
This is a repository copy of How Short-Lived Ikaite Affects Calcite Crystallization.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/127900/

Version: Accepted Version

Article:

Besselink, R, Rodriguez-Blanco, JD, Stawski, TM et al. (2 more authors) (2017) How 
Short-Lived Ikaite Affects Calcite Crystallization. Crystal Growth & Design, 17 (12). pp. 
6224-6230. ISSN 1528-7483 

https://doi.org/10.1021/acs.cgd.7b00743

© 2017 American Chemical Society. This is an author produced version of a paper 
published in Crystal Growth & Design. Uploaded in accordance with the publisher's 
self-archiving policy.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


Subscriber access provided by UNIVERSITY OF LEEDS

Crystal Growth & Design is published by the American Chemical Society. 1155
Sixteenth Street N.W., Washington, DC 20036
Published by American Chemical Society. Copyright © American Chemical Society.
However, no copyright claim is made to original U.S. Government works, or works
produced by employees of any Commonwealth realm Crown government in the course
of their duties.

Article

How short-lived ikaite affects calcite crystallisation
R. Besselink, J. D. Rodriguez-Blanco, T. M. Stawski, L. G. Benning, and D. J. Tobler

Cryst. Growth Des., Just Accepted Manuscript • DOI: 10.1021/acs.cgd.7b00743 • Publication Date (Web): 19 Sep 2017

Downloaded from http://pubs.acs.org on September 29, 2017

Just Accepted

“Just Accepted” manuscripts have been peer-reviewed and accepted for publication. They are posted
online prior to technical editing, formatting for publication and author proofing. The American Chemical
Society provides “Just Accepted” as a free service to the research community to expedite the
dissemination of scientific material as soon as possible after acceptance. “Just Accepted” manuscripts
appear in full in PDF format accompanied by an HTML abstract. “Just Accepted” manuscripts have been
fully peer reviewed, but should not be considered the official version of record. They are accessible to all
readers and citable by the Digital Object Identifier (DOI®). “Just Accepted” is an optional service offered
to authors. Therefore, the “Just Accepted” Web site may not include all articles that will be published
in the journal. After a manuscript is technically edited and formatted, it will be removed from the “Just
Accepted” Web site and published as an ASAP article. Note that technical editing may introduce minor
changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers
and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors
or consequences arising from the use of information contained in these “Just Accepted” manuscripts.



 How short	lived ikaite affects calcite crystallisation  
�

����������	

�
�������������������	��

����
�������������
�

�
���������		�	�

�������
��	�������������

��

 

a
German Research Center for Geosciences, GFZ, Telegrafenberg, 14473, Potsdam, Germany 

b
Nano	Science Center, Department of Chemistry, University of Copenhagen, Copenhagen, Denmark 

(*Corresponding Author: dominique.tobler@nano.ku.dk) 

c
School of Natural Sciences, Department of Geology, Trinity College Dublin, Dublin, Ireland. 

d
Department of Earth Sciences, Free University of Berlin, 12249 Berlin, Germany 

e
School of Earth and Environment, University of Leeds, Leeds, United Kingdom 

 

 

 

The pathways of CaCO3 crystallisation are manifold, 

often involving one or several metastable amorphous 

or nanocrystalline intermediate phases. The presence 

of such intermediates is often overlooked, because 

they are short	lived and/or occur at small molar 

fractions. However, their occurrence does not just 

impact the mechanisms and pathways of formation of 

the final stable CaCO3 phase, but also affects their 

crystal size, shape and structure. Here we document 

the presence of a short	lived intermediate through �	�

���� and time	resolved small and wide angle X	ray 

scattering (SAXS/WAXS) combined with high 

resolution electron microscope observations. When 

ikaite forms concomitant with the dissolution of 

amorphous calcium carbonate (ACC) but prior to 

calcite formation, fairly large glendonite	type calcite 

crystals grow despite the presence of citrate ligands 

that usually reduce growth rate. These were ideal 

seeding crystals for further crystallization from 

supersaturated ions in solution. In contrast, in the 

absence of ikaite the crystallisation of calcite 

proceeds through transformation from ACC, resulting 

in fine	grained spherulitic calcite with sizes ≈ 8 times 

smaller than when ikaite was present. Noteworthy is, 

that the formation of the intermediate ikaite, although 

it consumes less than 3 mol % of the total precipitated 

CaCO3, still clearly affected the calcite formation 

mechanism.  
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Abstract 

The pathways of CaCO3 crystallisation are manifold, often involving one or several metastable 

amorphous or nanocrystalline intermediate phases. The presence of such intermediates is often 

overlooked, because they are short	lived and/or occur at small molar fractions. However, their 

occurrence does not just impact the mechanisms and pathways of formation of the final stable 

CaCO3 phase, but also affects their crystal size, shape and structure. Here we document the 

presence of a short	lived intermediate through �	����� and time	resolved small and wide angle X	

ray scattering (SAXS/WAXS) combined with high resolution electron microscope observations. 

When ikaite forms concomitant with the dissolution of amorphous calcium carbonate (ACC) but 

prior to calcite formation, fairly large glendonite	type calcite crystals grow despite the presence 

of citrate ligands that usually reduce growth rate. These were ideal seeding crystals for further 

crystallization from supersaturated ions in solution. In contrast, in the absence of ikaite the 

crystallisation of calcite proceeds through transformation from ACC, resulting in fine	grained 

spherulitic calcite with sizes ≈ 8 times smaller than when ikaite was present. Noteworthy is, that 

the formation of the intermediate ikaite, although it consumes less than 3 mol % of the total 

precipitated CaCO3, still clearly affected the calcite formation mechanism.  

Introduction 

CaCO3 minerals are widespread in nature where they play a pivotal role in biomineralisation 

processes and thus in the carbon cycle.
1
 They are also important to industry where they are used 

for the production of paint, ceramics, paper, drugs, food supplements, abrasives etc.
2
 In many 

natural systems CaCO3 crystallizes as the thermodynamically most stable polymorph calcite. 

However, CaCO3 crystallization pathways are diverse and complex because they are sensitive to 

many parameters, including temperature, pressure pH and the presence of impurities.
3–5

 From a 

Page 3 of 25

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

kinetic point of view, it is very difficult to form highly symmetrical and completely dehydrated 

calcite through a simple reaction pathway. In contrast, metastable CaCO3 phases are often more 

easily formed, either reduced interfacial energy of metastable phases
6
 or smaller degree of 

dehydration required for formation.
7
   

Understanding of CaCO3 crystallisation pathways, particularly when they involve one or more 

metastable precursor(s), is important because these pathways determine the size, shape and 

properties of the final stable calcite (or aragonite) crystals, found in soils, sediments, biominerals 

or synthesised in industrial processes. For example, when calcite forms following the breakdown 

of ACC, it commonly shows spherulitic morphologies.
10	14

 This is explained by (1) a large 

solubility difference between the ACC and the crystalline polymorphs,  and (2) the incorporation 

or adsorption of impurities blocking conventional calcite growth sites, leading to a nucleation 

controlled growth mechanism and formation of intertwined nanocrystals.
4,5,8,9

 In contrast, when 

calcite forms through pseudomorphic transformation of ikaite, it exhibits the characteristic 

bipiramidal or hedgehog shaped morphology of ikaite, commonly described as glendonite.
15–18

 

While the ikaite shape is preserved in this transformation to calcite, the molar volume is 

substantially reduced, by 76% (ikaite: ISCD 31305
19

 and calcite: AMSCD 0000098
20

). As a 

result glendonites are highly porous, and they also often retain some of the ikaite structural water 

within the newly formed calcite crystal.
18,20

       

These examples give a small glimpse into the large diversity in CaCO3 crystallization 

pathways and show how minute changes can affect the properties of the stable end material, 

including porosity, grain size, mechanical strength, morphology, etc. Understanding, these 

mechanisms at the nanoscale is key towards designing taylor	made CaCO3 polymorphs for 

various industrial applications. Furthermore, being able to understand how the crystallization 
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history is preserved in the final observed CaCO3 polymorph, helps to reconstruct its formation 

conditions. For example, porous glendonite polymorphs are paleoclimatic indicators of low	

temperature condition, under which ikaite was formed.
21

  

Here, we investigated the role that short	lived ikaite has during the formation of calcite via 

ACC by means of synchrotron based small and wide angle X	ray scattering at temperatures 

between 2 and 12 °C. In our previous study, we documented that in the presence of magnesium
22

 

or citrate,
23

 ACC directly crystallises to calcite, with no vaterite intermediate. We used here a 

similar set	up to the above mentioned citrate study but ran the experiments at a lower 

temperatures to facilitate ikaite formation. We discovered that only a high citrate (CIT) 

concentration (CIT/Ca = 100%) facilitated the formation of ikaite besides ACC, yet that this was 

short	lived. In contrary, at lower citrate concentration (CIT/Ca = 50%) ACC transformed directly 

into calcite without the ikaite intermediate. Although ikaite formation was short	lived and 

included < 3 mol% of the total precipitated CaCO3, it strongly changed the calcite crystallization 

mechanism and kinetics and led to the growth of far larger calcite crystals.            

 

   

Methods 

The formation and crystallization of CaCO3 phases was studied in the presence of citrate (CIT; 

C6H5O7
3	

) by mixing equal volumes of a 0.05
 
M CaCl2 solution and a 0.05

 
M Na2CO3 solution 

with either 0.025 or 0.050 M monohydrate citric acid (corresponding to 50 or 100% CIT/Ca). 

Stock solutions were prepared using reagent grade chemicals and ultrapure deionized water 

(MilliQ, resistivity > 18 MN cm). CIT	containing carbonate solutions were pH adjusted to 11.2 

(2 M NaOH) to match the pH of the pure Na2CO3 solution. The formation and crystallization of 
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CaCO3 phases was followed �	����� and in a time	resolved mode by using small	 and wide	angle 

X	ray scattering (SAXS/WAXS) at beamline I22 at the Diamond Light Source Ltd. (UK). For 

each experiment, equal volumes of the calcium and CIT	containing carbonate solution, both pre	

cooled to 5 °C, were injected into a 3	neck reactor flask (250 mL) using a remotely controlled 

peristaltic pump (Gilson Mini Puls 3) at 200 mL/min. The resulting mixed liquid/suspension was 

continuously stirred at 300 rpm and circulated at a flow rate of 50 mL/min through a flow	

through cell containing a borosilicate glass capillary (d = 1.5 mm) that was aligned perpendicular 

to the X	ray beam. To avoid rapid warming up of the solution to the temperature of the beamline 

hutch (21 °C), the reactor was placed in a pre	cooled oil bath with an initial temperature of 1 °C. 

After 1 hour the solutions reached a temperature of 14 °C and a typical time trend for the change 

in solution temperature during an experiment is shown in Figure 1A. 

SAXS/WAXS data were acquired by using a monochromatic X	ray beam at 16 keV. Two	

dimensional SAXS intensities were collected with a Dectris Pilatus 2M (2D large area pixel	

array detector
24

). Transmission was measured by means of a photodiode installed in the beam	

stop of the SAXS detector. A sample	to	detector distance of 9.22 m allowed for a usable q	range 

of 0.055 < q < 2.187 nm
	1

. The scattering	range at small	angles was calibrated against silver 

behenate
25

 and dry collagen standards.
26

 In all the cases the recorded 2D scattering patterns were 

reduced to 1D scattering curves, normalised and corrected for transmission, and background–

corrected. For background subtraction we used a scattering from a cell filled with water. The 

intensity scale was calibrated to absolute units by using a glassy carbon reference.
27

 Data 

acquisition was performed in experiments that lasted for up to 2 hours and spectra were recorded 

at a time resolution of 30 seconds per frame. 
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Simultaneously, two	dimensional WAXS intensities were collected with a Decris Pilatus 300k 

detector (2D large	area pixel array detector,
24

 which was calibrated with synthetic and highly 

crystalline silicon (NIST SRM 640C). This silicon standard was used to determine the 

instrumental broadening (P�instrument = 0.17 nm
	1

) and the corrected peak width (P�corrected
2

 = 

P�measured
2
  	 P�instrument

2
) was used to determine crystallite size by the Scherrer equation.

28
 The 

WAXS detector covered the �	range of 23.9 < � < 38.7 nm
	1

. All recorded patterns were 

normalised and background	corrected using water. For all samples a broad correlation peak with 

a maximum at � ≈ 29 nm
	1

 remained present, which we related to typical Ca	O distances within 

ACC: � ≈ 0.24 nm.
23

 The shape of this amorphous background was determined over the initial 10 

frames, averaged, smoothed and subtracted from the subsequent frames in the ratios individually 

optimized for all frames.  

A Principal Component Analysis (PCA) procedure from PTC Mathcad v15.0 was used to 

determine these ratios, as well as to identify the contributions from crystalline CaCO3 phases 

present in the diffraction signal. This procedure allowed us to describe a large dataset based on a 

limited set of principal components. Every principal component was represented by a vector of 

scores and loadings. The score vectors represent characteristic diffraction patterns of a principal 

component, which in our experiments were assigned to pure CaCO3 phases (e.g., calcite, ikaite). 

The loading vectors represent the contribution of a given phase at various reaction times. These 

contribution profiles were normalised against the overall peak area and the number of electrons 

per formula unit of ikaite and calcite, so that the ratio between both profiles was proportional to 

their molar ratio. 
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The final precipitates form the �	� ���� and real	time experiments were separated from the 

solutions by using vacuum filtration, then rinsed with isopropanol to remove remaining water 

and quickly dried by blowing air over the solids. Powder X	ray diffraction (XRD, Bruker D8, Co 

Kα1,2 radiation, 0.02° from 10 to 70° 2θ, 1° min
−1

) was used to verify the nature of the CaCO3 

phases present at the end of the experiment, while scanning electron microscopy (SEM, FEI 

Quanta 3D, 5 kV) and transmission electron microscopy (TEM, Phillips CM 20, 20 kV) were 

utilized to characterize their crystal size and morphology.  

 

 

 

������� �. (A) Solution temperature as a function of experimental reaction time. (B) SAXS 

patterns of CaCO3 suspensions 0.5 and 0.33 min after mixing for 50% and 100% CIT/Ca 
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respectively, (C) 2D WAXS intensity map for 100% CIT/Ca with the scale increasing from black 

to red, orange, yellow and white, with �	spacing (nm
	1

) on the horizontal axis and reaction time 

(min) on the vertical axis. This set of WAXS scattering intensities was deconvoluted by means of 

principal component analysis into two characteristic patterns, namely: (I) the WAXS pattern of 

principal component 2 was assigned to ikaite (see Miller indices) and (II) the WAXS pattern of 

principal component 1 was assigned to calcite (see Miller indices), where (III) represents the 

time resolved molar ratios of ikaite and calcite with respect to calcite at � = 60 min. Please note 

that ikaite and calcite molar ratios are scaled on separate Y	axes. 

Results and Discussion 

 

For the tested CIT/Ca ratios, ACC formed within the first 30 seconds after solution mixing as 

indicated by the sharp increase to  �∝	q-4�in the SAXS intensity in the low	��regime (for � < 1 

nm
	1

 Figure 1B) and the absence of any crystalline phases in the WAXS pattern (Figure 1C). 

Since this curve does not level off for lower q	values within the measured range, the particles 

within these suspensions must have reached particle radii larger than 50 nm (≈ π /�min). XRD 

analyses performed on these initial precipitates (prepared offline, under identical conditions) 

confirmed that the ACC material was characterized only by the presence of broad correlation 

peaks in the patterns. 

The so formed ACC remained stable for approximately 20 minutes prior to crystalline CaCO3 

formation. From our previous work
23

 we had expected that in the presence of CIT, ACC would 

crystallize directly to calcite, which indeed we observed for the 50% CIT/Ca experiment (Figure 

2A). However, in the 100% CIT/Ca experiment, the time	resolved WAXS pattern (Figure 1C) 

showed the presence of two separate crystalline phases distinguished by the PCA analyses that 

could be assigned to ikaite (Figure 1C	I) and calcite (Figure 1C	II), respectively. In this 
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experiment, we observed the formation of ikaite at � = 20 min (Figure 1C, 2A), when ACC 

presumably started to dissolve.
29

 Once formed, Ikaite continued to increase in volume fraction up 

to � = 30 min, after which calcite started to appear (Figure 1C, 2A). Thereafter, calcite steadily 

increased in its volume fraction concomitant with the decrease in ikaite volume fraction. This 

decrease lasted until � = 42 min, after which no more ikaite was detected. Nevertheless, calcite 

further increased in its volume fraction until � = 60 min. The matrix contribution profiles of 

calcite and ikaite (as obtained from PCA, Figure 1C	III, 2A) were normalised against the overall 

peak area and the number of electrons per formula unit, so that the ratio between both profiles 

was proportional to their molar ratio.  
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�������	
 (A	I) Time resolved molar ratios of ikaite and calcite for both 50% and 100% CIT/Ca, 

with respect to 100% CIT/Ca at � = 60 min. This was quantified by multiplying the contribution 

of a given principal component with the WAXS peak areas of the corresponding principal 

component, subsequently normalised against the number of moles electrons per molar unit of a 

given polymorph, and finally normalised against 100% CIT/Ca at � = 60 min. (A	II) Amplified 

graph for the molar ratio of Ikaite for 100% CIT/Ca (B) Saturation indices for calcium carbonate 
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polymorphs and Ca3CIT2·4H2O. Saturation indices were calculated with PHREEQC
30

 by using 

temperature dependent solubility products for calcite, vaterite and aragonite from 
31

 and for ACC 

from 
32

. (C) Crystallite size of calcite for both 50 and 100% CIT/Ca (PC1) and ikaite for 100% 

CIT/Ca (PC2) by using the Scherrer equation obtained from the time	resolved WAXS patterns. 

 

Consequently, the maximum molar fraction of ikaite present at � = 30 min could be estimated 

to be approximately 3% of the final amount of calcite (at � = 60 min). Moreover, by comparing 

the changes in molar ratios between calcite and ikaite (Figure 2A), we could estimate the 

percentage of calcite that formed directly as a result of the breakdown of ikaite. If we consider 

the 10 time frames spanning ��!�35 and 40 min, we observe that the maximum rate of ikaite 

depletion is still 15 times lower than the rate of calcite formation. In terms of molar ratios only 

6.4 % of the CaCO3 used for calcite formation were derived from ikaite, while the remaining 

93.6 % formed either from ACC or from the remnant supersaturated ions in the reacting solution.   

 

A comparison between both experiments revealed a three times larger initial rate of calcite 

formation for the 50% CIT/Ca ratio compared to the 100% CIT/Ca experiment (Figure 2A). In 

part, this is explained by the difference in the saturation indices, which at � = 4°C are 3.64 and 

3.24 for calcite at CIT/Ca ratios of 50% and 100%, respectively (Figure 2B). Additionally, it has 

been shown that citrate slows down both calcite nucleation and growth through adsorption, thus 

at the higher citrate concentration, calcite crystallization was hindered to a larger extent, leading 

to a slower calcite crystallisation rate. In addition, the calcite crystallite sizes were smaller at 

50% CIT/Ca (� ≈ 6 nm) compared to 100% CIT/Ca (� ≈ 18 nm, Figure 2C). This size difference 

may be explained by a reduced nucleation rate for an increased CIT/Ca ratio and/or a different 

crystallisation mechanism at 100% CIT/Ca, given the presence of ikaite.  Although the presence 
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of citrate reduces calcite crystallisation rates, this does not seem to affect the calcite crystal size, 

as shown in recent work.
33

 Calcite crystals became more elongated with increasing CIT/Ca, 

showing preferential growth in one direction due to citrate adsorption at	{101�4} steps, while the 

crystal volume remained constant.�

 

 

 

�

��������
 (A)
 
This procedure revealed the presence of small solid particles with a radius �V  = 

2.4 nm, (B) Zoom in of SAXS pattern in a to emphasize the shift in the lobe to lower �	values for 

increasing reaction times, the green and red arrows point to the bending point of lobes for � = 

23.5 and 60 min respectively (C) “Selected SAXS patterns at various times after mixing for the 

50% CIT/Ca experiment: the inset shows a SAXS pattern derived for the data at t = 24 min, from 

which the scattering at t = 22 min was subtracted, and this curve was fitted with a spherical form 
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function, which included polydisperisty with the Schultz	Zimm distribution.
34 

(D) Volume 

averaged particle size, �v, obtained from time resolved SAXS patterns. 
 

 

As mentioned above, no ikaite peaks were detected in WAXS patterns of the 50% CIT/Ca 

experiment. The direct transition from ACC to calcite is likely a result of ACC dissolution and 

nucleation and growth of calcite from solution. This is also suggested by the SAXS pattern from 

this experiment (Figure 3A), which showed the appearance of a new lobe with a bending or knee 

point at � ≈ 0.8 nm
	1

 for � = 24 min. This is indicative of an additional nucleation event, which in 

this experiment coincides with the nucleation of calcite. Fitting of this lobe revealed a volume 

averaged spherical particle radius of �V = 2.4 nm at � = 24 min (inset in Figure. 3A). This size 

may be close to the critical nucleus size of calcite, which seems consistent with molecular 

dynamic calculations which suggested that at a diameter below 3.8 nm calcite becomes 

thermodynamically unfavourable with respect to ACC with an optimal hydration ratio.
35

 As 

crystallization continues, these particles increased both in size and polydispersity as shown by 

the shift to lower �	values and the broadening of the lobe (see arrows Figure 3B).  

  One second before the onset of calcite crystallisation at � = 30 min for the 100% CIT/Ca 

experiment, a lobe with a bending point at � ≈ 0.075 nm
	1

 appeared in SAXS	pattern (Figure 

3C), which corresponded to presumably ikaite particles with a size of �V ≈ 40 nm. We did not 

observe such particles in an earlier stage despite the fact that ikaite was already observed after 20 

min, possibly due to an insufficient volume fraction of ikaite with respect to the ACC particle, 

that may dominate the SAXS patterns at earlier time frames. Moreover, these particles may be 

partially composed of ACC, but calcite was still absent at this stage.���  
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For increasing reaction times, as ikaite transforms to calcite, this lobe shifted to lower �	values 

corresponding to increasing particle sizes and lobes appeared in the patterns which positions 

corresponded to higher order oscillations of the same presumably spheroidal particles (see curve 

of � = 36 and 60 min Figure 3C and inlet). Meanwhile no new lobes appeared at lower �	range (� 

> 0.2 nm
	1

) in this experiment at the onset of calcite formation. Thus as calcite formed in the 

100% CIT/Ca experiment, its particle size remained fairly large (�V  > 40 nm) compared to the 

50% CIT/Ca experiment (3 ≤ �V ≤ 22 nm) as illustrated in Figure 3D. The absence of distinct 

and separated calcite nuclei could indicate that the calcite grew on ikaite or ACC surfaces 

without a separating double layer. “Complementary to these SAXS experiments, particle size and 

morphology were characterized ex	situ with SEM and TEM and these results indicate that in the 

50% CIT/Ca experiment, particle aggregates were more fine	grained (Figure 4A, B) and 

individual crystals were smaller (Figure 4C, D) compared to the 100% CIT/Ca. 
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��������
 SEM (A) and TEM (B) of calcite formed after 2 hours with 50% CIT/Ca, and SEM (C) 

and TEM (D) of calcite formed after 1 hour with 100% CIT/Ca.  

We summarized our findings in a schematic diagram (Figure 5). For both 50% and 100% 

CIT/Ca ratios, ACC aggregates with diameters larger than 100 nm formed almost 

instantaneously (Figure 5A). For the 50% CIT/Ca experiment, ACC transformed directly to 

calcite, without any other intermediate stages or any other metastable CaCO3 phases (Figure 5B, 

C). In contrast in the 100% CIT/Ca experiment, metastable ikaite formed and this transformed to 

calcite (Figure 5D	F).  

The calcite that nucleated in the 50% CIT/Ca experiment formed as small nanoparticles as 

revealed by a small lobe in the SAXS	pattern, which was clearly distinguished from its 

underlying baseline (Figure 3A, B). Due to the simultaneous particle growth and formation of 

new particle nuclei, the polydispersity increased (Figure 3D, 5C), which explains the diminishing 

lobe in the SAXS curve (Figure 3B, from green arrow to red arrow).   
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�������
 Illustration of particle formation for 50% and 100% CIT/Ca. (A) ACC particles were 

present immediately after mixing of the citrate/carbonate solution with the calcium solution for 

both CIT/Ca ratios. (B) In the 50% CIT/Ca experiment, nucleation of calcite nanoparticles was 

clearly visible in the SAXS pattern at 24 min. These calcite nanoparticles were potentially 

separated from the ACC particles by a low electron dense diffuse ion double layer, allowing 

them to be observed as individual entities within the SAXS pattern. (C) With time, a 

polydisperse mixture of calcite particles formed. No ikaite formed in this experiment. (D) In the 

100% CIT/Ca, ikaite nanocrystallites formed at 23 min that could not be distinguished as 

individual nanoparticles within the SAXS pattern. (E) Fairly monodisperse particles of ikaite 
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crystals at 30 min just before calcite nucleated. (F) Mixed ikaite/calcite particles at 35 min after 

mixing the solutions for 100% CIT/Ca.   

On the contrary, in the 100% CIT/ Ca experiment after ACC formation, only distinct 

nanoparticles of ikaite formed and the degree of polydispersity was reduced as the ikaite particle 

sizes grew with time (see lobes in the SAXS pattern Figure 3C). This change became more 

pronounced as the reaction proceeded and the ikaite particles continued to grow, and eventually 

when they started to transform after 30 min into calcite (Figure 5 D	F). Important to note is the 

fact that calcite did not form separate particles, but the newly forming calcite crystals co	existed 

with ikaite particle (Figure 5F). Thus, ikaite and calcite likely grew on top of each other without 

diffuse double layers in between. This made it practically impossible to distinguish them as 

individual particles in the SAXS or WAXS data. In the end stages of the reaction, all ikaite 

particles transformed into fairly monodisperse calcite particles with an �V = 95 nm. Noteworthy 

is that these sizes are roughly 8 times the sizes of the calcite particles that formed in the 50% 

CIT/Ca experiment (�V = 3	22 nm).  

In our experiment the ikaite	to	calcite formation is more complex than in previously reported 

experiments, since ikaite was not the only source of CaCO3 for calcite formation. The highest 

dissolution rate of ikaite was ≈ 15 times smaller than the calcite formation rate. Consequently, 

the majority of CaCO3 for calcite formation originated from the dissolution of the initially 

formed ACC and / or from remnant ions in solution. The so formed calcite and ikaite crystals are 

highly porous and similar to glendonite	type calcite polymorphs. Due to their high surface areas 

(see also Figure 4), such crystals are ideal seeds for further growth from Ca
2+ 

and CO3
2	

 in 

solution. Thus, even though ikaite was formed as a minor phase in our experiments, it acted as a 

seed crystal and likely played a crucial role in the calcite formation mechanism. The presence of 

Page 18 of 25

ACS Paragon Plus Environment

Crystal Growth & Design

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 

such seeding crystallites facilitated the formation of enlarged calcite crystallites (��! 20 nm) at 

100% CIT/Ca compared to the smaller calcite crystallite (� = 6 nm) at 50% CIT/Ca, where no 

ikaite formed. The increased calcite crystallite size for 100% CIT/Ca could potentially be 

explained by the increased solubility of calcite at the higher CIT/Ca ratio. However, previous 

experiments at 25 °C, where ACC transformed directly to calcite, without ikaite formation, 

revealed that the calcite crystallite size decreases with an increase in CIT/Ca ratio, due to an 

increasing calcite solubility.
23

 This is the opposite trend to what is observed here at reduced 

temperatures, further supporting that the presence of ikaite affected the final calcite crystallite 

size by acting as seeding material.   

As proposed by Sanchez	Pastor et al.
18

 the pseudomorphic ikaite	to	calcite transition may 

occur through an interface	coupled dissolution re	precipitation mechanism. However, our SAXS 

experiments did not provide any indication of the existence of a low electron density liquid	like 

interface that separates the calcite from the ikaite phase and facilitated its transformation 

mechanism. If such a liquid interface existed, its electron density must be close to the electron 

density of ikaite, as otherwise the SAXS	curves should provide evidence of its existence. 

Possibly, such liquid interfaces may exist, but with a similar composition and consequently a 

similar electron density as ikaite. This could mean that ikaite first melts to a highly 

supersaturated solution of one mol [Ca
2+

·CO3
2	

] per 6 mol H2O which subsequently immediately 

recrystallised into calcite. There is probably no need for additional water to be present at the 

ikaite	calcite interface, since the liquid interface can have the same composition as ikaite. This is 

consistent with previous research showing that no additional water was required for the ikaite	to	

calcite transformation.
18

 On the other hand the available amount of water in ACC is substantially 

lower (typically CaCO3·1 H2O). As a result the liquid interface between ACC and calcite 
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probably contains a higher water content than the adjacent ACC and calcite, which provided a 

more distinct contrast between the solids and the electron poor interface that separated them. As 

a consequence we can observe the formation of separated calcite nanoparticles in the 50% 

CIT/Ca experiment (in the absence of ikaite) with a distinct diffuse double layer, which had not 

been observed for the 100% CIT/Ca experiment.    

 

Conclusions 

As shown before calcite crystallization was retarded in the presence of citrate as a 

complexing/coordinating ligand in solution and consequently enhancing the lifetime of 

amorphous calcium carbonate (ACC). In the 50% CIT/Ca experiment, nanosized calcite entities 

(�V = 2.4 nm, � = 2.3 nm) nucleated after 22 min, which were seeding a fine	grained spherulitic 

calcite morphology with aggregated particles in a size range between 3.5 < � < 22 nm being 

composed of crystallites with a size of typically ��≈ 6 nm. 

At 100% CIT/Ca, ikaite formed concomitant with ACC dissolution and prior to calcite 

formation. Its formation was facilitated by the low temperature conditions and the presence of 

chelating citrate ligands that analogous to phosphate ligands retard the formation of anhydrous 

CaCO3. However, given the substantially lower transformation rate of ikaite versus the formation 

rate of calcite, it seems that only a minority (max 6.4%) of calcite was formed via ikaite as an 

intermediate. On the other hand, the pseudomorphic ikaite	to	calcite transition provide porous 

calcite crystals (glendonite polymorph) being ideal (high	surface area) seeding crystal for further 

crystallization from solution.       

The mechanism of calcite formation with a 100% CIT/Ca ratio is strikingly different as 

compared to the 50% CIT/Ca ratio. Unlike the 50% ratio, the 100% ratio did not reveal 
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nucleation of nanosized calcite crystals (�V = 2.4 nm), instead yielding substantially larger 

crystallite (� = 20 nm) and particle size (�V = 95 nm). The enlarged calcite crystallite size of 

100% CIT/Ca is most likely be explained by the presence of glendonite (porous calcite form 

ikaite as a parent) that serve as seeding crystallites 
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Synopsis: 

With a 100% citrate/Ca
2+

 ratio the formation of calcite was preceeded by short	lived ikaite at 

5°C. This led to substantially larger calcite particle morphology and crystallite sizes in 

comparison to the 50% citrate/Ca
2+ 

ratio, where no ikaite was observed. Short	lived ikaite may 

have provided seeding crystals enhancing crystal growth of calcite. 
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