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Abstract—An organization’s databases are often one of its
most valuable assets. Data engineers commonly use a relational
database because its schema ensures the validity and consistency
of the stored data through the specification and enforcement of
integrity constraints. To ensure their correct specification, indus-
try advice recommends the testing of the integrity constraints
in a relational schema. Since manual schema testing is labor-
intensive and error-prone, this paper presents DOMINO, a new
automated technique that generates test data according to a
coverage criterion for integrity constraint testing. In contrast to
more generalized search-based approaches, which represent the
current state of the art for this task, DOMINO uses tailored,
domain-specific operators to efficiently generate test data for
relational database schemas. In an empirical study incorporating
34 relational database schemas hosted by three different database
management systems, the results show that DOMINO can not only
generate test suites faster than the state-of-the-art search-based
method but that its test suites can also detect more schema faults.

I. INTRODUCTION

A relational database is often one of an organization’s

most valuable assets [1]. The integrity constraints specified

as part of a schema prevent the insertion of invalid data into a

relational database. For instance, “PRIMARY KEY” and “UNIQUE”

constraints ensure that data values are distinct, while arbitrary

“CHECK” constraints can impose restrictions on data values by,

as an example, requiring them to be in a specific range.

Even though there are many tutorials explaining how to

avoid making mistakes when designing a relational database

schema (e.g., [2]–[5]), data engineers may incorrectly specify

or omit integrity constraints. Since database management

systems (DBMSs) often interpret the SQL standard differently,

a schema may exhibit different behavior during development

and after deployment. Therefore, as advocated by industrial

practitioners [6], it is necessary to test a schema’s integrity

constraints to ensure that they behave as an engineer expects.

Since haphazard methods may overlook schema faults, prior

work presented a family of coverage criteria that support

systematic testing [7]. These criteria require the creation of

specific rows of database data that, when featured in SQL

INSERT statements, exercise integrity constraints as true or

false, or, test some particular property of the constraint. Fre-

quently, to satisfy these coverage requirements, certain values

may need to be identical to one another, different, or NULL,

across different rows of data. For example, to violate a primary

key (i.e., to exercise it as false), two rows of data need to be

created with the same values for the key’s columns. To satisfy

a UNIQUE constraint (i.e., exercise it as true), values across

rows need to be different. To violate a NOT NULL constraint, a

particular column must be NULL. Since it is challenging for a

tester to manually cover all of these requirements, prior work

presented a tool that automatically generates the tests [8].

Based on the Alternating Variable Method (AVM) [9], this

state-of-the-art method for generating schema tests is a search-

based one that receives guidance from a fitness function [7],

[10]. Yet, the generation of schema tests with search can be

slow, particularly when it must locate columns that need to

have identical values and then adjust those values until they

are the same. To aid the process, the AVM may be configured

to start with a series of “default” values, thus ensuring that

matches are likely from the outset. Yet, this can introduce a

lot of similarity across the different tests in the suite, hindering

both its diversity and potential fault-finding capability.

This paper shows how to improve the automated search for

schema test data by using a tailored approach, called DOMINO

(DOMain-specific approach to INtegrity cOnstraint test data

generation), that features operators specific to the problem

domain. Leveraging knowledge of the schema and a coverage

requirement, it explicitly sets data values to be the same,

different, or NULL, only falling back on random or search-based

methods when it must satisfy more arbitrary constraints.

Using 34 relational database schemas hosted by three dif-

ferent DBMSs (i.e., HyperSQL, PostgreSQL, and SQLite)

this paper experimentally compares DOMINO to both AVM

and a hybrid DOMINO-AVM method. The results show that

DOMINO generates data faster than both the state-of-the-art

AVM and the hybrid method, while also producing tests that

normally detect more faults than those created by the AVM.

The contributions of this paper are therefore as follows:

1) An informal analysis of why search-based and random

methods inefficiently generate tests for the integrity con-

straints in relational schemas (Sections II-B and II-C).

2) The DOMINO method that incorporates domain-specific

operators for finding suitable test data (Section III).

3) Experiments showing that DOMINO is both efficient (i.e.,

it is faster than the AVM at obtaining equivalent levels of

coverage) and effective (i.e., it kills more mutants than

does the AVM), while also revealing that DOMINO-AVM

is not superior to DOMINO (Section IV).

To support the replication of this paper’s experimental re-

sults and to facilitate the testing of relational database schemas

with DOMINO, we have integrated it into the SchemaAna-

lyst tool [8], making the complete system available at [11].



CREATE TABLE products ( CREATE TABLE orders (

product_no INTEGER PRIMARY KEY NOT NULL, order_id INTEGER PRIMARY KEY,

name VARCHAR(100) NOT NULL, shipping_address VARCHAR(100));

price NUMERIC NOT NULL,

discounted_price NUMERIC NOT NULL, CREATE TABLE order_items (

CHECK (price > 0), product_no INTEGER REFERENCES products,

CHECK (discounted_price > 0), order_id INTEGER REFERENCES orders,

CHECK (price > discounted_price)); quantity INTEGER NOT NULL,

PRIMARY KEY (product_no, order_id),

CHECK (quantity > 0));

(a) A relational database schema containing three tables.

1) INSERT INTO products(product_no, name, price, discounted_price) VALUES(10, 'abc', 2, 1); 3

2) INSERT INTO products(product_no, name, price, discounted_price) VALUES(20, 'def', 10, 9); 3

3) INSERT INTO orders(order_id, shipping_address) VALUES(100, 'uvw'); 3

4) INSERT INTO orders(order_id, shipping_address) VALUES(200, 'xyz'); 3

5) INSERT INTO order_items(product_no, order_id, quantity) VALUES(10, 100, 1); 3

6) INSERT INTO order_items(product_no, order_id, quantity) VALUES(10, 100, 2); 7

(b) An example test case that consists of INSERT statements for a database specified by the relational schema in part (a). Normally inspected by a tester who is checking schema

correctness, the 3 and 7 marks denote whether or not the data contained within each INSERT satisfied the schema’s integrity constraints and was accepted into the database.

1) INSERT INTO products ...
product_no name price discounted_price

v1 v2 v3 v4

2) INSERT INTO products ...
product_no name price discounted_price

v5 v6 v7 v8

3) INSERT INTO orders ...
order_id shipping_address

v9 v10

4) INSERT INTO orders ...
order_id shipping_address

v11 v12

5) INSERT INTO order_items ...
product_no order_id quantity

v13 v14 v15

6) INSERT INTO order_items ...
product_no order_id quantity

v16 v17 v18

(c) The vector ~v = (v1, v2, . . . , vn) representation used by random and fitness-guided search techniques for finding the test data for each INSERT forming the test in part (b).

Fig. 1. The Products relational database schema and an example test case.

II. BACKGROUND

This section introduces the problem of testing integrity

constraints for relational database schemas and the different

coverage criteria that have been developed for this purpose.

It explains how both random and search-based methods can

automatically create test data to obtain coverage, concluding

with an informal analysis of why these techniques are not

always efficient at generating test data for integrity constraints.

A. Schemas, Integrity Constraints, and Testing

Figure 1a shows SQL statements that create an example re-

lational database schema specifying the structure of a database

for managing a series of products and the related orders. The

schema has three tables, each involving a series of columns

(e.g., product_no and name for the products table). Every

column has a specific data type, for instance INTEGER or

VARCHAR(100); the latter a variable length string of up to 100

characters in length. Every table involves the definition of

integrity constraints, highlighted in the subfigure with a gray

background. All three tables have a primary key specifying a

certain set of columns that must have a distinct set of values

for each row. This means, for example, that there cannot

be rows with an identical combination of product_no and

order_no values in the order_items table. Several columns

are defined with a “NOT NULL” constraint, meaning that each

row has to have an actual value for that column. Furthermore,

the schemas define several “CHECK” constraints, or predicates

that must hold over the data in each row of a table. For

instance, discounted_price should always be less than price

in the products table. Finally, the schema has two foreign

keys, defined on the order_items table with the “REFERENCES”

keyword. Foreign keys link rows across tables, requiring

that specific non-NULL column values in each of the table’s

rows match particular column values in at least one row in

the referenced table. In Figure 1a, for instance, every non-

NULL product_no value in each row of the order_items table

must match an existing product_no in a row of products,

while every non-NULL order_id in each row of order_items

must match an existing order_id in a row of orders.

The Need to Test Integrity Constraint Definitions: Integrity

constraints protect the coherency, consistency, and validity of

data in a database [12], [13], encoding rules such as “orders



1: while ¬termination criterion 1: while ¬termination criterion 1: RANDOMIZE(~v)

2: RANDOMIZE(~v) 2: RANDOMIZE(~v) 2: while ¬termination criterion

3: i← 1; c← 0 3: COPYMATCHES(~v, r)

4: while c < n ∧ ¬termination criterion 4: RANDOMIZENONMATCHES(~v, r)

5: ~v′
← MAKEMOVES(vi) 5: SETORREMOVENULLS(~v, r)

6: if FITNESS(~v, r′) < FITNESS(~v, r) 6: SOLVECHECKCONSTRAINTS(~v, r)

7: ~v ← ~v′; c← 0

8: else

9: c← c + 1

10: i← (i mod n) + 1

(a) The AVM (b) Naive Random Search (c) The DOMINO Method

Fig. 2. Algorithms that automatically generate, according to some coverage criterion r, a vector ~v of variables appearing in the INSERT statements of a test
case for database schema integrity constraints. The AVM and naive random search are general-purpose algorithms that can be adapted to a wide variety of
problems, while DOMINO is an algorithm customized for automatically generating data to test the integrity constraints in a relational database schema.

must have a product” and “a product must have a non-zero

or non-negative price”. Any attempt to insert data into a table

that violates one or more of its schema’s integrity constraints

is rejected and the data is not admitted into the database.

Integrity constraints encode logic that is subject to faults, and

therefore they need to be tested [6]. For instance, a developer

could mis-specify a CHECK constraint, incorrectly formulate

the columns of a PRIMARY KEY, or forget to specify certain

integrity constraints altogether. These oversights could result

in errors if, for example, missing constraints were intended to

enforce aspects of data integrity such as unique user logins,

non-NULL passwords, or prices greater than zero. To compound

the problem, different DBMSs interpret the SQL standard

differently (e.g., SQLite allows NULL entries in primary keys

while most other DBMSs do not). This means that the behavior

of a schema should be tested if the DBMS hosting a database

is changed or differs between development and deployment.

Coverage Criteria for Integrity Constraint Testing: One

basis for generating a test suite is to “cover” each of the

integrity constraints and exercise them with test data that leads

to them being evaluated as true (i.e., the constraint is satisfied

and the data is inserted into the database) and false (i.e.,

the constraint is violated and the data is rejected). Figure 1b

shows an example test case for the schema in part (a) of the

figure, consisting of a series of INSERT statements. Assuming

an initially empty database, the test case violates the primary

key of the order_items table (i.e., it exercises it as false).

The final INSERT statement (no. 6) duplicates the values for

product_no and order_id that appeared in a previous INSERT

statement (no. 5) and is rejected by the DBMS (i.e., the data

is not inserted). To ensure that it is actually the primary key

that is violated, and not the foreign keys defined for this table,

the values used in the final INSERT must match values in the

products and orders table. Hence, the test involves a series

of “lead-up” INSERTs that change the initially empty database

state to one that enables proper testing of the primary key.

Various coverage criteria, consisting of a number of test

requirements, have been devised for testing relational schema

integrity constraints [7]. For example, Active Integrity Con-

straint Coverage (AICC) demands that each integrity con-

straint be evaluated as true and false by the test suite while all

other integrity constraints are simultaneously satisfied (similar

to MC/DC coverage for testing individual conditions of deci-

sion statements in programs). Clause-Based Active Integrity

Constraint Coverage (ClauseAICC) breaks down testing of

each integrity constraint further for constraints involving multi-

ple columns and CHECK constraints composed of subconditions.

This criterion necessitates the involvement of each column

in the constraint—or condition in the CHECK constraint—

separately from the remaining components of the constraint.

In general, coverage criteria are good at detecting faults of

commission but are weak at detecting faults of omission [14].

However, for integrity constraint testing, Active Unique Col-

umn Coverage (AUCC) and Active Null Column Coverage

(ANCC) may be used to detect certain types of missing

uniqueness and NOT NULL constraints. AUCC demands each

column of the schema be tested with unique and non-unique

values at least once, whereas ANCC requires that each column

of the schema be tested with NULL/non-NULL values at least

once. ClauseAICC, the strongest form of coverage criteria

based on the structure of the integrity constraints themselves,

is even stronger when combined with AUCC and ANCC.

While the sequence of SQL INSERT statements needed

for each test requirement (such as those in Figure 1b) is

straightforward to determine, generating the test values is

a more complex constraint satisfaction problem. One viable

solution is to use search-based techniques, as described next.

B. Search-Based Test Data Generation

The Alternating Variable Method (AVM) [9], [15], [16] is

a local search technique that has been used to successfully

generate test data for programs [17], [18] and has been applied

to the automated generation of data for the INSERT statements

used when testing relational database schemas [7], [10]. The

AVM works to optimize a vector of test values according to a

fitness function. Figure 1c shows the arrangement of the values

of the test case in part (b) into the vector ~v = (v1, v2, . . . , vn).
The AVM’s main loop is shown in Figure 2a. It starts by

initializing each value in the vector at random (line 2). Next

it proceeds through the vector, sequentially making a series of

“moves” (adjustments) to each variable value (line 5). These

moves range from small exploratory moves to larger pattern

moves in the same “direction” in the fitness landscape of im-

provement. It performs moves until a complete cycle through

the vector during which no move successfully yielded a fitness

improvement. At this point the algorithm may “restart” with

a new randomly initialized vector. The AVM terminates when

either the required test vector has been found, or a pre-defined



resource limit has been exhausted (e.g., some number of fitness

function evaluations). The AVM has been adapted in various

ways to generate test data for schemas, including handling for

variable-length strings, dates, and NULL values [7], [10].

Fitness Function: The focus of each AVM search is a

coverage requirement for one of the aforementioned coverage

criteria (e.g., the satisfaction or violation of a particular

integrity constraint). The fitness function for each coverage

requirement is constructed using distance functions similar

to those employed in traditional test data generation for

programs [19], [20]. For example, for satisfaction of the

CHECK constraint “price > discounted_price” for INSERT

statement 1 of Figure 1a, the distance function v4−v3+K is

applied and minimized (where K is a small positive constant

value, and v3 and v4 are the vector values of Figure 1c).

Primary key, UNIQUE, and foreign key constraints involve

ensuring that certain values are the same or different to those

appearing in prior INSERT statements of the test, depending

on whether the constraint is to be satisfied or violated. For

instance, suppose in the test of Figure 1b, the second INSERT

statement was required to violate the primary key of the

products table, by replicating the value for product_no in the

first INSERT. In this case, the distance function for generating

two equal values (i.e., |v1− v5| + K) would be applied.

Where test requirements involve violating and satisfying

different constraints at once, the fitness function is composed

of individual distance functions, the outputs of which are

normalized and added to form the final fitness value [7], [10].

Inefficiencies: While prior work has shown that the AVM

can generate test data for relational schemas [7], it is subject

to inefficiencies. It can (1) waste time cycling through column

values that are not involved in any of the schema’s integrity

constraints; (2) get stuck in local optima, requiring restarts;

and finally, (3) spend time making incremental changes to a

particular column value to make it equal to some other value in

the test data vector, with the purpose of satisfying or violating

a primary key, UNIQUE, or foreign key constraint.

The last two issues can be mitigated by first initializing

the vector to a series of default values chosen for each type

(e.g., zero for integers and empty strings for VARCHAR), and

only randomizing the vector on the method’s restart [7].

This increases the likelihood of inducing matching column

values from the outset. We refer to this variant of the AVM

as “AVM-D”, and the traditional randomly initialized vector

version as “AVM-R”. One drawback of the AVM-D approach,

however, is that the individual tests of the resulting test suite

share a lot of the same values, thereby lowering diversity and

potentially hindering the fault-finding capability of the tests.

C. Random Test Data Generation

The AVM compares very favorably with naive random

search in experiments conducted on a wide range of schemas,

including those with complex integrity constraints and many

tables [7], [10]. Naive random search for relational schema

testing simply involves repeatedly generating vectors with ran-

dom values until the required vector is found, or some resource

limit is exhausted (Figure 2b). In our prior work [7], we found

that the AVM can attain 100% coverage for different criteria

for most schemas studied. Random search never achieved full

coverage for any schema, obtaining less than 70% in some

instances. In these prior experiments, the random search is

not so naive: Both the AVM and random search, which we

referred to as Random+, make use of a pool of constants

mined from the schema’s CHECK constraints. When a random

value is required (i.e., on line 2 of both the AVM and naive

random search algorithms), a value may be selected from

this pool or generated freely at random, depending on some

probability. The purpose of the pool is to help each algorithm

satisfy and violate CHECK constraints in the schema for some

requirement of a coverage criterion. Yet, while the benefit of

the constant pool was not the focus of our prior work, it seems

to not vastly improve random search’s effectiveness.

Inefficiencies: Random+ performs poorly compared to the

AVM since it receives no guidance when it comes to violating

primary keys and UNIQUE constraints, and for satisfying foreign

keys. Each of these three aspects of test data generation

for relational database schemas involves generating identical

values. Yet, random search rarely generates the same values.

III. THE DOMINO METHOD FOR TEST DATA GENERATION

Given the inefficiencies identified in prior test data gen-

erators for integrity constraints, we developed an alternative,

tailored approach to the problem that uses domain knowl-

edge. This new approach, called “DOMINO” (DOMain-specific

approach to INtegrity cOnstraint test data generation), can

replicate values in the test data vector for different constraint

types, depending on the coverage requirement. The DOMINO

algorithm in Figure 2c begins by initializing the test data

vector at random, but then, in its main loop, works according

to the following intuition: Where a value needs to be the

same as one of a selection of values already in the vector,

choose a value from that selection at random and copy it

(through the COPYMATCHES function); else randomly select

a new value instead through the RANDOMIZENONMATCHES

function (where the “new” value is chosen from the constant

pool, as described in Section II-C, or is a freshly generated

value). NOT NULL constraints and CHECK constraints are handled

separately through the SETORREMOVENULLS function and

the SOLVECHECKCONSTRAINTS function, respectively.

While value copying and randomization may “fix” a part

of the test data vector for a particular integrity constraint,

it may also invalidate some other part. For example, en-

suring the distinctness of a primary key value, through

RANDOMIZENONMATCHES, may destroy its foreign key ref-

erence, previously set through COPYMATCHES. To handle this

concern, the functions are applied one after the other in a loop,

continuing until an overall solution is found or resources (i.e.,

a given number of algorithm iterations) are exhausted.

We now discuss how every one of the functions in

DOMINO’s main loop works to generate test data for satisfy-

ing/violating each of the different types of integrity constraints.



Primary Keys and “Unique” Constraints: The functions

COPYMATCHES and RANDOMIZENONMATCHES work to en-

sure that values in INSERT statements pertaining to primary

keys/UNIQUE constraints are (a) distinct when such constraints

need to be satisfied, else ensuring those values are (b) identical

should the constraint need to be violated. Ensuring distinctness

is not usually difficult to achieve by selecting values randomly,

as the probability of choosing the same value more than once

is small. Nevertheless, if two values match in the vector, the

second value is regenerated by RANDOMIZENONMATCHES.

Alternatively, if a primary key/UNIQUE constraint is required

to be violated by the test case, the values for the columns

involved in the latter, constraint-violating, INSERT statement

are copied from an earlier INSERT statement to the same

table appearing in the test case. Suppose the primary key

of the products table was to be violated in the test case

of Figure 1 (i.e., v1 is required to be equal to v5), then

COPYMATCHES copies v5’s value from v1. If there is a

choice of subsequent INSERT statements from which to copy

a value, COPYMATCHES selects one at uniform random. If

the primary key/unique constraint involves multiple columns,

then multiple values are copied together from a selected prior

INSERT statement in the test case.

Foreign Keys: Compared to the previously described func-

tions, COPYMATCHES and RANDOMIZENONMATCHES work

in a reverse fashion for foreign keys in that the constraint

is satisfied when values match for the relevant columns

across INSERT statements in the test case, and violated

when they do not. As with the previous two functions,

RANDOMIZENONMATCHES generates non-matching values

randomly, while COPYMATCHES copies values that are sup-

posed to match from elsewhere in the vector. Take the example

of INSERTs 5 and 6 from the test of Figure 1b and the values of

product_no and order_id, which individually need to match

the corresponding column in the products and orders table.

In both cases, two options exist. For product_no, a matching

value is found in INSERT statements 1 and 2 (i.e., v1 and v5
in the vector). For order_no, a matching value is found in

INSERT statements 3 and 4 (i.e., v9 and v11). As before, where

choices exist, COPYMATCHES selects one at uniform random.

“Not Null” Constraints: Depending on the coverage re-

quirement, the SETORREMOVENULLS function works to over-

write values in the vector with a random value where a non-

NULL value is required (e.g., to satisfy a NOT NULL constraint),

and copies NULL into the vector where a NULL value is required

instead (e.g., to violate a NOT NULL constraint). For instance,

to violate the NOT NULL constraint on the name column of the

products table, the SETORREMOVENULLS function would

replace the value of either v2 or v6 with a NULL value.

“Check” Constraints: As they involve arbitrary predicates

that need to be solved, CHECK constraints cannot generally be

satisfied nor violated by copying values from elsewhere in the

vector. This is the role of the SOLVECHECKCONSTRAINTS

function, for which this paper presents two variants.

The first variant involves generating random values, (e.g.,

for price and discounted_price in the products table).

This is the default approach taken by DOMINO, and the one

employed unless otherwise specified. Values are chosen at

random from the domain of the column type, or from the pool

of constants mined from the schema (i.e., the mechanism de-

scribed for the Random+ method, introduced in Section II-C).

The latter mechanism is particularly useful for constraints of

the form “CHECK a IN (x, y, z)” where the column a has to

be set to one of “x”, “y”, or “z” to be satisfied. These values

are hard to “guess” randomly without any prior knowledge, yet

since the values “x”, “y”, or “z” will have been added to the

constant pool, DOMINO is able to select and use them as test

data values. The second variant for solving CHECK constraints

leads to a special variant of DOMINO, as described next.

The Hybrid DOMINO-AVM Method

DOMINO does not solve CHECK constraints with domain-

specific heuristics, as with other types of constraint. Instead, its

random method relies on a solution being “guessed” without

any guidance. Thus, we present a hybrid version of DOMINO,

called “DOMINO-AVM”, that uses the AVM to handle this

aspect of the test data generation problem. The AVM uses

the fitness function that would have been employed in the

pure AVM version of Section II-B, providing guidance to the

required values that may be valuable when the constraints are

complex and difficult to solve by chance selection of values.

IV. EMPIRICAL EVALUATION

The aim of this paper’s empirical evaluation is to determine

if DOMINO will improve the efficiency and effectiveness of

test data generation for relational database schemas. Our study

therefore is designed to answer these three research questions:

RQ1: Test Suite Generation for Coverage—Effectiveness

and Efficiency. How effective is DOMINO at generating high-

coverage tests for database integrity constraints and how fast

does it do so, compared to the state-of-the-art AVM?

RQ2: Fault-Finding Effectiveness of the Generated Test

Suites. How effective are the test suites generated by DOMINO

in regard to fault-finding effectiveness, and how do they

compare to those generated by the state-of-the-art AVM?

RQ3: The Hybrid DOMINO-AVM Technique. How do test

suites generated by DOMINO-AVM compare to DOMINO’s in

terms of efficiency, coverage, and fault-finding capability?

A. Methodology

Techniques: To answer the RQs, we empirically evaluated

DOMINO, comparing it to the AVM. We used two variants

of the AVM. The first was studied by McMinn et al. [7], as

discussed in Section II-B, and uses default values for the first

initialization of the vector (and then random re-initialization

following each restart), which we refer to as “AVM-D”. For

a better comparison with DOMINO we also studied a variant

of the AVM where all initializations are performed randomly,

which we call “AVM-R”. With the exception of establishing

baseline coverage levels for which to compare all techniques,

we did not perform any experiments with the Random+

method—as described in Section II-C we already know that it



is dominated by the AVM in terms of its effectiveness (i.e., the

coverage levels and mutation score of the tests it generates) [7].

Finally, for the last research question, we compared DOMINO

to DOMINO-AVM, a “hybridization” with the AVM.

Subject Schemas: We performed the experiments by using

the 34 relational database schemas listed in Table I. In order to

answer RQ1, and to generate test suites with which to assess

fault finding capability, a coverage criterion is required. For

this purpose, we adopted the combination of three coverage

criteria: “ClauseAICC”, “AUCC”, and “ANCC”, as introduced

in Section II-A. The reason for using this combined coverage

criterion is that it was reported as the strongest to find seeded

faults [7], combining the capability to find faults of both

commission and omission, as described in Section II-A.

The set of 34 relational database schemas listed in Table I is

larger than that featured in previous work on testing database

schemas (e.g., [7], [10], [21]). Since Houkjær et al. noted that

complex real-world relational schemas often include features

such as composite keys and multi-column foreign-key relation-

ships [22], the schemas we chose for this study reflect a diverse

set of features, from simple instances of integrity constraints to

more complex examples involving many-column foreign key

relationships. The number of tables in each relational database

schema varies from 1 to 42, with a range of just 3 columns

in the smallest schemas, to 309 in the largest.

Our set of subject schemas are drawn from a range of

sources. ArtistSimilarity and ArtistTerm are schemas that un-

derpin part of the Million Song dataset, a freely available

research dataset of song metadata [23]. Cloc is a schema

for the database used in the popular open-source application

for counting lines of program code. While it contains no

integrity constraints, test requirements are still generated since

the coverage criterion we use incorporates the ANCC and

AUCC criteria, discussed in Section II-A. IsoFlav R2 belongs

to a plant compound database from the U.S. Department of

Agriculture, while iTrust is a large schema that was designed

as part of a patient records medical application to teach

students about software testing methods, having previously

featured in a mutation analysis experiment with Java code [24].

JWhoisServer is used in an open-source implementation of

a server for the WHOIS protocol (http://jwhoisserver.net).

MozillaExtensions and MozillaPermissions are part of the

SQLite databases underpinning the Mozilla Firefox browser.

RiskIt is a database schema that forms part of a system for

modeling the risk of insuring an individual (http://sourceforge.

net/projects/riskitinsurance), while StackOverflow is the un-

derlying schema used by the popular programming question

and answer website. UnixUsage is from an application for

monitoring and recording the use of Unix commands and

WordNet is the database schema used in a graph visualizer

for the WordNet lexical database. Other subjects were taken

from the SQL Conformance Test Suite (i.e., the six “Nist–”

schemas), or samples for the PostgreSQL DBMS (i.e., Dell-

Store, FrenchTowns, Iso3166, and Usda, available from the

PgFoundry.org website). The remainder were extracted from

papers, textbooks, assignments, and online tutorials in which

they were provided as examples (e.g., BankAccount, Book-

Town, CoffeeOrders, CustomerOrder, Person, and Products).

While they are simpler than some of the other schemas used in

this study, they nevertheless proved challenging for database

analysis tools such as the DBMonster data generator [10].

DBMSs: The HyperSQL, PostgreSQL, and SQLite DBMSs

hosted the subject schemas. Each of these database manage-

ment systems is supported by our SchemaAnalyst tool [8]; they

were chosen for their performance differences and varying

design goals. PostgreSQL is a full-featured, extensible, and

scalable DBMS, while HyperSQL is a lightweight, small

DBMS with an “in-memory” mode that avoids disk writing.

SQLite is a lightweight DBMS that differs in its interpretation

of the SQL standard in subtly different ways from Hyper-

SQL and PostgreSQL. A wide variety of real-world programs,

from different application domains, use these three DBMSs.

RQ1: For RQ1, we ran each test data generation method

with each schema and DBMS, for each coverage requirement.

Each technique moves onto the next requirement (or terminat-

ing if all requirements have been considered) if test data has

been successfully found, or after iterating 100,000 times if it

has not. We recorded the coverage levels obtained, and the test

data generation time, for 30 repetitions of each method with

each of the 34 database schemas and the three DBMSs.

RQ2: For RQ2, we studied the fault-finding strength of each

test suite generated for RQ1, following standard experimental

protocols that use mutation analysis [25]. We adopted Wright

et al.’s procedure [26], using the same set of mutation operators

that mutate the schema’s integrity constraints. These operators

add, remove, and swap columns in primary key, UNIQUE, and

foreign key constraints, while also inverting NOT NULL con-

straints and manipulating the conditions of CHECK constraints.

RQ2 deems the automatically generated test suites to be

effective if they can “kill” a mutant by distinguishing between

it and the original schema, leading to the formulation of the

higher-is-better mutation score as the ratio between the number

of killed and total mutants [14], [27], [28].

RQ3: For RQ3, we measured coverage, time taken to obtain

coverage, and the mutation score of the DOMINO-AVM’s tests

for the schemas with CHECK constraints (i.e., those for which

the DOMINO-AVM, which uses the AVM instead of random

search to solve CHECK constraints, will register a difference).

We compared these results to those of DOMINO, which uses

the default mode of random search to solve CHECK constraints.

Experimentation Environment: All of our experiments were

performed on a dedicated Ubuntu 14.04 workstation, with

a 3.13.0–44 GNU/Linux 64-bit kernel, a quad-core 2.4GHz

CPU, and 12GB of RAM. All input (i.e., schemas) and

output (i.e., data files) were stored on the workstation’s local

disk. We used the default configurations of PostgreSQL 9.3.5,

HyperSQL 2.2.8, and SQLite 3.8.2, with HyperSQL and

SQLite operating with their “in-memory” mode enabled.

Statistical Analysis: Using four tables, this paper reports

the mean values for the 30 sets of evaluation metrics (i.e.,

coverage values, time to generate test suites in seconds, and

mutation scores) obtained for each schema with each DBMS.



TABLE I
THE 34 RELATIONAL DATABASE SCHEMAS STUDIED

Integrity Constraints

Schema Tables Columns Check Foreign Key Not Null Primary Key Unique Total

ArtistSimilarity 2 3 0 2 0 1 0 3

ArtistTerm 5 7 0 4 0 3 0 7

BankAccount 2 9 0 1 5 2 0 8

BookTown 22 67 2 0 15 11 0 28

BrowserCookies 2 13 2 1 4 2 1 10

Cloc 2 10 0 0 0 0 0 0

CoffeeOrders 5 20 0 4 10 5 0 19

CustomerOrder 7 32 1 7 27 7 0 42

DellStore 8 52 0 0 39 0 0 39

Employee 1 7 3 0 0 1 0 4

Examination 2 21 6 1 0 2 0 9

Flights 2 13 1 1 6 2 0 10

FrenchTowns 3 14 0 2 13 0 9 24

Inventory 1 4 0 0 0 1 1 2

Iso3166 1 3 0 0 2 1 0 3

IsoFlav R2 6 40 0 0 0 0 5 5

iTrust 42 309 8 1 88 37 0 134

JWhoisServer 6 49 0 0 44 6 0 50

MozillaExtensions 6 51 0 0 0 2 5 7

MozillaPermissions 1 8 0 0 0 1 0 1

NistDML181 2 7 0 1 0 1 0 2

NistDML182 2 32 0 1 0 1 0 2

NistDML183 2 6 0 1 0 0 1 2

NistWeather 2 9 5 1 5 2 0 13

NistXTS748 1 3 1 0 1 0 1 3

NistXTS749 2 7 1 1 3 2 0 7

Person 1 5 1 0 5 1 0 7

Products 3 9 4 2 5 3 0 14

RiskIt 13 57 0 10 15 11 0 36

StackOverflow 4 43 0 0 5 0 0 5

StudentResidence 2 6 3 1 2 2 0 8

UnixUsage 8 32 0 7 10 7 0 24

Usda 10 67 0 0 31 0 0 31

WordNet 8 29 0 0 22 8 1 31

Total 186 1044 38 49 357 122 24 590

TABLE II
MEAN COVERAGE SCORES FOR EACH TECHNIQUE

A value annotated with the “F” symbol means that significance tests reveal that a technique

obtained a significantly lower coverage score than DOMINO (written as DOM), while “�”

means the technique obtained a significantly higher coverage than DOMINO. A “∗” symbol

indicates that the accompanying effect size was large when comparing the technique with

DOMINO. Finally, AVM-R and AVM-D are the AVM variants and R+ is short for Random+.

HyperSQL PostgreSQL SQLite

Schema DOM AVM-R AVM-D R+ DOM AVM-R AVM-D R+ DOM AVM-R AVM-D R+

ArtistSimilarity 100 100 100 ∗
F59 100 100 100 ∗

F59 100 100 100 ∗
F62

ArtistTerm 100 100 100 ∗
F60 100 100 100 ∗

F60 100 100 100 ∗
F63

BankAccount 100 100 100 ∗
F85 100 100 100 ∗

F85 100 100 100 ∗
F87

BookTown 99 99 99 ∗
F92 99 99 99 ∗

F92 99 99 99 ∗
F92

BrowserCookies 100 ∗
F99 100 ∗

F58 100 ∗
F99 100 ∗

F58 100 ∗
F99 100 ∗

F59

Cloc 100 100 100 ∗
F92 100 100 100 ∗

F92 100 100 100 ∗
F92

CoffeeOrders 100 100 100 ∗
F58 100 100 100 ∗

F58 100 100 100 ∗
F62

CustomerOrder 100 100 100 ∗
F42 100 100 100 ∗

F42 100 100 100 ∗
F42

DellStore 100 100 100 ∗
F93 100 100 100 ∗

F93 100 100 100 ∗
F93

Employee 100 100 100 ∗
F89 100 100 100 ∗

F89 100 100 100 ∗
F90

Examination 100 100 100 ∗
F83 100 100 100 ∗

F83 100 100 100 ∗
F84

Flights 100 ∗
F97 100 ∗

F59 100 ∗
F97 100 ∗

F59 100 ∗
F97 100 ∗

F58

FrenchTowns 100 100 100 ∗
F35 100 100 100 ∗

F35 100 100 100 ∗
F35

Inventory 100 100 100 ∗
F96 100 100 100 ∗

F96 100 100 100 ∗
F96

Iso3166 100 100 100 ∗
F85 100 100 100 ∗

F85 100 100 100 ∗
F89

IsoFlav R2 100 100 100 ∗
F88 100 100 100 ∗

F88 100 100 100 ∗
F88

iTrust 100 100 100 ∗
F92 100 100 100 ∗

F92 100 100 100 ∗
F92

JWhoisServer 100 100 100 ∗
F86 100 100 100 ∗

F86 100 100 100 ∗
F87

MozillaExtensions 100 100 100 ∗
F88 100 100 100 ∗

F88 100 100 100 ∗
F88

MozillaPermissions 100 100 100 ∗
F96 100 100 100 ∗

F96 100 100 100 ∗
F96

NistDML181 100 100 100 ∗
F64 100 100 100 ∗

F64 100 100 100 ∗
F65

NistDML182 100 100 100 ∗
F62 100 100 100 ∗

F62 100 100 100 ∗
F65

NistDML183 100 100 100 100 100 100 100 100 100 100 100 100

NistWeather 100 100 100 ∗
F57 100 100 100 ∗

F57 100 100 100 ∗
F75

NistXTS748 100 100 100 100 100 100 100 100 100 100 100 100

NistXTS749 100 100 100 ∗
F86 100 100 100 ∗

F86 100 100 100 ∗
F86

Person 100 100 100 ∗
F93 100 100 100 ∗

F93 100 100 100 ∗
F94

Products 98 98 98 ∗
F70 98 98 98 ∗

F70 98 98 98 ∗
F79

RiskIt 100 100 100 ∗
F68 100 100 100 ∗

F68 100 100 100 ∗
F70

StackOverflow 100 100 100 ∗
F96 100 100 100 ∗

F96 100 100 100 ∗
F96

StudentResidence 100 100 100 ∗
F70 100 100 100 ∗

F70 100 100 100 ∗
F74

UnixUsage 100 100 100 ∗
F50 100 100 100 ∗

F50 100 100 100 ∗
F52

Usda 100 100 100 ∗
F90 100 100 100 ∗

F90 100 100 100 ∗
F90

WordNet 100 100 100 ∗
F90 100 100 100 ∗

F90 100 100 100 ∗
F89

For reasons like those of Poulding and Clark [29], we report

means instead of medians: for data that was sometimes bi-

modal, the median value was one of the “peaks” while the

mean reported a more useful statistic between the peaks.

Using statistical significance and effect size, we further

compared DOMINO pairwise with every other studied tech-

nique. Since we cannot make assumptions about the distribu-

tions of the collected data, we performed tests for statistical

significance using the non-parametric Mann-Whitney U test.

We performed one-sided tests (sided for each technique in

each pairwise comparison) with p-value < 0.01 regarded as

significant. In all of the results tables, we mark a technique’s

value if it was significant, using the “F” symbol if the mean

result is lower compared to DOMINO or the “�” symbol if

the mean result is higher compared to DOMINO. In addition

to significance tests, we calculated effect sizes using the

Â metric of Vargha and Delaney [30]. We classify an effect

size as “large” if |Â − 0.5| > 0.21. In all of the tables, we

mark a technique’s result with the “∗” symbol when DOMINO

performed significantly better and with a large effect size.
Threats to Validity: To control threats of both the stochastic

behavior of the techniques and the possibility of operating

system events interfering with the timings, we repeated the

experiments 30 times. To mitigate threats associated with our

statistical analysis we (a) used non-parametric statistical tests

and (b) performed all our calculations with the R programming

language, writing unit tests to check our results. The diverse

nature of real software makes it impossible for us to claim that

the studied schemas are representative of all types of relational

database schemas. Yet, we attempted to select diverse schemas

that came from both open-source and commercial software

systems, choosing from those used in past studies [7]. Also,

our results may not generalize to other DBMSs. However,

HyperSQL, PostgreSQL, and SQLite are three widely used

DBMSs with contrasting characteristics—and they also im-

plement key aspects of the SQL standard related to defining

schemas with various integrity constraints. Finally, it is worth

noting that, while this paper does not report the cost of running

the generated tests, they normally consist of a few INSERTs

whose cost is negligible and thus not of practical significance.

B. Experimental Results

RQ1: Test Suite Generation for Coverage—Effectiveness

and Efficiency: Table II shows the mean coverage scores for

DOMINO compared to the two AVM variants and Random+.

The poor results for Random+ underscore that test data

generation is not a trivial task for most schemas, with the

exception of NistDML183 and NistXTS748. Random+ is out-

performed by every other method. Note that while the table

only reports statistical significance and a large effect size for

DOMINO pairwise with every other technique, the coverage

scores for the two versions of the AVM are also significantly

better with a large effect size in each case when compared to

Random+. Since it is dominated by the three other methods,

from hereon we will discount Random+ as a comparison

technique for generating test suites for database schemas.

The state-of-the-art AVM-D obtains 100% coverage for each

schema, except for BookTown and Products, which contain

infeasible coverage requirements. DOMINO matches this ef-

fectiveness (it cannot do any better, but it does not any worse



TABLE III
MEAN TEST GENERATION TIMES (IN SECONDS)

A value annotated with a “F” symbol means that significance tests reveal that a technique

required a significantly shorter time than DOMINO (DOM), while “�” indicates the

technique needed a significantly longer time than DOMINO. A “∗” symbol indicates that

the accompanying effect size was large when comparing the technique with DOMINO.

HyperSQL PostgreSQL SQLite

Schema DOM AVM-R AVM-D DOM AVM-R AVM-D DOM AVM-R AVM-D

ArtistSimilarity 0.49 ∗
�0.96 ∗

�0.60 1.02 ∗
�1.41 ∗

�1.08 0.29 ∗
�0.72 ∗

�0.44

ArtistTerm 0.56 ∗
�1.15 ∗

�0.72 2.60 ∗
�3.10 ∗

�2.68 0.33 ∗
�0.91 ∗

�0.54

BankAccount 0.53 ∗
�0.83 ∗

�0.76 1.33 ∗
�1.62 ∗

�1.59 0.32 ∗
�0.62 ∗

�0.57

BookTown 1.03 ∗
�1.41 ∗

�1.09 7.18 ∗
�7.54 7.24 0.57 ∗

�0.95 ∗
�0.64

BrowserCookies 0.66 ∗
�5.76 ∗

�3.37 3.22 ∗
�8.19 ∗

�5.85 0.42 ∗
�5.97 ∗

�3.23

Cloc 0.51 ∗
�0.63 ∗

�0.60 1.15 ∗
�1.28 ∗

�1.19 0.30 ∗
�0.41 ∗

�0.43

CoffeeOrders 0.65 ∗
�1.11 ∗

�1.08 4.43 ∗
�4.90 ∗

�4.74 0.40 ∗
�0.85 ∗

�0.82

CustomerOrder 0.86 ∗
�3.36 ∗

�1.87 7.94 ∗
�10.62 ∗

�8.65 0.55 ∗
�3.22 ∗

�1.79

DellStore 0.83 ∗
�1.63 ∗

�1.56 4.19 ∗
�4.96 ∗

�4.84 0.48 ∗
�1.28 ∗

�1.14

Employee 0.55 ∗
�0.82 ∗

�0.90 1.05 ∗
�1.27 ∗

�1.34 0.34 ∗
�0.59 ∗

�0.70

Examination 0.78 ∗
�1.74 ∗

�1.57 4.05 ∗
�4.94 ∗

�4.84 0.49 ∗
�1.45 ∗

�1.27

Flights 0.69 ∗
�4.93 ∗

�3.99 2.48 ∗
�6.59 ∗

�5.77 0.45 ∗
�5.23 ∗

�3.90

FrenchTowns 0.68 ∗
�1.94 ∗

�1.70 3.02 ∗
�4.17 ∗

�3.86 0.43 ∗
�1.63 ∗

�1.94

Inventory 0.48 ∗
�0.56 ∗

�0.60 0.70 ∗
�0.75 ∗

�0.80 0.28 ∗
�0.35 ∗

�0.44

Iso3166 0.47 ∗
�0.55 ∗

�0.55 0.48 ∗
�0.54 ∗

�0.50 0.27 ∗
�0.35 ∗

�0.40

IsoFlav R2 0.75 ∗
�1.31 ∗

�1.27 5.13 ∗
�5.69 ∗

�5.48 0.43 ∗
�0.99 ∗

�0.93

iTrust 4.91 ∗
�47.91 ∗

�15.99 46.95 ∗
�85.67 ∗

�55.28 4.58 ∗
�47.11 ∗

�14.12

JWhoisServer 0.89 ∗
�2.09 ∗

�1.88 4.03 ∗
�5.15 ∗

�4.87 0.55 ∗
�1.79 ∗

�1.55

MozillaExtensions 0.86 ∗
�2.01 ∗

�1.92 6.36 ∗
�7.62 ∗

�7.34 0.55 ∗
�1.65 ∗

�1.55

MozillaPermissions 0.51 ∗
�0.61 ∗

�0.66 1.08 ∗
�1.16 ∗

�1.19 0.31 ∗
�0.40 ∗

�0.49

NistDML181 0.53 ∗
�0.83 ∗

�0.71 1.55 ∗
�1.80 ∗

�1.71 0.32 ∗
�0.62 ∗

�0.54

NistDML182 0.76 ∗
�2.36 ∗

�1.94 5.74 ∗
�7.43 ∗

�6.81 0.50 ∗
�2.10 ∗

�2.09

NistDML183 0.51 ∗
�0.58 ∗

�0.64 1.32 ∗
�1.44 ∗

�1.44 0.30 ∗
�0.36 ∗

�0.48

NistWeather 0.71 ∗
�1.42 ∗

�1.31 1.93 ∗
�2.64 ∗

�2.52 0.48 ∗
�1.14 ∗

�1.22

NistXTS748 0.48 ∗
�0.53 ∗

�0.61 0.61 ∗
�0.66 ∗

�0.71 0.28 ∗
�0.33 ∗

�0.50

NistXTS749 0.55 ∗
�0.78 ∗

�0.82 1.54 ∗
�1.81 ∗

�1.77 0.33 ∗
�0.57 ∗

�0.69

Person 0.55 ∗
�1.05 ∗

�1.60 0.68 ∗
�1.17 ∗

�1.73 0.34 ∗
�0.87 ∗

�1.56

Products 0.71 ∗
�1.72 ∗

�1.71 2.30 ∗
�3.28 ∗

�3.40 0.47 ∗
�1.33 ∗

�1.38

RiskIt 1.00 ∗
�3.62 ∗

�2.31 11.70 ∗
�14.72 ∗

�12.53 0.63 ∗
�3.48 ∗

�1.99

StackOverflow 0.82 ∗
�1.17 ∗

�1.47 4.66 ∗
�4.83 ∗

�5.01 0.48 ∗
�0.84 ∗

�1.12

StudentResidence 0.59 ∗
�0.97 ∗

�0.78 1.43 ∗
�1.72 ∗

�1.54 0.38 ∗
�0.75 ∗

�0.63

UnixUsage 0.87 ∗
�3.48 ∗

�1.93 11.11 ∗
�13.31 ∗

�11.52 0.52 ∗
�2.99 ∗

�1.67

Usda 0.86 ∗
�1.40 ∗

�1.53 6.23 ∗
�6.40 ∗

�6.47 0.49 ∗
�1.01 ∗

�1.03

WordNet 0.68 ∗
�0.97 ∗

�1.13 3.64 ∗
�3.92 ∗

�3.99 0.40 ∗
�0.67 ∗

�0.84

either), while AVM-R has difficulties with BrowserCookies

and Flights. For these schemas, AVM-R has trouble escaping a

local optimum for a particular coverage requirement. It restarts

many times, but fails to find test data before its resources are

exhausted. The use of default values always provides a good

starting point for AVM-D to cover the requirements concerned,

and as such, it does not suffer from these problems. DOMINO

does not use a fitness function, and so does not face this issue.

Thus, for coverage scores, DOMINO performs identically

to AVM-D, but better than AVM-R for some schemas, and

significantly better than Random+ for all non-trivial schemas.

Table III gives the mean times for each technique to obtain

the coverage scores in Table II, excluding Random+. The

results show that DOMINO outperforms both of the AVM

variants, which incur significantly higher times in each case,

with a large effect size. The difference is most noticeable for

larger schemas (i.e., iTrust and BrowserCookies). With iTrust,

DOMINO is approximately 40 seconds faster than AVM-R with

each of the DBMSs, representing a speedup of 8–10 times for

HyperSQL and SQLite. Compared to AVM-D, DOMINO is

approximately 10 seconds faster for each DBMS. For smaller

schemas, the differences are significant but less pronounced.

Although DOMINO is faster than the AVM variants for these

schemas, the practical difference is almost negligible.

Concluding RQ1, DOMINO yields the same coverage scores

as the state-of-the-art AVM-D, but in less time. Compared to

DOMINO, AVM-R is slower and has slightly worse coverage.

RQ2: Fault-Finding Effectiveness of the Generated Test

Suites: Table IV shows the mean mutation scores obtained

by each technique’s generated test suites. The results show

TABLE IV
MEAN MUTATION SCORES

A value annotated with a “F” symbol means that significance tests reveal that a technique

obtained a significantly lower mutation score than DOMINO (DOM), while “�” indicates

the technique obtained a significantly higher mutation score than DOMINO. A “∗” symbol

denotes a large effect size when comparing a technique’s score with DOMINO’s.

HyperSQL PostgreSQL SQLite

Schema DOM AVM-R AVM-D DOM AVM-R AVM-D DOM AVM-R AVM-D

ArtistSimilarity 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

ArtistTerm 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

BankAccount 95.9 95.5 ∗
F88.5 95.9 95.5 ∗

F88.5 96.4 96.1 ∗
F86.7

BookTown 99.5 99.4 ∗
F97.6 99.5 99.4 ∗

F97.6 99.1 99.0 ∗
F85.5

BrowserCookies 96.3 F95.6 ∗
F92.3 96.3 F95.6 ∗

F92.3 95.9 96.1 ∗
F86.5

Cloc 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

CoffeeOrders 100.0 100.0 100.0 100.0 100.0 100.0 98.6 ∗
�100.0 ∗

F94.6

CustomerOrder 97.5 97.5 ∗
F94.0 97.5 97.4 ∗

F93.9 98.0 98.0 ∗
F95.2

DellStore 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Employee 97.7 97.6 ∗
F95.3 97.7 97.6 ∗

F95.3 97.3 97.4 ∗
F84.1

Examination 100.0 F99.8 ∗
F97.3 100.0 F99.8 ∗

F97.3 99.2 99.6 ∗
F85.8

Flights 99.8 ∗
F97.9 ∗

F95.2 99.8 ∗
F97.9 ∗

F95.2 100.0 ∗
F98.2 ∗

F84.3

FrenchTowns 94.3 94.3 ∗
F82.5 94.3 94.3 ∗

F82.5 94.6 94.6 ∗
F83.3

Inventory 100.0 100.0 ∗
F87.5 100.0 100.0 ∗

F88.2 100.0 100.0 ∗
F75.0

Iso3166 99.6 99.6 ∗
F77.8 99.6 99.6 ∗

F77.8 99.7 99.7 ∗
F80.0

IsoFlav R2 99.7 99.8 ∗
F87.0 99.7 99.8 ∗

F87.0 99.7 99.8 ∗
F84.4

iTrust 99.7 ∗
F99.6 ∗

F95.8 99.7 ∗
F99.6 ∗

F95.8 99.2 99.2 ∗
F83.6

JWhoisServer 99.6 99.6 ∗
F78.7 99.6 99.6 ∗

F78.7 99.6 99.5 ∗
F76.6

MozillaExtensions 99.8 99.6 ∗
F82.1 99.8 99.6 ∗

F82.1 99.7 99.5 ∗
F71.3

MozillaPermissions100.0 100.0 100.0 100.0 100.0 100.0 99.8 99.8 ∗
F76.7

NistDML181 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NistDML182 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NistDML183 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

NistWeather 98.2 �100.0 ∗
F93.3 98.2 �100.0 ∗

F93.3 98.4 �100.0 ∗
F93.8

NistXTS748 93.3 93.7 ∗
F88.2 93.3 93.7 ∗

F88.2 92.9 93.3 ∗
F87.5

NistXTS749 95.0 95.0 95.0 95.0 95.0 95.0 91.7 ∗
�96.0 92.0

Person 97.8 96.5 ∗
F81.0 97.8 96.5 ∗

F81.0 98.8 97.3 ∗
F81.8

Products 87.2 87.1 F86.5 87.2 87.1 F86.5 87.8 87.7 F87.1

RiskIt 100.0 100.0 ∗
F99.5 100.0 100.0 ∗

F99.5 99.5 ∗
�99.9 ∗

F89.3

StackOverflow 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

StudentResidence 97.2 F96.5 ∗
F94.4 97.2 F96.5 ∗

F94.4 95.7 96.6 ∗
F87.2

UnixUsage 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 ∗
F98.2

Usda 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

WordNet 97.8 97.6 ∗
F93.7 97.8 97.6 ∗

F93.7 98.5 97.9 ∗
F87.4

that DOMINO achieved significantly higher mutation scores

than the state-of-the-art AVM-D technique for 20–23 of the

34 schemas, depending on the DBMS, with a large effect

size in almost every case. AVM-R is more competitive with

DOMINO, however. For these two techniques there are fewer

differences in effectiveness. Therefore, it seems that develop-

ing test cases from a random starting point is important for

mutation killing effectiveness. AVM-D starts from the same

default values, which may remain unchanged, depending on

the test requirement. Ultimately, there is less diversity across

this method’s test suites, leading them to kill fewer mutants.

Variations in DOMINO’s effectiveness compared to AVM-R

stem from differences in the approach taken for generating

test data: DOMINO always copies values where it can for

certain types of requirement and integrity constraint, whereas

AVM-R may legitimately opt to use NULL instead of a matching

value. For instance, DOMINO satisfies foreign keys with NULL

values, unless there are NOT NULL constraints on the columns

of the key. The occasional use of NULL leads AVM-R to kill

more mutants than DOMINO for some schemas, and fewer

for others. The relative advantages depend on the DBMS: For

HyperSQL and PostgreSQL, DOMINO obtains a significantly

higher mutation score for five schemas, while AVM-R per-

forms better for one schema. While some of these comparisons

are accompanied by a large effect size, the differences in

means are usually marginal. Conversely for the SQLite DBMS,

DOMINO is better for two schemas, while AVM-R is better

for three. This is likely because SQLite allows the use of

NULL values in primary key columns, giving more opportunity

for NULL to be used as a data value in tests for schemas



TABLE V
MEAN RESULTS OF DOMINO-AVM COMPARED TO DOMINO FOR SUBJECT SCHEMAS THAT HAVE CHECK CONSTRAINTS

A value annotated with a “F” symbol means that significance tests reveal that DOMINO (DOM) obtained a significantly lower result than DOMINO-AVM (DOM-AVM), while “�”

shows that DOMINO obtained a significantly higher result than DOMINO-AVM. A “∗” symbol indicates that the effect size was large when comparing the technique with DOMINO.

Coverage Timing Mutation Score

HyperSQL PostgreSQL SQLite HyperSQL PostgreSQL SQLite HyperSQL PostgreSQL SQLite

Schema DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM DOM-AVM DOM

BookTown 99.3 99.3 99.3 99.3 99.3 99.3 1.08 ∗
F1.03 7.25 7.18 0.61 ∗

F0.57 99.4 99.5 99.4 99.5 99.1 99.1

BrowserCookies 100.0 100.0 100.0 100.0 100.0 100.0 0.69 ∗
F0.66 3.21 3.22 0.44 ∗

F0.42 95.9 96.3 95.9 96.3 96.0 95.9

CustomerOrder 100.0 100.0 100.0 100.0 100.0 100.0 0.91 ∗
F0.86 8.13 ∗

F7.94 0.60 ∗
F0.55 97.4 97.5 97.4 97.5 98.0 98.0

Employee 100.0 100.0 100.0 100.0 100.0 100.0 0.58 ∗
F0.55 1.08 1.05 0.36 ∗

F0.34 97.0 �97.7 97.0 �97.7 96.7 97.3

Examination 100.0 100.0 100.0 100.0 100.0 100.0 0.82 ∗
F0.78 4.14 4.05 0.52 ∗

F0.49 99.6 �100.0 99.6 �100.0 99.2 99.2

Flights 100.0 100.0 100.0 100.0 100.0 100.0 0.77 ∗
F0.69 2.59 ∗

F2.48 0.51 ∗
F0.45 100.0 99.8 100.0 99.8 100.0 100.0

iTrust 100.0 100.0 100.0 100.0 100.0 100.0 4.82 �4.91 46.46 46.95 4.54 4.58 99.6 ∗
�99.7 99.6 ∗

�99.7 99.1 99.2

NistWeather 100.0 100.0 100.0 100.0 100.0 100.0 0.72 0.71 2.00 F1.93 0.49 0.48 99.7 F98.2 99.7 F98.2 99.9 F98.4

NistXTS748 100.0 100.0 100.0 100.0 100.0 100.0 0.49 ∗
F0.48 0.61 0.61 0.29 ∗

F0.28 93.3 93.3 93.3 93.3 92.9 92.9

NistXTS749 100.0 100.0 100.0 100.0 100.0 100.0 0.56 ∗
F0.55 1.61 1.54 0.34 ∗

F0.33 95.0 95.0 95.0 95.0 92.0 91.7

Person 100.0 100.0 100.0 100.0 100.0 100.0 0.74 ∗
F0.55 0.85 ∗

F0.68 0.51 ∗
F0.34 97.0 97.8 97.0 97.8 97.0 �98.8

Products 97.9 97.9 97.9 97.9 98.1 98.1 0.75 ∗
F0.71 2.38 F2.30 0.50 ∗

F0.47 87.1 87.2 87.1 87.2 87.7 87.8

StudentResidence 100.0 100.0 100.0 100.0 100.0 100.0 0.58 0.59 1.38 1.43 0.36 ∗
�0.38 96.6 �97.2 96.6 �97.2 95.0 95.7

that it hosts. AVM-R can exploit this opportunity by using

NULL whereas DOMINO does not—in turn leading to more

times for which using NULL can result in the killing of a mutant.

For nine schemas, a 100% mutation score was achieved

regardless of technique and DBMS. Closer inspection revealed

that these schemas had few or simple constraints (i.e., all NOT

NULL constraints), the mutants of which were easy to kill.

The schemas with the weakest mutation score was Products,

with a maximum of 87.8% with DOMINO and the SQLite

DBMS. Closer inspection revealed that this schema had many

live mutants generated as a result of CHECK constraints, thus

motivating the hybrid DOMINO-AVM investigated in RQ3.

To conclude for RQ2, the results show that DOMINO is more

effective at killing mutants than the state-of-the-art AVM-D

technique. The results reveal few differences in the mutation

score of DOMINO compared to AVM-R. Yet, RQ1 showed that

DOMINO generates data significantly faster than AVM-R—

with marginally better coverage as well—and therefore is the

most effective and efficient technique of the three.

RQ3: The Hybrid DOMINO-AVM Technique: This research

question investigates the use of the AVM as the CHECK con-

straint solver in DOMINO-AVM, comparing it to DOMINO’s

use of the random-based solver. As shown by the answer to

RQ1, search-based methods excel compared to random-based

approaches for relational schema test data generation, and

therefore a hybrid DOMINO-AVM technique may be fruitful.

For the schemas with CHECK constraints—that is, the

schemas for which DOMINO-AVM could potentially improve

upon DOMINO—Table V reports the mean results of coverage,

test suite generation time, and mutation scores. For ease of

comparison, we re-report the results of DOMINO for these

schemas alongside those obtained for DOMINO-AVM.

DOMINO-AVM achieves full coverage for all schemas,

except for those that involve infeasible test requirements, as

did DOMINO. Perhaps surprisingly, however, DOMINO-AVM

is generally no better in terms of time to generate the test

suites, and is in fact reported as significantly worse in the table

for several schemas, with an accompanying large effect size.

This indicates that, for this study’s schemas, random search

can successfully solve the CHECK constraints. Thus, using the

AVM is of no additional benefit in terms of speeding up

the test data generation process. When a “magic” constant is

involved, DOMINO mines it from the schema and then solves

the constraint by randomly selecting it from the constant pool.

In terms of mutation score, there is one schema (i.e.,

NistWeather) where DOMINO-AVM is significantly better than

DOMINO for all DBMSs, and cases where the reverse is true

(e.g., Employee and Examination) but for the HyperSQL and

PostgreSQL DBMSs only. The actual differences in means are

small, and are accounted for by the random solver’s use of

constants mined from the schema with DOMINO, as opposed

to the search-based approach taken by DOMINO-AVM. In the

cases where DOMINO does better, it is for relational constraints

where a value is being compared to a constant (e.g., x >= 0).

The use of the seeded constant (i.e., 0 for x) means that a

boundary value is being used, which helps to kill the mutants

representing a changed relational operator (e.g., from >= to >).

On the other hand, DOMINO-AVM may use any value that

satisfies the constraint (e.g., 1 for x), according to the fitness

function, that may not fall on the boundary and not kill the

mutant. Conversely, not using constant seeding can help to kill

other mutant types, which is what happens with NistWeather.

Here, DOMINO only satisfies a CHECK constraint by using a

value mined from the schema, leading to a repetition of the

same value across different INSERT statements of a test case.

In contrast, the fitness function gives guidance to different

values that satisfy the CHECK constraint for DOMINO-AVM.

This increased diversity helps DOMINO-AVM to consistently

kill an additional mutant that DOMINO was unable to kill.

The conclusion for RQ3 is that the AVM’s potential to

improve the generation of data for test requirements involving

CHECK constraints is only of benefit for a few cases. The use

of random search, as employed by DOMINO, achieves similar

results to DOMINO-AVM in a shorter amount of time.

Overall Conclusions: The results indicate that DOMINO is

the best method, achieving the highest mutation scores (RQ2)

and requiring the least time to generate test suites (RQ1). The

coverage it obtains is optimal and is comparable with the pre-

vious state-of-the-art-technique, AVM-D. Yet, it generates test

data that is more diverse, which has a positive impact on the

fault-finding capability of its test suites. Given that DOMINO

handles CHECK constraints randomly, while the AVM is fitness-

guided, a hybrid technique would seem fruitful. However, the

results from RQ3 contradict this intuition. Instead, it seems



that AVM’s superiority over random search, as shown by the

results for RQ1, is to do with generating test data for other

types of integrity constraint. For the studied schemas, test

data can be effectively generated for CHECK constraints with a

random method—although DOMINO-AVM does generate tests

that are better at killing mutants for one particular subject.

V. RELATED WORK

In prior work on testing databases, Bati et al., Letarte et

al., and Slutz developed random and search-based methods

for automatically generating structured query language (SQL)

queries [31]–[33]. These queries are designed to test a DBMS,

rather than the integrity constraints of a relational database

schema. In terms of automated data generation for databases,

other techniques have been developed, but with the specific

purpose of testing the performance of a database rather

than the integrity constraints of a schema. That is, the data

generated is always intended to satisfy all of a schema’s

integrity constraints—it neither exercises them as false nor

tests specific constraints or sub-constraints. For instance, DB-

Monster, studied by Kapfhammer et al., is not equipped to

test schema integrity constraints, obtaining very low coverage

scores [10]. Similarly, Databene Benerator [34] and DTM data

generator [35] are only used to populate databases with valid

test data. Moreover, all of these tools rely on random data

generation or picking of values from a pre-composed library.

In contrast to the aforementioned prior work and similar to

our SchemaAnalyst tool [8], this paper focuses on generating

tests for database schemas. SchemaAnalyst is a tool designed

to test relational database schemas using the AVM [7], [8],

which is also studied as part of this paper. However, these prior

works only present search-based and random methods, never

considering approaches specifically tailored to the problem

domain, which is the main contribution of this paper.

Critically, DOMINO copies the data values previously seen

elsewhere in a test case, incorporating random search for

CHECK constraints and always using values mined from the

schema. Both of these strategies have parallels with the value

seeding approach of Rojas et al. [36], which seeds an evolu-

tionary algorithm with constants used in a Java program, while

also re-using values previously generated during the search.

This paper also uses mutation analysis for part of its eval-

uation. Tuya et al. [28] developed a set of mutation operators

for SQL queries such as a SELECT statement. However, since

this paper concentrates on testing the integrity constraints of a

relational database schema, we use the operators proposed by

Kapfhammer et al. [10] and Wright et al. [26]. These operators

add, swap, and remove columns from integrity constraints such

as primary keys, foreign keys, and UNIQUE constraints, while

also removing and adding NOT NULL constraints, and introduc-

ing small changes to the conditions of CHECK constraints.

This paper’s results indicate that the diversity of the gener-

ated test data plays an important role in killing these mutants.

The relationship between diversity and fault-finding capability

has been studied previously. For example, Alshahwan and

Harman [37] reported that the output uniqueness of a program

under test positively influences test effectiveness, while Hem-

mati et al. [38] noted that rewarding diversity leads to better

fault detection when selecting model-based tests. DOMINO can

generate diverse values as it is tailored to re-use values only

when needed, randomly selecting data values otherwise.

It is worth noting that there are several examples of prior

work that consider the testing, debugging, and analysis of

database applications. For instance, Chays et al. [39] and

Zhou et al. [40] respectively created methods for automatically

generating test cases and performing mutation analysis. It

is also possible to use combinatorial data generators to test

database applications, as was investigated by Li et al. [41].

While this paper adopts coverage criteria for database schema

testing, prior work has also developed test adequacy criteria

for entire database applications [42], [43]. There are also many

methods customized for database applications that perform,

for instance, dynamic analysis [44], regression testing [45],

test execution [46], coverage monitoring [47], and fault local-

ization [48]. All of the aforementioned methods complement

this paper’s domain-specific technique for schema testing.

VI. CONCLUSIONS AND FUTURE WORK

Since databases are a valuable asset protected by a schema,

this paper introduced DOMINO, a method for automatically

generating test data that systematically exercises the integrity

constraints in relational database schemas. Prior ways to auto-

mate this task (e.g., [7], [10]) adopted search-based approaches

relying on the Alternating Variable Method (AVM). Even

though DOMINO is more efficient than the AVM, its domain-

specific operators enable it to create tests that match the

coverage of those produced by this state-of-the-art method.

DOMINO can also generate tests that are better at killing

mutants than AVM-D, a version of the AVM that starts the

search from a set of default values (e.g., ‘0’ for integers or

the empty string for strings). This is advantageous because the

test data values generated by DOMINO, not being based on

default values, have greater diversity. Following this insight,

we also studied an AVM that starts with random values.

Experiments show that, while AVM-R has a similar mutant

killing capability to DOMINO, its overall coverage scores are

not as high as the presented method’s and it takes significantly

longer to generate its tests. Finally, we compared DOMINO to

a hybridization combining the domain-specific operators with

the use of AVM for the CHECKs, finding that this alternative is

less efficient that the presented method and no more effective.

Given the efficiency and effectiveness of DOMINO, we

plan to experimentally compare it to methods that leverage

constraint solvers [49], evolutionary algorithms [50], and other

hybrid approaches [51]. Since prior work has shown the

importance of human-readable test data [52], [53], we will

also study whether testers understand DOMINO’s data values.

Building on the version of DOMINO that we have already

integrated into SchemaAnalyst and made available at [11], we

will also release all of the techniques developed as part of

future work, ultimately yielding a comprehensive and publicly

available approach to automatically testing database schemas.
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[28] J. Tuya, M. J. Suárez-Cabal, and C. de la Riva, “Mutating database

queries,” Information and Software Technology, vol. 49, no. 4, 2007.

[29] S. Poulding and J. A. Clark, “Efficient software verification: Statistical
testing using automated search,” Transactions on Software Engineering,
vol. 36, no. 6, 2010.

[30] A. Vargha and H. D. Delaney, “A critique and improvement of the CL
common language effect size statistics of McGraw and Wong,” Journal

of Education and Behavioral Statistics, vol. 25, no. 2, 2000.
[31] H. Bati, L. Giakoumakis, S. Herbert, and A. Surna, “A genetic approach

for random testing of database systems,” in Proceedings of the 33rd

International Conference on Very Large Data Bases, 2007.
[32] D. Letarte, F. Gauthier, E. Merlo, N. Sutyanyong, and C. Zuzarte, “Tar-

geted genetic test SQL generation for the DB2 database,” in Proceedings

of the 5th International Workshop on Testing Database Systems, 2012.
[33] D. R. Slutz, “Massive stochastic testing of SQL,” in Proceedings of the

24rd International Conference on Very Large Data Bases, 1998.
[34] “Databene Benerator,” http://databene.org/databene-benerator.html, (Ac-

cessed 03/07/2012).
[35] “DTM Data Generator,” http://www.sqledit.com/dg/index.html, (Ac-

cessed 04/10/2017).
[36] J. M. Rojas, G. Fraser, and A. Arcuri, “Seeding strategies in search-

based unit test generation,” Software Testing, Verification and Reliability,
vol. 26, no. 5, 2016.

[37] N. Alshahwan and M. Harman, “Augmenting test suites effectiveness
by increasing output diversity,” in Proceedings of the 34th International

Conference on Software Engineering, 2012.
[38] H. Hemmati, A. Arcuri, and L. Briand, “Reducing the cost of model-

based testing through test case diversity,” in Proceedings of the 22nd

International Conference on Testing Software and Systems, 2010.
[39] D. Chays, Y. Deng, P. G. Frankl, S. Dan, F. I. Vokolos, and E. J. Weyuker,

“An AGENDA for testing relational database applications,” Software

Testing, Verification and Reliability, vol. 14, no. 1, 2004.
[40] C. Zhou and P. Frankl, “JDAMA: Java database application mutation

analyser,” Software Testing, Verification and Reliability, vol. 21, no. 3,
2011.

[41] N. Li, Y. Lei, H. R. Khan, J. Liu, and Y. Guo, “Applying combinatorial
test data generation to big data applications,” in Proceedings of the 31st

International Conference on Automated Software Engineering, 2016.
[42] W. G. J. Halfond and A. Orso, “Command-form coverage for testing

database applications,” in Proceedings of 21st International Conference

on Automated Software Engineering, 2006.
[43] G. M. Kapfhammer and M. L. Soffa, “A family of test adequacy criteria

for database-driven applications,” in Proceedings of the 11th Symposium

on the Foundations of Software Engineering, 2003.
[44] J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold, “Dynamic

invariant detection for relational databases,” in Proceedings of the 9th

International Workshop on Dynamic Analysis, 2011.
[45] F. Haftmann, D. Kossmann, and E. Lo, “A framework for efficient

regression tests on database applications,” The VLDB Journal, vol. 16,
no. 1, 2007.

[46] ——, “Parallel execution of test runs for database application systems,”
in Proceedings of the 31st International Conference on Very Large Data

Bases, 2005.
[47] G. M. Kapfhammer and M. L. Soffa, “Database-aware test coverage

monitoring,” in Proceedings of the 1st India Software Engineering

Conference, 2008.
[48] S. R. Clark, J. Cobb, G. M. Kapfhammer, J. A. Jones, and M. J. Harrold,

“Localizing SQL faults in database applications,” in Proceedings of

the 26th International Conference on Automated Software Engineering,
2011.

[49] S. Khalek and S. Khurshid, “Systematic testing of database engines us-
ing a relational constraint solver,” in Proceedings of the 4th International

Conference on Software Testing, Verification and Validation, 2011.
[50] P. Tonella, “Evolutionary testing of classes,” in Proceedings of the

International Symposium on Software Testing and Analysis, 2004.
[51] P. McMinn and M. Holcombe, “Evolutionary testing using an extended

chaining approach,” Evolutionary Computation, vol. 14, no. 1, 2006.
[52] P. McMinn, M. Stevenson, and M. Harman, “Reducing qualitative

human oracle costs associated with automatically generated test data,”
in Proceedings of the International Workshop on Software Test Output

Validation, 2010.
[53] S. Afshan, P. McMinn, and M. Stevenson, “Evolving readable string test

inputs using a natural language model to reduce human oracle cost,” in
Proceedings of the 6th International Conference on Software Testing,

Verification and Validation, 2013.


