computation of ΓM(CC) as in [19, 21,
23] and outlined in Section II B 1. Thus, the inclusion of
(2) is responsible for the new constraints. In addition
to deriving entropy inequalities computationally, we also
provide analytic derivations of (infinite families of) new
inequalities.

A. Improved outer approximation to the entropy
cone of the classical triangle scenario

The triangle causal structure, called C3, is one of the
simplest examples with interesting features [22, 24, 26,
51, 52]. It may represent a situation where three parties
make observations, X, Y and Z respectively, on systems,
A, B and C, that are shared between two parties each.
This may for instance be realised in a communication
protocol where three parties aim to obtain (correlated)
data without ever having interacted as a group but after
having previously shared systems pairwise.
C3 is one of only five distinct causal structures involv-

ing three observed random variables that exhibit no an-
cestral relations among the observed variables (cf. Fig-
ure 2). All except for the causal structures (c) and (e)
may be distinguished by looking at independences among
the observed variables, X, Y and Z, listed in Table I.
However, while the causal structure of Figure 2(c) does
not impose any restrictions on the compatible PXY Z ,
the distributions that are compatible with the triangle
causal structure obey additional constraints [25].8 This
illustrates that causal structure encodes more than the
observed independences.

8 For instance, perfectly correlated bits X, Y and Z, i.e., those
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Causal

Structure
Compatible Distributions

Observed

Independence

(a) PXY Z = PXPY PZ

I(X ∶ Y Z) = 0
I(Y ∶ XZ) = 0
I(Z ∶XY ) = 0

(b) PXY Z = ∑
A

PXPY ∣APZ∣APA I(X ∶ Y Z) = 0

(c) PXY Z = ∑
A

PX∣APY ∣APZ∣APA None

(d) PXY Z = ∑
A,B

PX∣BPY ∣APZ∣ABPAPB I(X ∶ Y ) = 0

(e) PXY Z = ∑
A,B,C

PX∣ACPY ∣ACPZ∣ABPAPBPC None

Table I. Distributions compatible with the three-variable
causal structures displayed in Figure 2.

X Y

Z

AB

C

AY

AZ

BX

BZ

CX CY

Figure 3. Triangle causal structure C3. Three observed ran-
dom variables X, Y and Z have pairwise common causes. In
the classical case these common causes are random variables,
A, B and C, while in the quantum case these are replaced by
quantum systems, (AY, AZ), (BX, BZ) and (CX, CY).

Furthermore, C3 is unique among these five causal
structures, it being the only one that features quan-
tum correlations that are not classically reproducible,

i.e., PM (CC
3 ) ⊊ PM (CQ

3 ), this uniqueness was proven

in Ref. [52] (see Section VA for further details regarding
the quantum scenario). 9

In the following, we derive new and improved outer
approximations to Γ∗M(CC

3 ) by using non-Shannon en-
tropy inequalities. These show that the Shannon approx-
imation to Γ∗M(CC

3 ) is not tight, i.e., that Γ∗M(CC
3 ) ⊊

ΓM(CC
3 ). We remark that our findings contradict the

considerations of [22, 26], which together argue that in
the marginal scenario there is no separation between
the Shannon cone and the classical entropy cone, i.e.,
they argue that ΓM(CC

3 ) = Γ∗M(CC
3 ), which would im-

ply that non-Shannon inequalities are irrelevant.10 For
further discussion of the discrepancy with [22, 26], see
Appendix A.
The set of all observed distributions compatible with

CC
3 is11

PM (CC
3 ) =

⎧⎪⎪⎨⎪⎪⎩PXY Z ∈ P3 ∣

PXY Z = ∑
A,B,C

PAPBPCPX ∣BCPY ∣ACPZ∣AB

⎫⎪⎪⎬⎪⎪⎭ .
The compatible entropy vectors are,

Γ∗M (CC
3 ) = {v ∈ R7

≥0 ∣ ∃P ∈ PM (CC
3 ) s.t. v =H(P )} ,

and Γ∗M (CC
3 ) is a convex cone (cf. [32]).

The Shannon outer approximation,

ΓM (CC
3 ) = {w ∈ Γ3 ∣MM (CC

3 ) ⋅w ≥ 0} ,
was explicitly computed by Chaves et al. [22, 26],12 where
MM (CC

3 ) is the coefficient matrix of the following three
equivalence classes of inequalities (where permutations of
X, Y and Z lead to a total of 7 inequalities):13

with joint distribution

PXY Z(x, y, z) =
⎧⎪⎪⎨⎪⎪⎩

1
2

x = y = z
0 otherwise,

(7)

are not achievable in this causal structure. This is not only true
classically, but also in any generalised probabilistic theory [24,
25].

9 In structures (a), (b) and (c) all joint distributions are allowed
for the variables that share a common cause in the classical case.
Hence, quantum systems do not enable any stronger correlations.
This can also be seen as for any quantum state ρA shared at
A and measured later the correlations can be classically repro-
duced if A sends out the same classical output statistics to the
parties directly. In structure (d) no non-classical quantum cor-
relations exist either [52]. This is also fairly intuitive: the quan-
tum measurements performed at X and Y could be equivalently
performed at the sources B and A respectively, such that these
sources distribute cq-states of the form ∑x PX(x) ∣x⟩⟨x∣ ⊗ ρxBZ

and ∑y PY (y) ∣y⟩⟨y∣ ⊗ ρ
y
AZ

instead. The same correlations can

be achieved classically by taking random variables B = X and

A = Y (these being distributed according to PX and PY ). Since
ρxBZ

and ρ
y
AZ

are functions of X and Y , the statistics formed by

measuring such states can be computed classically via a prob-
abilistic function (this function could be made deterministic by
taking B = (X,W ), where W is distributed appropriately).

10 The details of this are in the Supplementary Information of [26].
11 Note that this set is not convex, which can be seen by considering

the perfect correlations PXY Z of (7) (which are not in PM (CC
3 ))

as a convex combination of the distribution where X, Y and Z

are always 0 and the distribution where X, Y and Z are always
1 (both of which are).

12 The outer approximation obtained from all six variable Shan-
non inequalities and the conditional independence equalities (5),
which are in this case I(A ∶ BCX) = 0, I(X ∶ AY Z ∣ BC) = 0
and appropriate permutations.

13 Recall that an explicit linear description of their entropy cone is
generally only available for causal structures with up to three
nodes. In particular, such a description is not available for
Γ∗ (CC

3 ), which involves six nodes. Hence, it is impossible to di-

rectly compute Γ∗M (CC
3 ) with a variable elimination algorithm.
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−H(X) −H(Y ) −H(Z) +H(XY ) +H(XZ) ≥ 0,
−5H(X) − 5H(Y ) − 5H(Z) + 4H(XY ) + 4H(XZ) + 4H(Y Z) − 2H(XY Z) ≥ 0,
−3H(X) − 3H(Y ) − 3H(Z) + 2H(XY ) + 2H(XZ) + 3H(Y Z) −H(XY Z) ≥ 0.

(8)

We now show that tighter outer approximations of the
set of achievable entropy vectors in the marginal sce-
nario of the triangle, Γ∗M (CC

3 ), can be derived by us-
ing non-Shannon type inequalities. However, there are
infinitely many such linear entropy inequalities. To re-
strict the number of inequalities to be considered, the
following reasoning can be applied. As mentioned in Sec-
tion IIA, all known non-Shannon entropy inequalities for
four variables can be written as the sum of the Ingleton
quantity (1) and (conditional) mutual information terms.
Since the latter are always positive, any non-Shannon in-
equality is irrelevant (i.e., implied by existing ones) if
the causal restrictions imply that the Ingleton term is
non-negative. This significantly reduces the choices of
variable sets for which the known additional inequalities
may be relevant.

Example 1. Consider Proposition 1 with
(X1, X2, X3, X4) = (A, B, C, X). The corre-
sponding inequality is

I(A ∶ B∣C) + I(A ∶ B∣X) + I(C ∶X) − I(A ∶ B)
+I(A ∶ C ∣B) + I(B ∶ C ∣A) + I(A ∶ B∣C) ≥ 0.

Whenever a causal structure CC implies I(A ∶ B) = 0, i.e.,
independence of A and B, the above inequality is implied
by the Shannon inequalities and the independence con-
straint I(A ∶ B) = 0. Hence it cannot improve our outer
approximation.

The following proposition restricts the permutations of
each non-Shannon inequality that may be relevant for the
derivation of our improved approximations to Γ∗M (CC

3 ).
Proposition 3. Consider an entropy inequality on four
variables that enforces the non-negativity of a positive lin-
ear combination of the Ingleton quantity (1) and (con-
ditional) mutual information terms. This inequality is
implied by the Shannon inequalities and the conditional
independences of CC

3 (i.e., I(A ∶ XBC) = 0, I(X ∶
Y ZA∣BC) = 0 and appropriate permutations) for all
choices of four out of the six involved random variables,
except

(X1, X2) (X3, X4) = (X, Y ) (Z, C)
= (X, Z) (Y, B)
= (Y, Z) (X, A) ,

up to exchange of X1 and X2 or exchange of X3 and X4.

All known irredundant non-Shannon inequalities sat-
isfy the conditions of this proposition. Note also that
the application of non-Shannon inequalities to subsets
of four out of the six random variables in CC

3 does not

encompass all possible applications of these inequalities.
Specifically, each inequality can also be applied to sets of
five or to all six random variables, where the joint distri-
bution of some sets of two or three random variables are
interpreted as those of one of the four random variables
in the non-Shannon inequality. We have not looked into
such configurations.

Proof. For four random variables X1, X2, X3 and X4,
the Ingleton inequality

I(X1 ∶X2∣X3) + I(X1 ∶X2∣X4) + I(X3 ∶X4)
− I(X1 ∶X2) ≥ 0 (9)

can be equivalently rewritten in four more ways with the
following equalities:

I(X1 ∶X2∣X3) − I(X1 ∶X2) = I(X1 ∶X3∣X2) − I(X1 ∶X3)
= I(X2 ∶X3∣X1) − I(X2 ∶X3),

I(X1 ∶X2∣X4) − I(X1 ∶X2) = I(X1X4∣X2) − I(X1 ∶X4)
(10)

= I(X2 ∶X4∣X1) − I(X2 ∶X4).
For the inequality (9) not to be implied by the Shannon
inequalities and the conditional independences we need
X1, X2, X3 and X4 to be such that

I(X1 ∶X2) > 0,
I(X1 ∶X3) > 0,
I(X1 ∶X4) > 0, (11)

I(X2 ∶X3) > 0,
I(X2 ∶X4) > 0,

hold simultaneously. If the conditional independences
of CC

3 imply that one of these mutual informations is
zero then the Ingleton inequality can be expressed as a
positive linear combination of (conditional) mutual infor-
mation terms in one of its five equivalent forms and the
corresponding non-Shannon inequality is redundant.

For the five constraints (11) to hold simultaneously,
X1 and X2 have to be correlated with one another as
well as with two further variables. This excludes the
independent sources A, B and C as candidates forX1 and
X2; therefore X1, X2 ∈ {X, Y, Z}. Furthermore, the
variables X3 and X4 have to be correlated with both, X1

and X2. This excludes the two variables in {A, B, C}
that do not lie between X1 and X2 in CC

3 . Hence, for
each choice of X1 and X2, the variables X3 and X4 have
to be chosen as the remaining element of {X, Y, Z} and
the variable positioned opposite it in CC

3 .
In summary, (X1, X2) (X3, X4) can only be

(X, Y ) (Z, C), (X, Z) (Y, B) and (Y, Z) (X, A) up
to permutations of the variables within a tuple.
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If we were to take one non-Shannon inequality into
account and applied it to any subset of four out of the
total of six random variables in the causal structure, this
would leave us with 360 permutations of the inequality (if
the inequality is not invariant under the permutation of
any of the four involved variables). Proposition 3 reduces
this to only 12 (potentially) irredundant permutations.
For each non-Shannon inequality, these 12 permuta-

tions are candidates for improving the outer approxima-
tion to Γ∗M (CC

3 ). We remark here that for most known
non-Shannon inequalities, several of these 12 permuta-
tions can be shown to be redundant14. Despite account-
ing for this reduction in the permutations of each inequal-
ity, the number of different inequalities to be considered is
infinite, and, the outer approximation to Γ∗M (CC

3 ) could
(potentially) be tightened further by including additional
inequalities.
In principle, the more inequalities that are added,

the better the approximation to Γ∗M (CC
3 ). However,

adding too many inequalities at a time renders the task
of marginalising infeasible; the main reason is that the
Fourier-Motzkin elimination algorithm is often too slow.
Applied to a system of n0 inequalities it can yield up to

(n0

2
)2 inequalities in the first elimination step. Iterat-

ing the procedure for n steps produces up to 4 ⋅ (n0

4
)2n

inequalities. This doubly exponential growth of the al-
gorithm in the worst case is the main reason for its in-
efficiency. The elimination algorithm can be adapted by
implementing a few rules to remove some of the many re-
dundant inequalities produced in each step. These rules
are collectively known as C̆ernikov rules [53, 54] and com-
prehensively explained in [55]. It is known, however, that
the number of necessary inequalities can still grow expo-
nentially [56]. That said, the worst case scaling may not
be exhibited in our case. In fact, the inequalities defin-
ing Γ (CC

3 ) contain few variables each and thus lead to
far fewer than the maximal number of inequalities. How-
ever, computational resources still limit us to adding a
relatively small number of different supplementary in-
equalities to the standard Shannon cone at a time.
We have used the previously outlined technique to

compute tighter outer approximations to Γ∗M (CC
3 ), by

including a manageable number of non-Shannon inequal-
ities at a time:

Case 1 : We include the inequality from Proposition 1 as
well as all six inequalities from [41] applied to all subsets
of four out of the six variables of CC

3 . This leads to
45 classes of inequalities, of which 41 are not part of
the outer approximation ΓM (CC

3 ). All classes (together

14 For instance, if the non-Shannon inequality in question is invari-
ant under the permutation of some of its variables then some of
the 12 permutations are equivalent, or, if the marginalisation of
different permutations of the same inequality (that are not equal)
imply the same inequalities for the marginal scenario then some
of these inequalities may be redundant for our purposes.

with the number of members in each class) are provided
as Supplementary Information.

Case 2 : We include the inequalities of the form given
in (2) and (3) for s = 1,2,3 and for all subsets of four
out of the six variables in CC

3 . In this case, we find
114 classes of inequalities, of which 110 are not part of
the outer approximation ΓM (CC

3 ). All classes (together
with the number of members in each class) are provided
as Supplementary Information.

We have compared our new approximations to the Shan-
non outer approximation by sampling uniformly over the
surface of the positive sector of the unit hypersphere
around 0 in R

7 [57]15. A measure for the hyperdimen-
sional solid angle included by these approximations is
given in terms of the fraction of points within the respec-
tive cones, α. We have sampled 3.2 × 109 points each,
which led to the following estimates for α:

Shannon Cone: αS = (3.308 ± 0.010) × 10−5.
Case 1 : α1 = (3.090 ± 0.010) × 10−5.
Case 2 : α2 = (3.072 ± 0.010) × 10−5.
This shows that the difference between the three ap-

proximations it relatively small: the hyperdimensional
solid angle encompassed by the cones of the Case 1 and
Case 2 approximations are both roughly 93% of that of
the Shannon cone. An explicit entropy vector that lies
in the Shannon approximation, but not in either of the
new outer approximations to Γ∗M (CC

3 ) is
(H(X),H(Y ),H(Z),H(XY ),H(XZ),H(Y Z),H(XY Z))

= (11,14,14,20,20,23,28) .
We also derive some valid families of inequalities.

Proposition 4. All entropy vectors v ∈ Γ∗M (CC
3 ) obey

(−1
2
s2 − 3

2
s)(H(X) +H(Z)) − (s + 1)H(Y )

+(1
2
s2 + 3

2
s + 1)(H(XY ) +H(Y Z))

+ (s2 + 2s)H(XZ) − (s2 + 2s + 1)H(XY Z) ≥ 0, (12)

(−1
2
s2 − 3

2
s − 2)(H(X) +H(Y ) +H(Z) −H(XY ))

+(1
2
s2 + 3

2
s + 1)H(XZ) + (s + 2)H(Y Z)

− (s + 1)H(XY Z) ≥ 0, (13)

(−1
2
s2 − 3

2
s − 2)(H(X) +H(Z) −H(XY ))

− (2s + 2)H(Y ) + (s2 + 2)H(XZ)
+(1

2
s2 + 3

2
s + 1)H(Y Z) − (s2 + 1)H(XY Z) ≥ 0, (14)

15 I.e., from the set {v ∈ R7 ∶ vi ≥ 0,∑7
i=1 v

2
i = 1}.
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for all s ∈ N. The same holds for all permutations of X,
Y and Z.

The proof of this proposition can be found in Ap-
pendix B.
Further families of inequalities can be derived by sepa-

rately considering different inequalities from a family, e.g.
the same permutation of (2) for each s ∈ N, and combin-
ing them with the same Shannon inequalities to obtain
new constraints on the marginal scenario by means of the
Fourier-Motzkin elimination algorithm. Tighter inequal-
ities are often obtained by combining several permuta-
tions of an inequality (2).
Combining instances of (2) for several s ∈ N leads to

an even larger number of new inequalities, which ren-
der many of the families derived with the previously ex-
plained method redundant. For the few orders s up to
which we were able to run our calculations, the fami-
lies (12) and (13) from Proposition 4 were the only two
for which none of the inequalities were implied by oth-
ers. Similar considerations can be applied to (3) (from
which (14) is derived) and to further families of inequal-
ities [39].
One might imagine that adding genuine five and six

variable inequalities to Γ (CC
3 ) leads to further entropy

inequalities for CC
3 . It turns out that applying the five

and six variable inequalities from [35, 40] to five and six
variables of the triangle causal structure respectively does
not lead to a tighter outer approximation to CC

3 than
the inequality from Proposition 1. This can be shown
by expanding the inequalities into a linear combination
of mutual information terms and applying a similar rea-
soning to that in the proof of Proposition 3. As they are
not particularly instructive, the technical details of these
arguments are omitted here. The same is not known to
hold for the inequality derived in [58].

Conjecture 5. Infinitely many linear inequalities are
needed to characterise Γ∗M (CC

3 ).
Our main evidence for this is that the families of in-

equalities (2), used by Matúš to prove that the analogue

of this conjecture holds for Γ∗4, lead to infinite families
of inequalities for CC

3 after marginalising (cf. Proposi-
tion 4). The curve constructed by Matúš in Ref. [36] to

prove his statement for Γ∗4 can be adapted to our scenario,
which can be used to show that the inequalities (12) are
independent. However, we were not able to show that
this curve can be realised with entropy vectors that are
compatible with the triangle causal structure, and hence
we cannot exclude the possibility that the marginal cone
Γ∗M (CC

3 ) is polyhedral.
The infinite families of inequalities (cf. Proposition 4)

that we obtained fromMatúš’s original family of inequali-
ties may indicate that this region of entropy space retains
a non-polyhedral segment after the causal constraints are
included and the set is projected to the marginal scenario.
However, we cannot rule out the possibility that no non-
polyhedral boundary regions survive the mapping to en-
tropy vectors for CC

3 . If this were the case then (most

(a)

YZX

A
(b)

W

X

A

Y

Z

(c)
Y Z

X

A B

Figure 4. Three causal structures, C, for which the outer
approximation, ΓM(CC) tightly approximates the classical

entropy cone Γ∗M(CC), which also coincides with Γ∗M(CQ).
The observed variables are labelled W , X, Y and Z, the un-
observed nodes are called A and B.

of) our infinite set of inequalities would be rendered re-
dundant by another inequality.

B. Application of non-Shannon inequalities to
various causal structures

The concept of a generalised DAG was introduced
in [24], the idea being to have a framework in which
classical, quantum and even more general systems can
be shared by unobserved nodes. For the details, we re-
fer to the original paper. The part that is of interest
here is that the authors of Ref. [24] list 21 generalised
DAGs with up to six nodes for which there may be a
separation between the correlations realisable classically
and quantum mechanically, i.e., between PM(CC) and
PM(CQ) [24, 28].16 We analyse these from an entropic
perspective, looking for a causal structure C in which
there is a separation between Γ∗M (CC) and Γ∗M (CQ).
Among these structures there are three that have fewer
than six nodes, displayed in Figure 4. For these three, we
find that the vertices of the corresponding Shannon cone,
ΓM(CC), are achievable with entropy vectors of classi-
cal probability distributions compatible with the causal
structure, from which it follows that this cone is equal
to the entropy cone Γ∗M(CC). (This can also be shown
by computing an inner approximation to the correspond-
ing entropy cones and showing that the inner and outer
approximations coincide, e.g. by employing linear rank
inequalities as outlined in Section IV.) Our results also
imply that the consideration of non-Shannon inequali-
ties cannot lead to any further constraints in these three
causal structures. In the following, we furthermore show
that there is no entropic separation between classical and
quantum versions of these causal structures.

Proposition 6. Let C be any of the causal structures
shown in Figure 4. Then Γ∗M(CC) = Γ∗M(CQ).
Remark 7. Note that there are causal structures in-
volving up to five variables that reduce to those shown

16 Note that there are further causal structures with 5 and 6 nodes
that have this property, which can all be reduced to these 21
examples with rules specified in [24].
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in Figure 4 under the reduction rules from [24]. Our
proof does not rule out that these exhibit a classical to
quantum separation.

Further details, including the proof of Proposition 6 are
given in Appendix C.
The 18 remaining example causal structures involve

six variables. For all of them we have found that several
instances of the non-Shannon inequality from Proposi-
tion 1 lead to tighter entropic constraints for the classical
marginal scenarios than those listed in [24].

For the causal structures with four observed variables,
instances of this inequality are relevant even without con-
sidering the unobserved nodes. These instances thus hold
whether or not the unobserved nodes are classical or
quantum. Hence, they allow us to tighten the outer ap-
proximations to the sets of achievable entropy vectors in
both cases, in contrast to non-Shannon inequalities that
are applied involving unobserved variables (for which the
quantum analogue is not known to hold).17

The above considerations have not enabled us to show
a separation between the achievable entropy vectors in
the classical and quantum cases, hence we are left with
the following open problem.

Open Problem 8. Find a causal structure C with a
set of observed nodesM in which the sets Γ∗M(CC) and
Γ∗M(CQ) are provably different, or show that this can
never occur.

C. Application of non-Shannon inequalities with
post-selection

In the discussion so far we have not considered a re-
lated technique that allows for post-selection on particu-
lar outcomes of certain variables. The idea of doing this
first appeared in [13] based on results by Fine [59, 60]
and was later generalised [19–21, 26–28]. We refer to [32]
for an explanation of this technique.
Here we illustrate that non-Shannon inequalities can

be used in combination with post-selection by discussing
a specific example relevant for information causality [31].
Information causality is an information theoretic princi-
ple obeyed by classical and quantum physics but not by
general probabilistic theories in which there are correla-
tions that violate Tsirelson’s bound [61], e.g. generalized
no signalling theory [62], which allows PR-Boxes as a re-
source [63, 64]. The principle is stated in terms of the
optimal performance of two parties in a game, which we

17 Note that this reasoning is not restricted to distinguishing clas-
sical and quantum, but, it may also apply to the comparison of
different causal structures with the same set of observed vari-
ables. While non-Shannon inequalities derived from latent vari-
ables may lead to a separation between the two causal structures,
non-Shannon inequalities valid only for the observed variables
may not.

(a)
X0

X1 Z Y

R
A

(b)
X0

X1 Z

A

Y∣R=0

Y∣R=1

Figure 5. (a) Causal structure underlying the Information
Causality game, IC. Alice holds a database, here made up of
two bits X0 and X1. These need not be independent, which
is expressed by a potential causal influence from X0 to X1.
She is then allowed to send a message Z to Bob, who, de-
pending on which bit R a referee asks for, takes a guess Y

of either X0 or X1. Alice and Bob may have shared some
resources (represented by A) before performing the protocol,
either some classical randomness, a quantum system, or a re-
source from a more general non-signalling theory, which Alice
may use in order to choose her message and Bob may use to
make his guess. (b) The effective causal structure of the Infor-
mation Causality game after post-selecting on binary R, la-
belled ICR. This causal structure shares some of its marginal
distributions with conditional distributions of IC, i.e., if we
use P for the distribution in ICR and Q for that in IC then
PX0X1ZY∣R=r

= QX0X1ZY ∣R=r for r = 0,1.

describe below, and is quantified in terms of an entropic
quantity.
Alice holds two pieces of information18, X0 and X1,

she can send classical information Z to Bob, who is later
given a message R indicating whether he should guess X0

or X1. Bob’s guess is denoted Y . Alice and Bob are able
to use a pre-shared resource (depicted as A) to help them.
The relevant causal structure of the game is displayed in
Figure 5(a) and it is often analysed after post-selecting
on the value of R, which can be analysed using the causal
structure of Figure 5(b) (note that in the quantum case
the variables Y∣R=0 and Y∣R=1 do not coexist, so it doesn’t

make sense to consider ICQ
R ; instead a restricted set of

entropies needs to be considered – see later). A theory
is said to obey information causality if for all pre-shared
resources allowed by the theory, I(X0 ∶ Y∣R=0) + I(X1 ∶
Y∣R=1) ≤H(Z) + I(X0 ∶X1).
A stronger set of entropic constraints for this causal

structure were found in [26], including the relation

I(X0 ∶ ZY∣R=0)+I(X1 ∶ ZY∣R=1) + I(X0 ∶X1 ∣ ZY∣R=1)
≤H(Z) + I(X0 ∶X1) , (15)

which holds for both classical and quantum shared re-
sources.19

18 In general the game is formulated for more, but we restrict to
two here for simplicity.

19 Because the existence of a joint distribution of Y∣R=0 and Y∣R=1
with appropriate marginals is not clear in the quantum case, the
two variables have to be interpreted as alternatives and are part
of different coexisting sets. Therefore, the analysis of ICC

R does
not carry over to the quantum case, but a separate analysis is
required there.
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We show that using non-Shannon inequalities leads to
a tighter outer approximation of the information causal-
ity scenario in the case of a classical shared resource.
Considering just the inequality from Proposition 1 (and
permutations) has led us to derive a total of 265 classes
of entropy inequalities, including the 52 classes that were
obtained without non-Shannon constraints in [26] (a list
of all 265 classes together with the number of representa-
tives of each class is available as Supplementary Informa-
tion). Moreover, we expect further non-Shannon inequal-
ities to lead to numerous additional constraints poten-
tially rendering our inequalities redundant. In principle,
infinite families of inequalities, similar to those found in
Proposition 4 for the triangle scenario could also be de-
rived here.
In the quantum case, we can only apply the non-

Shannon inequalities to the two coexisting sets of
exclusively classical variables {X0,X1, Z, Y∣R=0} and

{X0,X1, Z, Y∣R=1}, which means that we can impose a set
of 24 additional constraints (including permutations) just
by adding all permutations of the inequality from Propo-
sition 1 to the outer approximation that is obtained with-
out these (no further variable elimination is required).
It is worth pointing out that although our results imply

that previous entropic characterisations of ICR were not
tight and even though our new inequalities improve on
the entropic characterisation of ICR, the inequality (15)
is not rendered redundant by our new inequalities.

IV. INNER APPROXIMATIONS TO THE
ENTROPY CONES OF CAUSAL STRUCTURES

To complement the outer approximations, it is some-
times useful to consider inner approximations to the en-
tropy cones of causal structures. This is particularly use-
ful when one can show that inner and outer approxima-
tions coincide, as they then identify the actual boundary
of the entropy cone. Examples for this are the three
causal structures of Figure 4, also discussed in the pre-
vious section. Hence, inner and outer approximation to-
gether serve as a relatively simple means to identify the
boundary of certain entropy cones. Such findings also
immediately imply that non-Shannon inequalities are ir-
relevant for improving on the outer approximation to the
entropy cone for the causal structure in question.
Furthermore, we can often find inner approximations

that share extremal rays with the outer approximations
derived from the Shannon and independence constraints
(even when the two do not coincide). They hence allow
us to identify the regions of entropy space where our ap-
proximations are tight and those regions where there is
a gap between inner and outer approximation.20 Such a

20 Such a comparison of inner and outer approximations can be
performed for the entropy cone of a causal structure including

gap can be explored, e.g. by using non-Shannon inequal-
ities, as was explained in the previous section.
Inner approximations also serve as a tool to decide

whether entropy vectors are suitable for certifying the
unattainability of particular distributions that are sus-
pected not to be achievable within the causal structure
at hand. If such a distribution leads to an entropy vec-
tor within an inner approximation to the entropy cone in
question, this means either that the distribution is in fact
achievable within the causal structure or that the causal
structure allows for another distribution with the same
entropy vector (or an arbitrarily good approximation of
such). Hence, to determine whether the distribution in
question is achievable, switching to a more fine-grained
method is necessary [28, 65].

In the following we show how inner approximations can
be found in different scenarios.

A. Techniques to find inner approximations for
causal structures with up to five observed variables

For a causal structure, C, that involves a total of four
or five variables, inner approximations to its entropy
cone can be derived from ΓI

4 or ΓI
5 respectively (as de-

fined in Section IIA) combined with the conditional in-
dependence constraints of CC, which together constrain
a cone ΓI (CC). An inner approximation to the corre-

sponding marginal scenarios, ΓI
M (CC), is then obtained

from ΓI (CC) with a Fourier-Motzkin elimination, like for

outer approximations. It is guaranteed that ΓI
M (CC) is

an inner approximation to Γ∗M (CC), as it is a projection

of an inner approximation ΓI (CC) ⊆ Γ∗ (CC). Hence,
inner approximations can be straightforwardly computed
for such causal structures. Examples where this applies
are the three causal structures of Figure 4.

Example 2 (Inner approximation to the instrumental
scenario.). For the classical instrumental scenario, CI

of Figure 4(a), we can compute an inner approxima-
tion by adding the conditional independence constraints
I(A ∶ X) = 0 and I(X ∶ Y ∣AZ) = 0 to the Ingleton cone
ΓI
4, as prescribed above. We can, however, also directly

prove that Γ∗M (CC
I ) = ΓM (CC

I ) by showing that all
permutations of the Ingleton inequality are implied by
Shannon and conditional independence constraints and,
hence, inner and outer approximations coincide for CC

I .
Since I(A ∶ X) = 0, IING (A,X;Y,Z) ≥ 0 is immediately
implied by Shannon and independence constraints. Fur-
thermore, the rewritings of IING according to (10) imply
that I(A ∶ X) = 0 (together with the Shannon inequali-
ties) implies all permutations of the Ingleton inequality

its unobserved variables, i.e., before marginalisation, as well as
for the respective approximations to its marginal cone, which we
are mainly interested in here.
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except for IING (Y,Z;A,X) ≥ 0. Now, we can rewrite

IING (Y,Z;A,X)
= I(Y ∶ Z ∣A)+I(Y ∶X ∣Z)+I(X ∶ A∣Y )−I(X ∶ Y ∣A)
= I(Y ∶X ∣Z)+I(X ∶ A∣Y )+I(Y ∶ Z ∣AX)−I(X ∶ Y ∣AZ),

the positivity of which is implied by the Shannon inequal-
ities and the independence constraint I(X ∶ Y ∣AZ) = 0.
Implementing all relevant linear rank inequalities of

four and five variables (which includes their permutations
and the application of the Ingleton inequality to each
four variable subset as well as grouping several variables
to one) [44] and then performing a variable elimination
may be impractical and computationally challenging for
certain causal structures. Furthermore, for causal struc-
tures that involve more than five nodes not all possible
linear rank inequalities are known and their number may
even be infinite [45]. It is therefore useful to derive inner
approximations by other methods. For a causal struc-
ture, C, one may consider different methods to derive
inner approximations, ΓI

M (CC), for instance the follow-
ing.

❼ Construct (random) entropy vectors from distribu-
tions compatible with CC and take their convex
hull.

❼ Take the vertices of ΓM (CC) that are reproducible
with distributions compatible with the causal struc-
ture, their convex hull is an inner approximation.

❼ Take the outer approximation to the classical
causal structure, Γ (CC), as a starting point and
add a manageable number of linear rank inequali-
ties to derive further constraints. These inequalities
may be employed either before or after marginalis-
ing, which leads to different cones.21 The convex
hull of the reproducible rays is an inner approxima-
tion.

For the three examples of Figure 4 it is rather straight-
forward to recover all extremal rays of the outer approx-
imation to the marginal scenario, ΓM (CC) (cf. also Ap-
pendix C), i.e., the second method above is effective.
Overall, we found that whenever the extremal rays are

not all straightforwardly recovered, the third method is
effective. This is our preferred technique because by
starting out with extremal rays of the Shannon cone
we obtain approximations that in some regions are al-
ready tight (as opposed to the first method), and, at the
same time adding linear rank inequalities helps us iden-
tify those extremal rays that are likely to be reproducible

21 If for instance all linear rank inequalities in up to k observed
variables are added after marginalisation, the resulting cone cor-
responds to the intersection ΓM (CC)∩ΓI

k
, where k is the number

of observed variables.

with distributions in CC (this may help us avoid drop-
ping reproducible rays in some situations). The entropy
cones obtained in this way are not necessarily inner ap-
proximations, and, if they are, they have to be proven as
such, for example by explicitly constructing distributions
that reproduce entropy vectors on each of the extremal
rays (as with the second method above). However, in all
our examples this method allowed us to recover a cone
of which all extremal rays were easily seen to be repro-
ducible after adding only few linear rank inequalities to
Γ (CC). (If this is not the case one may still have to drop
several irreproducible rays from the resulting cones to ob-
tain an inner approximation.) The method is illustrated
in the example below.
We also remark here that in order to improve on in-

ner approximations obtained with the second or third
method above, the first method is applicable.

Example 3. Consider the classical causal structure of
Figure 5(a) and remove the node R to give a 5-variable

causal structure, ÎC
C
. We can in principle consider all

linear rank inequalities of five random variables combined
with all Shannon inequalities and the conditional inde-
pendence constraints, which would give us an inner ap-

proximation, ΓI
M (ÎCC), to the entropy cone, Γ∗M (ÎCC).

This procedure would involve a (impractically) large
number of inequalities.
Instead, we can consider the outer approximation in

terms of Shannon inequalities and conditional indepen-

dence constraints, ΓM (ÎCC), and intersect this cone

with the Ingleton cone for the four observed variables,
ΓI
4, i.e., we add all permutations of the Ingleton inequal-

ity for the four observed variables to ΓM (ÎCC). This is
easily obtained but does not result in any restrictions be-
yond those of the Shannon outer approximation, which
is characterised by 52 extremal rays.
Adding the Ingleton inequality for all subsets of four

out of the five random variables to Γ(ÎCC) before per-

forming the variable elimination, only 46 extremal rays
are recovered. These are straightforward to reproduce

with entropy vectors in ÎC
C
.22 A detailed exposition of

this is presented in Appendix D.

This method can also be applied to causal structures
with more than five variables. For the first few causal
structures from [24] we have recovered inner approxima-
tions by adding the Ingleton inequality to ΓM (CC), i.e.,

22 We can show that the 6 extremal rays of the Shannon cone that
are not part of this inner approximation are not achievable in

ÎC
C
, as they violate the entropy inequalities we obtain when

taking non-Shannon inequalities into account in the computation

of the outer approximations to Γ∗M (ÎCC).
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by taking the intersection ΓM (CC) ∩ ΓI
k (the extremal

rays as well as distributions recovering entropy vectors
on each of them are available as Supplementary Informa-
tion).
In the following we give a detailed analysis of the in-

ner approximation to the triangle causal structure and
compare this to the outer approximations presented in
previous sections.

B. Example: Inner approximation to Γ∗M (CC
3 )

Here, we derive an inner approximation to the entropy
cone compatible with CC

3 . An inner approximation to Γ∗6
in terms of linear rank inequalities is not available (see
also Section IIA). Nonetheless, we are able to derive an

inner approximation to Γ∗M (CC
3 ) by relying on Ingleton’s

inequality. In the following, we apply (4) to any subset
of four out of the six random variables of CC

3 and take
all their permutations into account. We concisely write
these inequalities in a matrix MI and consider the cone

ΓI (CC
3 ) ∶= {v ∈ Γ6 ∣MCI (CC

3 ) ⋅ v = 0, MI ⋅ v ≥ 0} .
When marginalising this cone we obtain

ΓI
M (CC

3 ) ∶= {w ∈ Γ3 ∣MI,M (CC
3 ) ⋅w ≥ 0} ,

where MI,M (CC
3 ) contains only one inequality,23

−I(X ∶ Y ∶ Z) ≥ 0. (16)

This relation can also be analytically derived from the In-
gleton inequality and the conditional independence con-
straints of CC

3 .
24

Proposition 9. ΓI
M (CC

3 ) is an inner approximation to
the marginal entropy cone of the triangle causal structure,

ΓI
M (CC

3 ) ⊊ Γ∗M (CC
3 ) .

The proof of Proposition 9 is deferred to Appendix E.
ΓI
M (CC

3 ) provides a certificate for vectors to be realis-

able as entropy vectors in CC
3 : if a vector v ∈ R7 obeys

all Shannon constraints as well as (16), then it lies in

Γ∗M (CC
3 ). Compared to the different outer approxima-

tions to Γ∗M (CC
3 ) analysed in Section III the hyperdi-

mensional solid angle for this inner approximation is con-
siderably smaller. Sampling over the unit hypersphere

23 Inequality (16) renders the three Shannon inequalities of the form
I(X ∶ Y ∣Z) ≥ 0 redundant. ΓI

M (CC
3 ) is thus fully characterised

by the six remaining three variable Shannon inequalities (con-
straining Γ3) and (16).

24 The proof proceeds as follows. There are only three instances of
the Ingleton inequality that are not implied by the conditional
independences and the Shannon inequalities (cf. also Proposi-
tion 3). The independence constraint I(X ∶ Y ∣C) = 0 and its
permutations I(X ∶ Z ∣B) = 0 and I(Y ∶ Z ∣A) = 0 lead to (16) in
all three cases.

around 0 in R
7 as before (meaning 3.2×109 samples), we

obtain αI = (2.147 ± 0.008) × 10−5.
It is worth emphasising that not all correlations whose

entropy vectors lie in ΓI
M (CC

3 ) can be realised in CC
3 .

Instead, if H(P ) ∈ ΓI
M then there exists P ′ ∈ PM(CC

3 )
such that H(P ′) = H(P ). The correlations of Fig-
ure 6, realised in the quantum version of the triangle

causal structure, CQ
3 , which will be considered in detail

in Section VA, are one such example. These are not
in PM(CC

3 ), but their entropy vector nevertheless satis-
fies (16). Our argument implies that there must be an-
other distribution realisable in CC

3 with the same entropy
vector.25

V. NON-SHANNON INEQUALITIES IN
QUANTUM AND HYBRID CAUSAL

STRUCTURES

In this section, we compare classical and quantum ver-
sions of a given causal structure (the distinction reflecting
the nature of the unobserved nodes). We also consider
hybrid scenarios—causal structures where some of the
unobserved systems are restricted to be classical whereas
others may be quantum—which turn out to be insightful
for understanding the gap between classical and quantum
causal structures. We analyse whether non-Shannon in-
equalities lead to improved entropic characterisations for
such scenarios. Our considerations are illustrated with
the example of the triangle causal structure.

A. Quantum triangle scenario

It was first shown in Ref. [52], that there are joint
distributions among the three observed variables X, Y

and Z in C
Q
3 that cannot be reproduced in CC

3 , based
on the CHSH scenario (see Figure 6 and Appendix F for

the details). Hence C
Q
3 might also lead to a larger set of

compatible entropy vectors than CC
3 .

Entropically, C
Q
3 can be analysed with the tech-

nique outlined in Section II B 2. An outer approxima-

tion, ΓM (CQ
3 ), to the set of achievable entropy vectors,

Γ∗M (CQ
3 ), was constructed in [26]. It led to the Shannon

inequalities for the jointly distributed X, Y and Z and
the additional inequality

I(X ∶ Y ) + I(X ∶ Z) ≤H(X), (17)

as well as its permutations in X, Y and Z [26].

25 Another such example is given by the distribution

PXY Z(x, y, z) = { 1
3
(x, y, z) = (1,0,0), (0,1,0), (0,0,1)

0 otherwise,

which is not compatible with CC
3 , as shown in [65].
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It is natural to ask whether tighter approximations to

Γ∗M (CQ
3 ) can be realised by a similar procedure to the

one that led to tighter approximations in the classical
case. Unfortunately, we don’t know of any similar in-
equalities for the von Neumann entropy of multi-party
quantum states. Furthermore, even if the known non-
Shannon inequalities were to hold for von Neumann en-
tropy we would not be able to use them to add constraints

to C
Q
3 due to the lack of large enough sets of coexisting,

interdependent variables.26

Open Problem 10. Do the closures of the sets of
compatible entropy vectors coincide in the classical and
the quantum triangle scenario, i.e., does Γ∗M (CC

3 ) =
Γ∗M (CQ

3 ) hold?
Note that if this were to be answered in the affirmative,

it would point towards deficiencies of the current entropic

techniques for approximating Γ∗M (CQ
3 ), which are not

able to recover any additional inequalities similar to the
non-Shannon inequalities found in the classical case.
One way to solve this problem would be to find an en-

tropy vector compatible with C
Q
3 that lies outside one of

our outer approximations to Γ∗M (CC
3 ). Random searches

where the sources A, B and C distribute up to four
qubits each did not yield violations. However, the evi-
dence from these random searches against a separation
of the classical and the quantum sets is relatively weak.
For one, our classical outer approximations might be so

loose that they contain Γ∗M (CQ
3 ). To counter this, we

have attempted to randomly search for vectors that lie

in Γ∗M (CQ
3 ) but not in the classical inner approximation

ΓI
M (CC

3 ). In spite of the fact that we know such vectors
exist, we were unable to randomly find any. This shows
the weakness of random searching, and also that the re-
gion we are looking for (if it even exists) is small with
respect to our sampling measure.27

A natural candidate for an entropy vector that might
violate some of our classical inequalities is the one corre-
sponding to the CHSH correlations that were shown not

26 Note that in causal structures that involve four or more observed
variables non-Shannon inequalities can be applied to these. How-
ever, non-Shannon inequalities cannot be applied to unobserved
quantum systems (see also Section III C).

27 This is not a statement about the geometric extent of this re-
gion (for instance in terms of a hyperdimensional solid angle as
was previously considered for inner and outer approximations
to Γ∗M (CC

3 )). Instead, since we are sampling quantum states
here, and since these are not in a one-to-one correspondence
with the entropy vectors, it is a statement about the fraction
of states and measurements that may produce entropy vectors
outside ΓI

M (CC
3 ) (in low dimensions) according to our sampling

distribution. This must be a very small proportion of states and
measurements (we didn’t sample any). Note also that if there is

a gap between Γ∗M (CC
3 ) and Γ∗M (CQ

3
) it is smaller than that

between ΓI
M (CC

3 ) and Γ∗M (CQ
3
). Hence, constructing a vector

in the first gap by sampling quantum states is even more difficult
than for the second.

to be reproducible in CC
3 in Ref. [52] (detailed in Fig-

ure 6 where Z = (A′,B′) and in Appendix F). However,
the corresponding entropy vector lies inside ΓI

M (CC
3 ) so

is classically reproducible. This particular distribution
is also achievable in the causal structure P4 (a causal
structure equivalent to the one in Figure 4(b)). Any dis-
tribution compatible with P4 may be realised in C3 by
choosing one of the variables, e.g. Z, to have two out-
puts, one depending only on the input from node A and
the other one depending on the input from B. Distribu-

tions realisable in P
Q
4 or PC

4 are thus always realisable in

C
Q
3 or CC

3 respectively. According to the results of [66],

all entropy vectors realised with distributions in P
Q
4 are

also classically achievable, i.e., realisable in PC
4 (at least

asymptotically). Hence, no distribution in P
Q
4 can vi-

olate any of the classical entropy inequalities valid for
CC

3 . A way that might still allow us to use our knowl-
edge about quantum correlations that are not classically
reproducible in the Bell scenario to violate our entropic
constraints to Γ∗M (CC

3 ), is by processing the inputs to all
three nodes X, Y and Z, so as to get around the results
from [66].28

In the following, we generalise the distribution that
was utilised in Ref. [52] to show that there is a separation

between the achievable distributions in CC
3 and C

Q
3 to a

scenario where there is local processing at each output
node. This also allows us reduce the required dimension
of the output at Z for which one can provably detect
a difference between classical and quantum distributions
from two bits to one bit.

Proposition 11. There are non-classical quantum cor-
relations in C3 in the case where X and Y output two
bits each while Z outputs only one.

A proof of Proposition 11 can be found in Appendix F.
It is interesting in so far as the example in [52] relies on
a Bell inequality violation. Given this, one might have
expected that all information about the measurement
choices in the Bell setup, Ã and B̃, has to be exposed
at the observed node Z. Proposition 11 shows that this
is not the case.
Nonetheless, we find that the entropy vector used to

prove this proposition does not violate our classical in-
equalities. We have also taken Z to be determined by
different functions in A and B and have additionally con-
sidered local processing of X and Y . However, even after
such post-processing, for instance by applying all possi-
ble functions from two bits to one, we have not been able
to detect any violations of the classical entropic bounds.
Note that vectors outside ΓI

M (CC
3 ) can be constructed

with appropriate post-processing of the (quantum) dis-
tribution. A possible way to achieve this is applying
and or or functions appropriately. One may for instance

28 Two distributions that share the same entropy vector can be very
different and hence may be separated by local processing.
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(X̃, B̃) (Ỹ , Ã)

Z

AB

C

Figure 6. Scenario involving unobserved quantum systems,
leading to a distribution which is not reproducible with clas-
sical A, B and C [52]. The observed variables X = (X̃, B̃)
and Y = (Ỹ , Ã) are chosen such that PX̃Ỹ∣AB maximally vi-

olates the CHSH inequality [12]. Z = (A′,B′) is such that

B′ = B̃ = B and A′ = Ã = A. In essence the reason that this
cannot be realised in the causal structure CC

3 is the CHSH vio-
lation. Note though that it is also important that information
about A is present in both Y and Z (and analogously for B),
otherwise the correlations could be mocked up. In Propo-
sition 11, we prove that a strategy where Z = AND(A′,B′)
also leads to correlations that cannot be classically realised
(see Appendix F for further details).

consider the quantum scenario detailed above, and take
X = AND(X̃, B̃), Y = AND(Ỹ , Ã) and Z = OR(A′,B′).
This renders the interaction information of the entropy
vector of the joint distribution of X, Y and Z positive,
so the vector is not in ΓI

M (CC
3 ).

We have similarly tried to violate our entropy inequal-
ities by relying on games other than the CHSH scenario,
for which we know that there is distinctive quantum be-
haviour (i.e., a separation at the level of correlations);
these include input states and measurements known to
lead to violations of the chained Bell inequalities [13] or
the Mermin-Peres magic square game [67, 68], all with
post-processing at (X, Y and) Z.

We have further considered scenarios where all three
parties measure entangled states and use the measure-
ment outputs as inputs for further measurements. We
have also attempted to incorporate functions known to
lead to a positive interaction information in the classical
case, as well as functions from two to one bits in general,
into these scenarios. None of these attempts has led to
a violation of the classical inequalities so far. In a num-
ber of scenarios we have also considered shared PR-boxes
instead of entangled states, again without detecting any
violations of the inequalities. In most cases the corre-
sponding entropy vectors have a negative interaction in-
formation, and hence lie in ΓI

M (CC
3 ), so can be realised

with a classical distribution as well, like in the case of the
correlations mentioned at the end of Section IVB.

B. Hybrid triangle scenarios

In a hybrid causal structure some of the unobserved
nodes are allowed to be quantum, whereas others are re-
stricted to be classical. One motivation for this is that
sharing entanglement over large distances is challenging
due to noise, so two distant observations might be as-
sumed to have a classical cause while nearby ones could
have quantum causes. In the case of the causal struc-
ture C3, there are two such hybrid scenarios: either one
or two of the three unobserved variables can be chosen
to be classical, whereas the others are quantum. We

call these two causal structures CCQQ
3 and C

CCQ
3 respec-

tively. In the following, we will approximate the sets of
compatible entropy vectors for both scenarios. We show
that in hybrid scenarios of the triangle causal structure
non-Shannon inequalities are relevant.

1. C
CQQ
3 scenario

In this scenario one of the unobserved variables is clas-
sical (we take this to be A). The techniques introduced
in Sections II B 1 and IIB 2 allow us to compute approx-
imations of the set of allowed entropy vectors. We find

ΓM (CCQQ
3 ) = ΓM (CQ

3 ) ,
i.e., the outer approximation to Γ∗M (CCQQ

3 ) obtained
without taking non-Shannon inequalities into account co-

incides with the outer approximation to Γ∗M (CQ
3 ). How-

ever, unlike in the fully quantum case C
Q
3 , non-Shannon

constraints can be included for C
CQQ
3 , for instance the

inequality from Proposition 1 with variable choices

◇Y ZAX ≥ 0, ◇Y ZXA ≥ 0.
This results in a tighter approximation to Γ∗M (CCQQ

3 ),
which comprises the Shannon inequalities for three vari-
ables, the constraint (17) and29

−3H(X) − 3H(Y ) − 3H(Z) + 2H(XY )
+ 2H(XZ) + 3H(Y Z) −H(XY Z) ≥ 0,

−2H(X) − 2H(Y ) − 2H(Z) + 3H(XY )
+ 3H(XZ) + 3H(Y Z) − 4H(XY Z) ≥ 0.

Further non-Shannon constraints could also be exploited
to improve these approximations. Hence, some of
the extremal rays of the Shannon outer approximation

ΓM (CQ
3 ) are provably not achievable if A, B and C do

29 The second of these inequalities can be easily derived from◇Y ZXA ≥ 0 and the conditional independences, analogously to
Proposition 4. To derive the first inequality, on the other hand,
several inequalities have to be combined.
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not all share entangled states. Note that this does not

imply that the sets of achievable entropy vectors in C
Q
3

and C
CQQ
3 differ. However, the difference in their outer

approximations may prove useful for analysing whether
there is a difference between the two.
If one were to prove by other means that there is no

such difference the inequalities for CCQQ
3 would give us a

way to better approximate the set of achievable entropy

vectors of CQ
3 .

2. C
CCQ
3 scenario

In this scenario we take A and B to be classical. This
scenario can be understood as a Bell scenario, where the
measurement choices of the two parties are unobserved
and processed to one single observed output, Z.30 The
distributions from Section VA, that are provably not re-
producible in CC

3 can be generated in this causal struc-
ture. Its entropic analysis thus restricts the violations
of our classical inequalities we may hope to achieve with
such distributions. To approximate the set of compatible

entropy vectors of this scenario, Γ∗M (CCCQ
3 ), we proceed

analogously to the CQ
3 and C

CQQ
3 scenarios before. How-

ever, the result differs and leads to a tighter cone, even
without considering non-Shannon inequalities,

ΓM (CCCQ
3 ) ⊊ ΓM (CCQQ

3 ) .
It is given by the three variable Shannon inequalities and
the following additional inequalities:

−H(X)−H(Y ) −H(Z) +H(XY ) +H(XZ) ≥ 0,
−3H(X) − 3H(Y ) − 3H(Z) + 2H(XY ) (18)

+ 3H(XZ) + 2H(Y Z) −H(XY Z) ≥ 0,
up to permutations of X, Y and Z in the first inequal-
ity and of Y and Z in the second. Note that these five
inequalities are a subset of the seven inequalities (8) de-
limiting ΓM (CC

3 ) and that

ΓM (CC
3 ) ⊊ ΓM (CCCQ

3 ) .
The inequalities

◇XZBY ≥ 0, ◇Y ZAX ≥ 0, ◇Y ZXA ≥ 0,
lead to the additional inequalities

−2H(X) − 2H(Y ) − 2H(Z) + 3H(XY ) + 3H(XZ) + 3H(Y Z) − 4H(XY Z) ≥ 0,
−6H(X) − 6H(Y ) − 6H(Z) + 5H(XY ) + 5H(XZ) + 5H(Y Z) − 3H(XY Z) ≥ 0,
−4H(X) − 4H(Y ) − 4H(Z) + 3H(XY ) + 4H(XZ) + 3H(Y Z) − 2H(XY Z) ≥ 0,

(19)

(including permutations of X and Y in the last inequal-
ity). They render the second inequality (and its permu-
tations) in (18) redundant, while the first remains (for
all of its permutations). Note that the first inequality of

(19) is also present in ΓM (CCQQ
3 ). As in the previous

example, further constraints could likely be derived by
considering additional non-Shannon inequalities.

VI. CONCLUSIONS

We have shown that non-Shannon inequalities tighten
the entropic approximations of the classical entropy cones
in many causal structures including the triangle scenario
and the causal structure relevant for information causal-
ity. Our newly derived inequalities improve on the en-
tropic distinction of these from other (classical) causal

30 Note that even though the sets of achievable entropy vectors
in classical and quantum case coincide in the Bell scenario (cf.
Section III B and [66]) this may not be the case here as very
different distributions may lead to the same entropy vector in
the classical and quantum case, which may be separated by local
processing.

structures, which is of interest for inferring (classical)
causal relations. They also constitute a set of restrictions
on the classical entropy cones that we cannot derive in
the quantum case, which may point towards differences
between the sets of achievable entropy vectors in classical
and quantum case.

Since it is known from the Bell scenario that quan-
tum correlations can be detected when considering the
entropies of the variables in a post-selected causal struc-
ture [13], our analysis of the information causality sce-
nario is the one that is most likely to be useful for
this purpose. In this context, non-Shannon inequalities
may also be important with regard to the discussion of
whether entropic techniques may even be sufficient for
certifying classical reproducibility in certain scenarios, a
question that has previously been explored for the CHSH
scenario in Ref. [20].

While the entropy vector approach is known to be a
useful means for distinguishing different classical causal
structures, its ability to differentiate between classical
and quantum versions of the same causal structure is
known to be limited [66]. The present work has unveiled
further limitations of the approach: for all causal struc-
tures classified in [24] we found either that the sets of
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achievable entropy vectors in classical and quantum case
coincide (for the causal structures of Figure 4), or that
non-Shannon inequalities play a role in their characteri-
sation leaving us unable to make such a statement.

One of the reasons why it is difficult to make such
a statement when non-Shannon inequalities play a role
is our relatively poor understanding of the structure of
entropy space. Even in the absence of a causal struc-
ture we lack a tight characterisation of the set of allowed
entropy vectors for four random variables. In the quan-
tum case, it is an important open problem whether any
further general constraints on the von Neumann entropy
exist. This partly explains our inability to show whether
there is some causal structure in which the described en-
tropy vector approach can be useful for distinguishing
classical and quantum.

Behind all this is the question, of whether there is a
novel technique that allows for an efficient and accurate

way to distinguish classical and quantum versions of the
same causal structure. Such a technique needs to sim-
plify the description of the set of allowed distributions
but remain complex enough to retain the distinctive fea-
tures of classical, quantum and post-quantum probability
distributions. Identifying such a quantity would provide
further insight into the meaning of cause in quantum me-
chanics.
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Appendix A: Discussion of discrepancy with [22, 26]

Our new approximations to Γ∗M (CC
3 ) presented in Sec-

tion IIIA contradict the claim in [22, 26] that Γ∗M (CC
3 ) =

ΓM(CC
3 ). This appendix reviews these results and ex-

plains the discrepancy.
In [22, 26], the inequalities defining the set ΓM (CC

3 )
as well as its vertex description were calculated. Fur-
thermore, probability distributions P ∈ PM that achieve
the rays of ΓM (CC

3 ) are presented in the Supplementary
Information of [26]. However, it is not shown there, that
the corresponding distributions, P , lie in PM (CC

3 ), and
hence that the corresponding entropy vectors are achiev-
able in CC

3 .

Our results imply that ΓM (CC
3 ) ≠ Γ∗M (CC

3 ) and

that three of the extremal rays of ΓM (CC
3 ) cannot lie

within Γ∗M (CC
3 ), specifically the ray containing the vec-

tor v = (2,3,3,4,4,5,6) and its permutations. In the Sup-
plementary Information of [26], v is shown to be achieved
with the probability distribution

PXYZ(x, y, z) = { 1
64
, x⊕ y + x⊕ z + y ⊕ z = 0

0 otherwise,
(A1)

where x ∈ {1, . . . ,4}, y, z ∈ {1, . . . ,8} and ⊕ denotes addi-
tion modulo 2. This means that PXYZ(x, y, z) = 1

64
if and

only if either x, y and z are all odd or they are all even.
This distribution can be mapped to the perfect correla-
tions of (7) by locally mapping all odd outcomes to 1
and all even outcomes to 0 at X, Y and Z. Since perfect
correlations are known not to be achievable in PM (CC

3 ),
the distribution (A1) is not compatible with the triangle
causal structure.
This resolves the apparent contradiction of our results

with those from [22, 26]. What was shown there is that

ΓM (CC
3 ) ⊆ Γ∗3,

i.e., that all vectors v ∈ ΓM (CC
3 ) can be written as the

entropy of a valid probability distribution, or arbitrarily
well approximated by such (but not necessarily one that
is achievable in the triangle causal structure).

Appendix B: Infinite families of inequalities

Infinite families of inequalities may be derived to
tighten the entropic approximation to Γ∗M (CC

3 ). Here we
give the proof for the three examples provided in Propo-
sition 4. However, there are numerous other examples
that can be derived in a similar way.
The families (12) and (13) are derived from (2) by

combining the inequalities for one s-value at a time
with Shannon and conditional independence constraints.
These are the only families derived from (2) in this way
for which none of the resulting inequalities are rendered
redundant by those found in the calculations for Case 2
in Section IIIA.

Proof of Proposition 4. We tackle the three inequalities
separately.
(12): The instance of inequality (2) with(X1, X2, X3, X4) = (X, Y, Z, C) can be rewrit-
ten as

(−1
2
s2 − 3

2
s)H(X) − (s + 1)H(Y )

−(1
2
s2 + 1

2
s)H(Z) + sH(CX)

+sH(CY ) − sH(CZ) + (1
2
s2 + 3

2
s + 1)H(XY )

+ (s2 + 2s)H(XZ) + (1
2
s2 + 3

2
s + 1)H(Y Z)

−sH(CXY ) − (s2 + 2s + 1)H(XY Z) ≥ 0.
Applying I(X ∶ Y ∣C) = 0 and I(Z ∶ C) = 0, all terms
containing the variable C cancel and we recover (12).

(13): Inequality (2), with variable choices(X1, X2, X3, X4) = (Y, X, C, Z) and using the
independences I(X ∶ Y ∣C) = 0 and I(Z ∶ C) = 0, can be
rewritten as

(1
2
s2 + 1

2
s + 1)H(C) − (s + 1)H(X) − (1

2
s2 + 3

2
s)H(Y )

−(1
2
s2 + 1

2
s)H(CX) −H(CY ) + (1

2
s2 + 3

2
s + 1)H(XY )

−sH(Z) + sH(XZ) + sH(Y Z) − sH(XY Z) ≥ 0. (B1)

We also marginalise Γ(CC
3 ) to obtain constraints on the

vectors

(H(C),H(X),H(Y ),H(Z),H(CX),H(CY ),
H(XY ),H(XZ),H(Y Z),H(XY Z))

that arise from Shannon and independence inequalities.
Two of the constraints this elimination yields are the fol-
lowing inequalities,

−2H(C) − 2H(X) − 2H(Y ) − 3H(Z) +H(CX) +H(CY )
+H(XY ) + 2H(XZ) + 2H(Y Z) −H(XY Z) ≥ 0, (B2)

−H(C) −H(X) −H(Z) +H(CX) +H(XZ) ≥ 0. (B3)

We now use (B2) to remove H(CY ) from (B1), which
yields

(1
2
s2 + 1

2
s − 1)H(C) − (1

2
s2 + 3

2
s + 2)H(Y )

− (s + 3)H(X) − (s + 3)H(Z) + (−1
2
s2 − 1

2
s + 1)H(CX)

+(1
2
s2 + 3

2
s + 2)H(XY ) + (s + 2)H(XZ)

+ (s + 2)H(Y Z) + (−s + 1)H(XY Z) ≥ 0 . (B4)

With (B3), H(CX) and H(C) are eliminated from (B4),
which concludes the proof for this case.

(14): In a similar manner as for the family (13),
we consider inequality 3 with variable choices
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(X1, X2, X3, X4) = (X, Y, C, Z) and the in-
dependences I(X ∶ Y ∣C) = 0 and I(Z ∶ C) = 0 to
obtain

(s + 1)H(C) − (1
2
s2 + 3

2
s)H(X) − (s + 1)H(Y )

−(1
2
s2 + 1

2
s)H(Z) −H(CX) − sH(CY )

+(1
2
s2 + 3

2
s + 1)H(XY ) + s2H(XZ)

+(1
2
s2 + 1

2
s)H(Y Z) − s2H(XY Z) ≥ 0 . (B5)

We also consider two inequalities that are obtained from
marginalising Γ(CC

3 ) to vectors

(H(C),H(X),H(Y ),H(Z),H(CX),H(CY ),
H(XY ),H(XZ),H(Y Z),H(XY Z)) ,

namely (B2) as well as

−H(C) −H(Y ) −H(Z) +H(CY ) +H(Y Z) ≥ 0 . (B6)

Inequality (B2) allows us to eliminate H(CX) from (B5)
and (B6) allows us to eliminateH(C) andH(CY ), which
concludes the proof.

Appendix C: Entropy cones for causal structures
with up to five variables

For most causal structures with up to five nodes, the
sets of compatible distributions generated with classical
and quantum resources are identical, and hence, so are
their entropic cones [24]. Ref. [24] reports one causal
structure with four nodes (Figure 4(a)) and 96 causal
structures with five, for which this equivalence does not
hold. These were reduced to the three causal structures
shown in Figure 4, using reduction criteria. In the fol-
lowing, we show that, for the three causal structures in
question, the classical and quantum entropy cones coin-
cide. Note that this does not imply that the same holds
true for the remaining 94 causal structures. An exam-
ple where we have not been able to establish this is the
causal structure ÎC.

Proof of Proposition 6. We begin by showing that in the
causal structures shown in Figure 4, their classical en-
tropy cones coincide with the corresponding Shannon
approximations. For the instrumental scenario of Fig-
ure 4(a) this is shown in Example 2, for the Bell scenario
of Figure 4(b) this was previously shown in [66]. In the
following, we hence consider Figure 4(c).

The Shannon inequalities and independence con-
straints lead to an outer approximation that is the conic
hull of the following vectors, denoted here as lists of their
components, ordered as

(H(X),H(Y ),H(Z),H(XY ),H(XZ),H(Y Z),H(XY Z)).

(1) 1122222

(2) 1212222

(3) 1112222

(4) 1222222

(5) 1112212

(6) 1111111

(7) 1011111

(8) 1101111

(9) 1001101

(10) 0101011

(11) 0010111

The following strategies confirm that all of the extremal
rays are achievable within the causal structure and,
hence, that we have found the associated entropy cone.
Note that ⊕ denotes addition modulo 2.

❼ The entropy vectors (1) and (2) are recovered by
choosing A and B to be uniform bits andX = A⊕B,
Y = B, Z = (A,X), or X = A ⊕ B, Y = (B,X),
Z = A respectively.

❼ (3) is recovered by letting A and B be uniform bits
and X = A⊕B, Y = B, Z = A.

❼ The entropy vector (4) is recovered by letting A
and B be uniform bits and X = A⊕B, Y = (B,X),
Z = (A,X).

❼ Let A and B be uniform bits and let X = A ⊕ B,
Y = B, Z = A⊕X to recover (5).

❼ X is a uniform bit and Y =X = Z to recover (6).

❼ To recover vectors (7) and (8), A or B are taken
to be a uniform bit, and X = A = Z or X = B = Y
respectively. The remaining variable is determinis-
tic.

❼ Entropy vectors (9)-(11) are obtained by choosing
either X, Y , or Z respectively to be uniform bits
and the other two variables to take a value deter-
ministically.

We next show that in all three examples the Shannon
outer approximation also coincides with the set of com-
patible entropy vectors in the quantum case Γ∗M (CQ).
For this, we rely on the facet description of the respective
cones and show that each of the inequalities also holds in
the quantum case.
1. For the instrumental scenario of Figure 4(a) the

only inequality in addition to the Shannon inequalities
for three observed variables is I(X ∶ ZY ) ≤ H(Z) [24].
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This holds in the quantum case because

I(X ∶ ZY ) ≤ I(X ∶ ZAY )
≤H(X) +H(Z) +H(AY ) −H(XZAY )
≤H(Z) +H(XAY ) −H(XZAY )
≤H(Z),

where the first inequality is a DPI, then we use submod-
ularity, the independence of X and AY and monotonicity
for the cq-state ρXZAY

.

2. For the Bell scenario of Figure 4(b) the only con-
straints (in addition to the four variable Shannon in-
equalities) are the independencies I(W ∶ Y Z) = 0 and
I(Z ∶WX) = 0, which hold in the quantum case.

3. For the causal structure of Figure 4(c) the only
additional inequality is I(Y ∶ Z ∣X) ≤ H(X) [24]. This
holds in the quantum case because

I(Y ∶ Z ∣X)
≤ I(Y ∶ BZ ∣X)
≤ I(AY ∶ BZ ∣X)
≤H(AY X) +H(BZX) −H(X) −H(AY BZ)
=H(AY X) +H(BZX) −H(X) −H(AY ) −H(BZ)
≤H(X),

where the first two inequalities are DPIs and the third
holds by monotonicity. The equality holds because AY

and BZ are independent and the last inequality follows
from two submodularity constraints.

Appendix D: Inner approximation to Γ∗M (ÎC
C)

Computing an outer approximation in terms of Shan-
non and independence (in)equalities as well as including
all permutations of the Ingleton inequality for four of the
five variables, yields a cone with 46 extremal rays. In the
following, we list an entropy vector on each such extremal
ray, with components

(H(X0),H(X1),H(Z),H(Y ),H(X0X1),H(X0Z),
H(X0Y ),H(X1Z),H(X1Y ),H(ZY ),H(X0X1Z),
H(X0X1Y ),H(X0ZY ),H(X1ZY ),H(X0X1ZY )),

where rays that are obtained from others by permuting
X0 and X1 are omitted.

(1) 111111111111111

(2) 111011111111111

(3) 101111111111111

(4) 110011111011111

(5) 101011110111111

(6) 001101111111111

(7) 100011100011101

(8) 001001010110111

(9) 000100101101111

(10) 111122222122222

(11) 111112222222222

(12) 111112121221222

(13) 101112111221222

(14) 101112211222222

(15) 111022121122222

(16) 011211222222222

(17) 111212222222222

(18) 112122222222222

(19) 112123232333333

(20) 111222323233333

(21) 212123232332333

(22) 112123222332333

(23) 112123232332333

(24) 111122222233333

(25) 112223332333333

(26) 112223323333333

(27) 112123231332333

(28) 111122222232333

(29) 112223333333333

(30) 112223232332333

(31) 112323333333333

(32) 112223333443444

(33) 212134332343444

(34) 112323434444444.

We have identified probability distributions compatible

with ÎC
C

that reproduce vertices on each of the rays.
Hence the convex hull of these rays is an inner approx-

imation to Γ∗M (ÎCC). It is characterised by 23 classes

of inequalities, giving a total number of 35 inequalities
when including permutations. In the following we list
distributions recovering one vector on each extremal ray
(again not listing strategies for the rays that are obtained
from others by permuting X0 and X1). For this purpose,
let C1, C2, C3, C4, C5 and C6 be random bits and let ⊕
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denote addition mod 2.

❼ (1) Let Y = Z =X1 =X0 = C1.

❼ (2) Let Z = X1 = X0 = C1 and Y = 1; (3) let Y =
Z =X0 = C1 and X1 = 1.

❼ (4) Let X1 = X0 = C1 and Y = Z = 1; (5) let Z =
X0 = C1, Y = 1 and X1 = 1; (6) let Y = Z = C1 and
X1 =X0 = 1.

❼ (7) Let X0 = C1 and Y = Z = X1 = 1. (8)-(9) are
permutations of this.

❼ (10) Let X0 = C1, X1 = C2 and Y = Z = X0 ⊕X1;
(11) Let X1 = X0 = C1, let Y = A = C2 and Z =
X1 ⊕A.

❼ (12) Let X1 = X0 = C1, A = C2, Z = X1 ⊕ A and
Y = Z ⊕A.

❼ (13) LetX0 = C1 andX1 = 1, let A = C2, Z =X0⊕A
and Y = Z ⊕A.

❼ (14) Let X0 = C1 and X1 = 1, let Y = A = C2 and
Z = X0 ⊕ A; (15) let X0 = C1 and X1 = C2, let
Z =X0 ⊕X1 and Y = 1.

❼ (16) LetX0 = 1 andX1 = C1, let A = C2, Z =X1⊕A
and Y = (A,Z ⊕A).

❼ (17) Let X0 =X1 = C1, let A = C2, Z =X1 ⊕A and
Y = (A,Z ⊕A).

❼ (18) Let X0 = C1 and X1 = C2, let Z = (Z1, Z2) =(X0,X1) and Y = Z1 ⊕Z2.

❼ (19) Let X0 = C1, X1 = C2 and A = C3, let Z =
(X0 ⊕ A,X1 ⊕ A) and Y = A; (20) let X0 = C1,
X1 = C2 and A = C3, let Z = X0 ⊕ X1 ⊕ A and
Y = (A,Z ⊕A).

❼ (21) Let X0 = (C1, C2), X1 = C1 and A = C3, let
Z = (Z1, Z2) = (C2 ⊕A,X1 ⊕A) and Y = Z1 ⊕A.

❼ (22) Let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0 ⊕A,X1) and Y = Z1 ⊕Z2 ⊕A.

❼ (23) Let X0 = (C1, C2), X1 = (C3, C4) and A =
(C5, C6), let Z = (Z1, Z2, Z3, Z4) = (C1 ⊕ C5, C2 ⊕
C6, C3⊕C6, C4⊕C5⊕C6) and Y = (Z1⊕Z3⊕C5⊕
C6, Z2 ⊕Z4 ⊕C5).31

❼ (24) Let X0 = C1, X1 = C2 and A = C3, let Z =
X0 ⊕X1 ⊕A and Y = A.

❼ (25) Let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0 ⊕A,X1 ⊕A) and Y = (A,Z2 ⊕A);
(26) let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0 ⊕A,X1) and Y = (Z1, Z2 ⊕A).

31 Note that the entropy values here are double the ones given in
the description of the extremal ray.

❼ (27) Let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0 ⊕A,X1 ⊕A) and Y = Z2 ⊕A.

❼ (28) Let X0 = C1, X1 = C2 and A = C3, let Z =
X0 ⊕X1 ⊕A and Y = Z ⊕A.

❼ (29) Let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0⊕A,X1⊕A) and Y = (Z1⊕Z2⊕A,A);
(30) Let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0⊕A,X1⊕A) and Y = (Z1⊕A,Z2⊕A);
(31) let X0 = C1, X1 = C2 and A = C3, let Z =
(Z1, Z2) = (X0 ⊕A,X1 ⊕A) and Y = (Z1 ⊕A,Z2 ⊕
A,A).

❼ (32) Let X0 = C1, X1 = C2 and A = (C3, C4), let
Z = (Z1, Z2) = (X0⊕C3,X1⊕C4) and Y = (C3, Z1⊕
Z2 ⊕C3 ⊕C4); (33) let X0 = (C1, C2), X1 = C3 and
A = C4, let Z = (Z1, Z2) = (C1 ⊕X1, C2 ⊕ A) and
Y = Z1 ⊕Z2 ⊕A.

❼ (34) LetX0 = C1, X1 = C2 and A = (C3, C4), let Z =(Z1, Z2) = (X0⊕C3,X1⊕C4) and Y = (C3, C4, Z1⊕
Z2 ⊕C3 ⊕C4).

The searches for these distributions were performed by
hand; they could, however, also be straightforwardly au-
tomated.

The Shannon outer approximation to Γ∗M (ÎCC) shares
the 46 extremal rays of the inner approximation (given
above) but has six additional ones, where in the following
we list one vector on each ray, omitting rays obtained
through permutation of X0 and X1 as above,

(35) 222233334344444

(36) 222233343344444

(37) 223234343554555

(38) 223244343454555.

We can show that these vectors are all outside Γ∗M (ÎCC),
by resorting to non-Shannon inequalities. The Shannon
outer approximation is characterised by 19 classes of in-
equalities, or a total of 29 inequalities including permu-
tations.

Appendix E: Proof of Proposition 9

In the following we prove Proposition 9. First, we have
computed the 7 extremal rays of ΓI

M (CC
3 ). We list one
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vector on each such extremal ray in the following32:

(1) 1112222

(2) 0010111

(3) 0101011

(4) 1001101

(5) 0111111

(6) 1011111

(7) 1101111.

These rays can also be analytically shown to be the ex-
tremal rays of ΓI

M (CC
3 ).33 For each extremal ray we

show how to generate a probability distribution P ∈
PM (CC

3 ) whose entropy vector v ∈ Γ∗M (CC
3 ) lies on the

ray. To do so, let A, B and C be uniform random bits.

❼ (1): Take X = C, Z = A and Y = A ⊕ C where ⊕
stands for addition modulus 2.

❼ (2): Take Z = A and let X = 1 and Y = 1 determin-
istic. (3) and (4) are permutations of this.

❼ (5): Choose Y = A = Z and let X = 1 deterministic.
(6) and (7) are permutations of this.

In this way, all extremal rays of ΓI
M (CC

3 ) are achieved

by vectors in Γ∗M (CC
3 ) and, by convexity of Γ∗M (CC

3 ),
we have ΓI

M (CC
3 ) ⊆ Γ∗M (CC

3 ).
To show that the inclusion is strict, let A, B and

C be uniform random bits. Let X = AND(B,C),
Y = AND(A,C) and Z = OR(A,B). The marginal dis-
tribution PXYZ ∈ PM (CC

3 ) leads to an entropy vector
v1 = (0.81, 0.81, 0.81, 1.55, 1.5, 1.5, 2.16) and an in-
teraction information of I(X ∶ Y ∶ Z) ≈ 0.04 > 0 (where
all numeric values are rounded to two decimal places).

Hence, v1 ∈ Γ∗M (CC
3 ) but v1 ∉ ΓI

M (CC
3 ) and therefore

ΓI
M (CC

3 ) ⊊ Γ∗M (CC
3 ).

Appendix F: Proof of Proposition 11

In this section, we prove Proposition 11 based on rea-

soning from [52]. There, the idea is that in C
Q
3 one

can take X and Y to correspond to two bits, which
we call (X̃, B̃) and (Ỹ , Ã) respectively. The quantum
state corresponding to node C is a maximally entangled
state ΨC = 1√

2
(∣01⟩ − ∣10⟩), the first half of which is the

subsystem to CX and the second half is CY . A and B
can be taken to be uniform classical bits. We introduce

32 As usual, we order the components as(H(X),H(Y ),H(Z),H(XY ),H(XZ),H(Y Z),H(XY Z)).
33 To do so, note that in seven dimensions seven inequalities can

lead to at most seven extremal rays (choosing six of the seven to
be saturated). One can then check that each of the claimed rays
saturates six of the seven inequalities constraining ΓI

M (CC
3 ).

Πθ = ∣θ⟩⟨θ∣, where ∣θ⟩ = cos( θ2) ∣0⟩+sin( θ2) ∣1⟩, and the four
POVMs

E0 = {Π0,Ππ} E1 = {Ππ/2,Π3π/2}
F0 = {Ππ/4,Π5π/4} F1 = {Π3π/4,Π7π/4} .

Consider a measurement on the CX subsystem with
POVM EB (i.e., if B = 0 then E0 is measured and other-
wise E1), and likewise a measurement on CY with POVM

FA. Let us denote the corresponding outcomes X̃ and
Ỹ . With this choice PX̃Ỹ∣AB violates the CHSH inequal-

ity [12]. The observed variables are then X = (X̃, B̃),
Y = (Ỹ , Ã) and Z = (A′,B′), with the correlations set up

such that B′ = B̃ = B and A′ = Ã = A. In essence the rea-
son that this cannot be realised in the causal structure
CC

3 is the CHSH violation. Note though that it is also
important that information about A is present in both Y
and Z (and analogously for B). If for example, we con-

sider the same scenario but with Y = Ỹ then we could
mock-up the correlations classically. This can be done by
removing A, replacing B with (B1,B2) and taking B1,B2

and C to each be a uniform random bit. We can then
take Y = C, Z = (B1,B2) and X = (f(C,B1,B2),B1),
where f is chosen appropriately. Since f can depend on
all of the other observed variables it can generate any
correlations between them34. In the causal structure C3,
taking Ã = A′ ensures that these are shared through A
and hence information about them cannot be used to
generate X.
Our Proposition 11 requires a restriction of Z to one

bit of information, which we prove to be possible in the
following.

Proof of Proposition 11. First, since all classical dis-
tributions can be realised using quantum systems,

PM (CC
3 ) ⊆ PM (CQ

3 ). We now show that this inclusion
is strict in the case where two nodes output two bits and
one node outputs only one. To do so, we consider the
setup in Figure 6 of Section VA, taking Z = AND(A,B),
Ã = A, B̃ = B and PX̃Ỹ∣ÃB̃ to violate the CHSH inequal-

ity. This yields an observed distribution of the form

PÃB̃X̃ỸZ = 1

4
PX̃Ỹ∣ÃB̃δZ,AND(Ã,B̃) . (F1)

In a slight abuse of notation we refer to this as PXYZ.
We start with the following lemma in which we ignore X̃
and Ỹ .

Lemma 12. If PXYZ ∈ PM (CC
3 ), then PÃ∣AC = PÃ∣A and

PB̃∣BC = PB̃∣B.

Proof. Due to the causal constraints we can write

PZÃB̃ =∑
abc

PZ∣abPÃ∣acPB̃∣bcPA(a)PB(b)PC(c).

34 This is like playing the CHSH game but where Alice knows Bob’s
input and output in addition to her own.
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Because Z = AND(Ã, B̃), we can derive the following two
conditions:

1. Using PZÃB̃(0,1,1) = 0, it follows that for each
triple (a, b, c) either PZ∣ab(0) = 0 or PÃ∣ac(1) = 0

or PB̃∣bc(1) = 0.
2. Using PZÃB̃(1,0,0) = PZÃB̃(1,0,1) =

PZÃB̃(1,1,0) = 0, it follows that for
each triple (a, b, c) either PZ∣ab(1) = 0 or
PÃ∣ac(1) = PB̃∣bc(1) = 1.

We first argue that Z is a deterministic function of A and
B, i.e., PZ∣ab ∈ {0,1} for all pairs (a, b). From condition 2
we know that either PZ∣ab(1) = 0 (and thus PZ∣ab(0) = 1)
deterministically, or that PÃ∣ac(1) = PB̃∣bc(1) = 1. But in
the latter case condition 1 implies that PZ∣ab(0) = 0 (and
thus PZ∣ab(1) = 1).
Now let us consider the two cases (a) PZ∣ab(1) = 1; and

(b) PZ∣ab(1) = 0 separately.

(a) Let (a, b) be such that PZ∣ab(1) = 1. According to
condition 2, PÃ∣ac(1) = PB̃∣bc(1) = 1 for all c, and thus we

have PÃ∣ac = PÃ∣a as well as PB̃∣bc = PB̃∣b.
(b) Let (a, b) be such that PZ∣ab(1) = 0. Then PZ∣ab(0) = 1
and thus by condition 1 for all c either PÃ∣ac(1) = 0 or

PB̃∣bc(1) = 0. We further divide into two cases: either (i)

(a, b) are such that PZ∣ab′(1) = 0 for all b′ and PZ∣a′b(1) =
0 for all a′; or (ii) they are not.

(ii) Suppose ∃b′ such that PZ∣ab′(1) = 1. In this case
PÃ∣ac(1) = 1 for all c due to condition 2 and thus from

condition 1 we have PB̃∣bc(1) = 0. Thus for such pairs

(a, b), the relations PÃ∣ac = PÃ∣a as well as PB̃∣bc = PB̃∣b
hold. Symmetric considerations can be made in the case
where ∃a′ such that PZ∣a′b(1) = 1 instead.

(i) It cannot be the case that all pairs (a, b) have
PZ∣ab′(1) = 0 for all b′ and PZ∣a′b(1) = 0 for all a′
(otherwise PZ(1) = 0). Hence there exists (a′′, b′′) for
which PZ∣a′′b′′(1) = 1. By condition 2, this implies that
PÃ∣a′′c(1) = PB̃∣b′′c(1) = 1 for all c. Thus, as PZ∣ab′′(1) = 0
and PB̃∣b′′c(1) = 1, it follows from condition 1 that

PÃ∣ac(1) = 0 for any c; PB̃∣bc(1) = 0 follows analogously,

which concludes the proof.

To prove the proposition, we will suppose that PXYZ ∈PM (CC
3 ) and derive a contradiction.

First note that the previous lemma together with the
form of CC

3 implies

PÃ∣C = PÃ, and PB̃∣C = PB̃ . (F2)

Furthermore, from PXYZ ∈ PM (CC
3 ) we have

PÃB̃X̃Ỹ =∑
c

PC(c)PÃ∣cPB̃∣cPX̃Ỹ∣ÃB̃c

which, using (F2), and the form of CC
3 can be rewritten

PÃB̃X̃Ỹ =∑
c

PC(c)PÃPB̃PX̃∣B̃cPỸ∣Ãc .

However, that PX̃Ỹ∣ÃB̃ violates a Bell inequality means

that this equation cannot hold, establishing a contradic-
tion.
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