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This paper uses matched asymptotic expansions to study the non-localized (which we
refer to as global) boundary layer instabilities generated by free-stream acoustic and
vortical disturbances at moderate supersonic Mach numbers. The vortical disturbances
produce an unsteady boundary layer flow that develops into oblique instability waves
with a viscous triple-deck structure in the downstream region. The acoustic disturbances
(which for reasons given herein are assumed to have obliqueness angles that are close to a
certain critical angle) generate slow boundary layer disturbances which eventually develop
into oblique stable disturbances with inviscid triple-deck structure in a region that lies
downstream of the viscous triple-deck region. The paper shows that both the vortically-
generated instabilities and the acoustically generated oblique disturbances instabilities
ultimately develop into modified Rayleigh-type instabilities (which can either grow or
decay) further downstream.

Key words: boundary-layer receptivity, stability, compressible flow

1. Introduction

It is well known that laminar to turbulent transition in boundary layers is strongly in-
fluenced by unsteady disturbances in the free stream. This is often the result of a sequence
of events beginning with the excitation of spatially growing instability waves by the free-
stream disturbances. This so-called receptivity problem differs from classical instability
theory in that it leads to a boundary value problem rather than an eigenvalue problem
for the Orr-Sommerfeld or Rayleigh equations, which only apply in a region where the
mean flow is nearly parallel (refer to review article by Reshotko 1976). But the relevant
boundary conditions cannot be imposed on the Orr-Sommerfeld or Rayleigh equations in
the infinite Reynolds number limit being considered here. The free-stream disturbances
can, however, produce unsteady boundary layer disturbances near the leading edge of
the boundary layer which eventually become unstable further downstream.

Goldstein (1983) used a low frequency parameter matched asymptotic expansion to
show that there is an overlap domain where appropriate asymptotic solutions to the forced

† Email address for correspondence: marvin.e.goldstein@nasa.gov
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Figure 1: Structure of disturbance flow for 0 6 r < 1.

boundary layer equations match onto the Tollmien-Schlichting wave solutions of the
Orr-Sommerfeld equation, which applies further downstream. The Tollmien-Schlichting
wave/free-stream disturbance coupling tends to be fairly weak for the two dimensional
incompressible flow considered by Goldstein (1983), primarily because the boundary
layer disturbances undergo considerable decay before turning into growing Tollmien-
Schlichting waves in the Orr-Sommerfeld region.

But the situation can be quite different in supersonic flows where various modes of
instability, which have been well documented by Mack (1984), can occur. Our interest
here is in the moderately supersonic regime (Mach number less than 4) where the so
called 1st Mack instability mode, which results from a purely inviscid mechanism when
the mean flow has a generalized inflection point, is the dominant instability. Smith (1989)
showed that there are also viscous instabilities with obliqueness angles θ greater than the
critical angle, say θc, which is equal to the inverse cosine of the free-stream Mach number
cos−1

(
M−1

∞

)
. These instabilities exhibit the same triple-deck structure as the subsonic

Tollmien-Schlichting waves in the vicinity of the lower branch. Their critical layers lie
near the wall and their phase speeds are very small. They must therefore be generated
by a wall layer mechanism analogous to the one identified by Goldstein (1983).

Ricco & Wu (2007) extended the Goldstein (1983) analysis to compressible subsonic
and supersonic flat plate boundary layer flows and showed that highly oblique vortical
disturbances can generate the viscously unstable disturbances that are a limiting form of
the instability identified by Smith (1989). The present paper considers the more general
case where the free-stream vortical disturbances generate the complete Smith (1989)
instability, which now comes into play when the frequency-scaled (i.e. scaled with the
free-stream velocity/frequency) streamwise coordinate x is of the order of ǫ−2, where ǫ
denotes the frequency parameter F (defined explicitly below) to the one sixth power.
(Refer to figure 1, which will be discussed more fully below.) The instability waves can
have arbitrary obliqueness angles at subsonic Mach numbers but our interest here is in the
supersonic case, where θ must be greater than θc, since our computations show that the
instability wave lower branch lies further upstream than the subsonic lower branch and
much further upstream than the incompressible lower branch considered by Goldstein
(1983). This means that the instability wave/free-stream disturbance coupling will be
much greater in this case. The instability does not possess an upper branch in this case
and matches onto a low frequency (short streamwise wavenumber) Rayleigh instability
(that can be identified with the 1st Mack mode) when x is of the order of ǫ−4.
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Fedorov & Khokhlov (1991) and Fedorov (2003) (hereafter referred to as F/K) analyzed
the generation of inviscid instabilities in a supersonic flat plate boundary layer by fast and
slow acoustic disturbances in the free stream. (The Fedorov & Khokhlov (1991) analysis
was two dimensional and Fedorov (2003) extended it to include oblique disturbances.)
The slow acoustic mode propagates downstream/upstream when the obliqueness angle
θ of the acoustic disturbances is smaller/larger than the critical angle θc, which, as
already indicated, corresponds to the minimum obliqueness angle of the Smith (1989)
instabilities. Fedorov (2003) considered the case where the deviation ∆θ ≡ θc − θ of the
obliqueness angle from its critical value is O(1) and showed that downstream propagating
slow acoustic modes with ∆θ > 0 generate unsteady boundary layer disturbances that
match onto the inviscid 1st Mack mode instability without undergoing any significant
decay. But the inviscid Mack mode only emerges when the frequency-scaled distance x
is O

(
ǫ−6
)

= O
(
F−1

)
which is much further downstream than the region where the

long streamwise wavelength Rayleigh (1st Mack) mode emerges from the Smith (1989)
triple-deck solution. The latter instability can, therefore, undergo considerable growth
before reaching the downstream region where the inviscid Mack mode emerges from the
F/K solution. This is important because (as will be shown below) this region is likely
to lie too far downstream to be of practical interest when scaled up to actual flight
conditions. It also turns out that the most rapidly growing instability in the moderately
supersonic regime being considered here is the (usually highly oblique) 1st mode. (The
obliqueness angle of the most rapidly growing 1st mode lies between 50 and 70 degrees
for an insulated wall when the Mach number is between 2 and 6, Mack, 1984).

The spanwise wavenumber of the slow acoustic mode increases as θ approaches θc and
the F/K analysis, which is completely inviscid, breaks down when ∆θ becomes sufficiently
small (Fedorov 2003). We extend their analysis to these small values of ∆θ and show that
viscous effects come into play in the diffraction region where the slow boundary layer
disturbance is generated when ∆θ = O

(
ǫ2/3

)
= O

(
F1/9

)
and that this region, as well as

the downstream region where an instability wave can emerge, move upstream as ∆θ → 0.
The latter region lies at an O

(
ǫ−(4+2r)

)
distance downstream when ∆θ is reduced to

O
(
ǫ1−r

)
with 1/3 6 r < 1, which is downstream of the viscous triple-deck region where

the Goldstein (1983)-Ricco-Wu (2007) instability begins to grow (since it turns out that
there are no global solutions when r < 1/3) but can now be of considerable significance
under actual flight conditions since it lies upstream of the region where the ∆θ = O(1)
instability begins to grow.

It is therefore reasonable to consider both the vortical and small-∆θ acoustic distur-
bances simultaneously. The vortically generated instability is likely to be more impor-
tant than the acoustically generated instability since the analysis shows that the former,
which comes into play when x = O

(
ǫ−2
)
, has an O

(
ǫ−1
)

growth rate while the maximum

growth rate of the latter, which cannot come into play until x = O
(
ǫ−(4+2r)

)
, turns out

to be O(1).

The forced slow mode generated by the F/K mechanism appears to exist for smaller
obliqueness angles with ∆θ<0, but the streamwise wavenumber then becomes negative,
which means that the acoustic disturbances propagate upstream and are probably not
able to directly produce 1st Mack mode instabilities which propagate downstream. The
deviation angle ∆θ is negative for the supersonic triple-deck instabilities but the stream-
wise wavenumber is positive in that case and the solution can, therefore, match the
downstream propagating 1st Mack mode instability.

Fedorov (2003) showed that the F/K solution is in close agreement with the data of
Maslov et al. (2001) at O(1) values of ∆θ but greatly under-predicts the experimental
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receptivity coefficient when ∆θ is close to zero, which could be due the additional inviscid
instability that evolves from the viscous triple-deck solution.

As noted above, the present paper is concerned with the unsteady flow in a flat plate
boundary layer generated by mildly oblique vortical disturbance and small-∆θ acoustic
disturbances in a moderate supersonic Mach number free stream. It shows, among other
things, that the vortical disturbances generate a viscous instability that can exhibit much
less decay upstream of its lower branch than the corresponding two dimensional subsonic
modes considered by Goldstein (1983) even when the frequency parameter is small and
that the resulting instabilities could, therefore, dominate over those generated by the
acoustic disturbances. The relevant experiments are usually conducted with a trailing
edge flap that tends to move the leading edge stagnation point to the lower surface of the
plate, which could certainly cause the leading edge boundary layer to be slightly different
from the Blasius boundary layer considered in the paper and thereby slightly modify the
leading edge receptivity. But the present paper is meant to explain the relevant physics
and we believe that this is best done by analyzing the ideal situation that the experiments
are meant to simulate.

The outline of the paper is as follows. The imposed upstream disturbance environ-
ment is discussed in §2 and the upstream boundary layer flow generated by the imposed
vortical disturbances is analyzed in §3.1. Section 3.2 describes the resulting asymptotic
eigensolutions produced by this flow. The slow boundary layer disturbances generated by
acoustic disturbances with obliqueness angles close to the critical angle are analyzed in
§4. Section 5 shows that the vortically-generated asymptotic eigensolutions evolve into
oblique instability waves with viscous triple-deck structure when, as noted above, the
scaled streamwise coordinate is O(ǫ−2) while the acoustically-generated slow boundary
disturbances do not evolve into oblique instability waves in this region and eventually de-
velop into oblique stable disturbances with inviscid triple-deck structure when the scaled
streamwise coordinate becomes O

(
ǫ−(2+4r)

)
, 1/3 6 r < 1. Section 6 shows that both the

vortically-generated instability and the acoustically generated oblique disturbance even-
tually evolve into modified Rayleigh-type instabilities at larger downstream distances.
The numerical procedures are described in §7. The numerical results are presented in §8
and their physical implications are discussed. Some final conclusions are given in §9.

2. Formulation

We consider a supersonic flow of an ideal gas with uniform free-stream velocity U∗
∞,

temperature T ∗
∞, dynamic viscosity µ∗

∞, and density ρ∗
∞ past an infinitely thin flat plate

and suppose that a small amplitude harmonic distortion with angular frequency ω∗ is
superimposed on the flow. We also suppose that the time t is normalized by ω∗, the
velocities by U∗

∞, the pressure fluctuation by ρ∗
∞ (U∗

∞)
2
, the temperature by T ∗

∞, and the
dynamic viscosity by µ∗

∞. We let {x, y, z} denote Cartesian coordinates normalized by
L∗ ≡ U∗

∞/ω∗ with the coordinate y being perpendicular to the surface of the plate.

As indicated in the introduction the present paper assumes the Reynolds number
ρ∗U∗

∞L∗/µ∗
∞ to be large and uses asymptotic theory to explain how the imposed har-

monic distortion generates oblique instabilities at large downstream distances in the
viscous boundary layer that forms on the surface of the plate. The distortion will there-
fore be inviscid at lowest approximation and, as is well known (Kovasznay 1953), can
be decomposed into an acoustic component that carries no vorticity, and vortical and
entropic components that produce no pressure fluctuations.
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We only consider the first two for simplicity. The vortical velocity uv is given by

uv = {uv, vv, wv} = δ̂{u∞, v∞, w∞} exp [i(x − t + γy + βz)] , (2.1)

where δ̂ ≪ 1 and u∞, v∞, w∞ satisfy the continuity condition

u∞ + γv∞ + βw∞ = 0 (2.2)

but are otherwise arbitrary constants while the acoustic component is governed by the
linear wave equation which has a fundamental plane wave solution

{ua, pa} = {ua, va, wa, pa} =
δ̂p∞

1 − α
{α, γ, β, 1 − α} exp [i(αx + γy + βz − t)] , (2.3)

for the velocity and pressure perturbation where

γ =
√

(M2
∞ − 1) (α − α1)(α − α2), α1,2 =

M2
∞ ±

√
M2

∞ + β2 (M2
∞ − 1)

M2
∞ − 1

, (2.4)

where, as noted in the introduction, M∞ denotes the free-stream Mach number.
The leading edge interaction will produce large scattered fields when the incidence

angle tan−1(va/ua) = tan−1(γ/α) of the acoustic wave and tan−1(vv/uv) of the vortical
disturbance are O(1). And, in order to avoid this complication, we only consider the case
where the incidence angle of the vortical disturbance is small, which requires that

v∞

u∞

≪ 1 (2.5)

and the case where the incidence angle of the acoustic disturbance is zero, which requires
that

α = α∓ =
M∞ cos θ

M∞ cos θ ∓ 1
, θ ≡ tan−1

(
β

α

)
, (2.6)

where the subscripts −/+ refer to the slow/fast acoustic modes. Equation (2.6) shows
that the slow mode wavenumber becomes infinite when the obliqueness angle is equal to
the critical angle referred to in the introduction.

As indicated above our interest here is in explaining how the incident harmonic distor-
tions generate oblique instabilities at large downstream distances in the viscous boundary
layer where the mean temperature, density, and streamwise velocity, say T , ρ, U , respec-
tively, can be expressed as functions of the Dorodnitsyn-Howarth variable

η ≡ 1

ǫ3
√

2x

∫ y

0

ρ (x, ỹ) dy (2.7)

and determined from the similarity equations (Stewartson 1964)

U = F ′(η), (2.8)

(
µF ′′

T

)′

+ FF ′′ = 0, (2.9)

Pr−1

(
µT ′

T

)′

+ FT ′ + (γr − 1) M2
∞(F ′′)2 = 0, (2.10)

ρT = 1, (2.11)

F (0) = F ′(0) = 0, T ′(0) = 0; F ′ → 1, T → 1 as η → ∞, (2.12)

where γr is the specific heat ratio and the mean viscosity µ is assumed to depend on the
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temperature. The prime is used to denote differentiation with respect to η and Pr is used
to denote the Prandtl number.

The natural small parameter for the asymptotic expansion turns out to be

ǫ ≡ F1/6, (2.13)

where, as indicated in the introduction,

F ≡ ω∗µ∗
∞

ρ∗
∞ (U∗

∞)
2 (2.14)

denotes the frequency parameter. We begin by considering the unsteady flow generated
by the upstream vorticity.

3. Boundary layer disturbances generated by free-stream vorticity

3.1. Leading edge region

Our interest here is in boundary layer disturbances that generate oblique viscous insta-
bilities in a triple-deck region that lies at an O

(
ǫ−2
)

distance downstream, which, as will

be shown below, will have O
(
ǫ−1
)

spanwise wavenumbers. And we therefore require that

β ≡ ǫβ = O(1) (3.1)

since the spanwise wavenumber must remain constant as the disturbances propagate
downstream. The continuity condition (2.2) will then require that

w∞ ≡ w∞

ǫ
= O(1) (3.2)

and the obliqueness requirement (2.5) can be satisfied if we require that

v∞ ≡ v∞

ǫ
= O(1). (3.3)

Equation (2.2) then becomes

u∞ + γ v∞ + βw∞ = 0, (3.4)

where

γ ≡ ǫγ = O(1). (3.5)

The vortical velocity (2.1) will then interact with the plate to produce the following
inviscid velocity field (Ricco & Wu 2007)

uv(x, y, z) =δ̂

{
u∞eiγy/ǫ + iǫ2 v∞

g
e−gy/ǫ, ǫv∞

(
eiγy/ǫ − e−gy/ǫ

)
,

ǫ

(
w∞eiγy/ǫ + iv∞

β

g
e−gy/ǫ

)}
ei(x−t+βz/ǫ),

(3.6)

g ≡ ǫ

√

1 +

(
β

ǫ

)2

= β +
ǫ2

2β
+ ... (3.7)

when the streamwise coordinate x is assumed to be large enough so that the leading edge
refraction effects have decayed.

As noted above the free-stream disturbance (2.1) generates a slip velocity at the surface
of the plate that must be brought to zero in a thin viscous boundary layer whose mean
velocity and temperature are given by (2.7)-(2.12). We begin by considering the flow in
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the vicinity of the leading edge where the streamwise length scale is x = O(1). Since
(3.6) depends on the streamwise coordinate only through this relatively long streamwise
length scale, the solution {u, v, w, ϑ} for the velocity and temperature in this region is
given by (Ricco & Wu 2007)

{u, v, w, ϑ} =

{
F ′(η),

ǫ3T√
2x

(ηcF ′ − F ) , 0, T

}
+

δ̃
{

u0(x, η), ǫ3
√

2xv0(x, η), ǫw0(x, η), ϑ0(x, η)
}

ei(βz/ǫ−t),

(3.8)

where

ηc ≡ 1

T (η)

∫ η

0

T (η̃)dη̃ (3.9)

and
{

u0(x, η), ǫ3
√

2xv0(x, η), ǫw0(x, η), ϑ0(x, η)
}

is determined by the linearized bound-

ary layer equations. The solution
{

u0, v0, w0, ϑ0

}
to these equations can be divided into

the following two components (Gulyaev et al. 1989)

{
u0, v0, w0, ϑ0

}
=

(
u∞eiγy/ǫ + iǫ2 v∞

g
e−gy/ǫ

){
u, v, 0, ϑ

}
+

iβ

(
w∞eiγy/ǫ + iv∞

β

g
e−gy/ǫ

){
u(0), v(0), w(0), ϑ

(0)
}

,

(3.10)

where
{

u(0), v(0), w(0), ϑ
(0)
}

satisfy the three-dimensional compressible linearized bound-

ary layer equations subject to the boundary conditions (Ricco & Wu 2007)

u(0) → 0, w(0) → eix, ϑ
(0) → 0 as η → ∞, (3.11)

while the two-dimensional solution {u, v, 0, ϑ} satisfies the two-dimensional linearized
boundary layer equations

−iu+F ′ ∂u

∂x
− F

2x

∂u

∂η
−ηcF ′′

2x
u+

F ′′

T
v+

1

2x

(
F − ∂µ′

∂η

)(
F ′′

T
ϑ

)
=

1

2x

∂

∂η

(
µ

T

∂u

∂η

)
, (3.12)

∂u

∂x
− ηcT

2x

∂

∂η

(
u

T

)
+

∂

∂η

(
v

T

)
+

(
i − F ′ ∂

∂x
+

F

2x

∂

∂η

)(
ϑ

T

)
= 0, (3.13)

− ηcT ′

2x
u − 2M2

∞(γr − 1)F ′′

2x

∂u

∂η
+

T ′v

T
−
[

i − T ′F

2xT
+

1

2xPr

(
µ′T ′

T

)′

+
M2

∞(γr − 1)(F ′′)2

2xT

]
ϑ +

[
F ′ ∂

∂x
− 1

2x

(
F +

µ′T ′

PrT

)
∂

∂η

]
ϑ − 1

2xPr

∂

∂η

(
µ

T

∂ϑ

∂η

)
= 0

(3.14)

(where µ′ denotes dµ/dT ) subject to the boundary conditions

u → eix, w, ϑ → 0 as η → ∞. (3.15)

The estimate (5.18) below suggests that the lowest order triple-deck solution considered
in §5 will match onto the viscous quasi-two dimensional solution {u, v, 0, ϑ}, where the
spanwise dependence only enters parametrically through the exponential factor in (3.8).
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3.2. Asymptotic eigensolutions

Prandtl (1938), Glauert (1956), and Lam & Rott (1960) showed that

u(x, η) = −B(x)F ′′(η)√
2xT

, v(x, η) = iB(x) +
dB

dx
F ′(η) − B(x)ηcF ′′(η)

2x
, (3.16)

ϑ(x, η) = −B(x)T ′(η)√
2xT

(3.17)

is an exact eigensolution of the two-dimensional linearized unsteady boundary layer equa-
tions (3.12)-(3.14) that satisfies the homogeneous boundary conditions u, w, ϑ → 0 as
η → ∞ for all B(x), but does not necessarily satisfy the no-slip condition at the wall.
Lam & Rott (1960) showed that (3.12)-(3.14) also possess asymptotic eigensolutions that
emerge at large values of x and satisfy a no-slip condition at the wall but only considered
the incompressible limit. These solutions have a double layer structure which consists of
an outer region that encompasses the main part of the boundary layer and a thin viscous
wall layer. They showed that the solution in the outer region is still given by (3.16) and
(3.17) but with the arbitrary function B(x) determined by matching with the flow in the
viscous wall layer. Ricco & Wu (2007) pointed out that their analysis will also apply to
the compressible case provided the full compressible solution (3.16) and (3.17) is used in
the outer region and the solution in the viscous wall layer is slightly modified to account
for the temperature and viscosity variations. The end result is that the function B(x)
will now be given by

B(x) = x3/2Bn exp

[
−23/2eiπ/4

3λζ
3/2
n

(
Tw

µw

)1/2

x3/2

]
+ ... (3.18)

where ζn is a root of

Ai′ (ζn) = 0, for n = 0, 1, 2, 3... (3.19)

and

λ ≡ F ′′(0). (3.20)

The only difference from the Lam-Rott result is the (Tw/µw)
1/2

factor in the exponent.
The asymptotic solution to the full inhomogeneous boundary value problem (3.12)-(3.15)
can now be expressed as the sum of a Stokes layer solution plus a number of these
asymptotic eigensolutions. Goldstein (1983) and Goldstein et al. (1983) showed how the
multiplicative constants Bn can be determined from the full numerical solution to the
boundary layer problem. But our primary interest here is in the lowest order n = 0
solution because, as will be shown below, this is the one that will match onto a spa-
tially growing oblique instability wave further downstream. The final result can then be
used to relate the instability wave amplitude to the initial amplitude of the free-stream
disturbance, i.e. to solve the receptivity problem.

The three-dimensional linearized boundary layer equations could also have quasi-
two dimensional asymptotic eigensolutions which satisfy equations (3.12)-(3.14) and the
present result will apply to those solutions as well. Both sets of eigensolutions will have
to be considered when the full receptivity problem is solved. These boundary layer dis-
turbances will, as already noted, eventually evolve into a spatially growing instability in
a region that lies further downstream. But we first consider the boundary layer distur-
bances generated by the free-stream acoustic waves.
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4. Boundary layer disturbances generated by the Fedorov/Khokhlov
mechanism for obliqueness angles close to critical angle

F/K analyzed the generation of Mack mode instabilities in flat plate boundary layers
by oblique acoustic waves of the form (2.3) where the wavenumbers α and β satisfy
the dispersion relation (2.6) when the incidence angle γ is equal to zero, which, for
reasons given in §2, is the case of interest here. The focus of the present paper is on
the moderate supersonic regime (the Mach number is less than about 4) where the most
rapidly growing disturbances are usually highly oblique 1st Mack modes. (As indicated
above, the obliqueness angle of the most rapidly growing 1st mode lies between 50 and
70 degrees for an insulated wall when the Mach number is between 2 and 6, Mack
1984). F/K showed that diffraction of the slow acoustic wave by the nonparallel mean
boundary layer flow can produce a 1st Mack mode instability in the downstream region
where x = O

(
ǫ−6
)

when its obliqueness angle theta is less than the critical angle

cos θc ≡ 1

M∞

(4.1)

and the deviation

∆θ ≡ θc − θ (4.2)

is O(1). Their analysis shows that the diffraction occurs in the downstream region where
x = O

(
ǫ−3
)

and the unsteady flow has a three layer structure: a passive Stokes layer near
the wall, a main boundary layer region that fills the mean boundary layer and an outer
diffraction region of thickness O

(
ǫ−3/2

)
. The instability emerges from the downstream

limit of the solution in this region.
As noted above our interest here is in comparing the unstable flow produced by this

mechanism with that produced by the vortical disturbances. It is natural to do this
comparison at the same scaled spanwise wavenumber and scaled time (and, therefore,
the same period for the periodic motion being considered here). But, as noted above, the
vortical disturbances must have large spanwise wavenumber β in order to produce oblique
instability waves in the downstream region. The corresponding acoustic disturbances will
only have large spanwise wavenumbers when their obliqueness angles θ are close to the
critical angle θc, i.e. when ∆θ ≪ 1. And since

cos (θc − ∆θ) = cos θc + ∆θ sin θc + O
(

(∆θ)
2
)

, (4.3)

tan (θc − ∆θ) = tan θc − ∆θ

cos θc
+ O

(
(∆θ)

2
)

, (4.4)

when ∆θ ≪ 1, it follows from (2.6) that

β = β1 =
β̃

∆θ
(4.5)

and

α =
α̃

∆θ
+ α̃1 + ..., (4.6)

where

α̃ =
1

tan θc
, β̃ = 1, α̃1 =

1

sin2θc
(4.7)

are O(1) constants when this occurs. This shows that α also becomes large when ∆θ ≪ 1
and that α will expand in powers of ∆θ as indicated in (4.6), if β is fixed at (4.5) to
all orders in ∆θ (which we now assume to be the case). But the F/K diffraction region
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equations do not provide an appropriate asymptotic balance when ∆θ ≪ 1 and new
equations have to be derived before that analysis can be extended into the small-∆θ
regime. The relevant equations are derived in this section.

We begin by rescaling the F/K diffraction region equations. F/K showed that the
∆θ = O(1) solution, say {u, v, w, ϑ, p}, for the velocity, temperature and pressure in the
outer diffraction region (region 2 in their notation) is of the form

{u, v, w, ϑ, p} ={1, 0, 0, 1, 1} + δ̂
{

u2(x2, y2), ǫ3/2v2(x2, y2), w2(x2, y2), ϑ2(x2, y2),

p2(x2, y2)} exp

{
i

[(
α̃

∆θ
+ α̃1

)
x +

β̃z

∆θ
− t

]}
,

(4.8)

where

x2 ≡ xǫ3 = O(1), y2 ≡ yǫ3/2 = O(1) (4.9)

and the pressure is determined by

∂2p2

∂y2
2

= 2i
[
M2

∞(α − 1) − α
] ∂p2

∂x2
, (4.10)

subject to the boundary conditions

p2(x2, ∞) = p2(0, y2) = 1, (4.11)

∂p2

∂y2
= −i(α − 1)v1(x2, ∞), p2 = p1(x2) at y2 = 0, (4.12)

where the wall normal velocity v1(x2, ∞)=limη→∞ v1(x2, η) is determined by the solution
in the boundary layer where η = O(1). This solution shows that v1(x2, ∞) is related to
the boundary layer pressure p1 by

v1(x2, ∞) =
iαk

cos2 θ

√
x2p1, (4.13)

where k is a constant.
Equations (4.10) and (4.12) become

∂2p2

∂y2
2

= 2iα
(
M2

∞ − 1
) ∂p2

∂x2
, (4.14)

∂p2

∂y2
= −iαv1(x2, ∞), p2 = p1(x2) at y2 = 0 (4.15)

when the obliqueness angle is close to the critical angle. But, as noted above, these
equations have to be rescaled in order to obtain an asymptotically balanced result because
now α ≫ 1. Appendix A shows that they will remain unchanged, i.e. they can be written
as

∂2p2

∂ ˜̃y
2
2

= 2iα̃
(
M2

∞ − 1
) ∂p2

∂ ˜̃x2
, (4.16)

∂p2

∂ ˜̃y2

= −iαv1

(
˜̃x2, ∞

)
, p2 = p1

(
˜̃x2

)
at ˜̃y2 = 0, (4.17)

v1

(
˜̃x2, ∞

)
=

iα̃k̃
(
˜̃x2

)

cos2 θ

√
˜̃x2p2, (4.18)
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if we put

˜̃x2 ≡ x2

(∆θ)
3/2

∆ϕ
=

xǫ3

(∆θ)
3/2

∆ϕ
,

˜̃y2 ≡ y2

(∆ϕ)
5/4

(∆θ)
1/2

= O(1), k̃
(
˜̃x2

)
≡ k∆ϕ,

(4.19)

where we now allow the rescaled proportionality constant k̃
(
˜̃x2

)
to depend on ˜̃x2 in

order to accommodate the altered boundary layer flow which determines (4.18). The
scale factor ∆ϕ ≪ 1 is introduced to account for the fact this flow now develops a double
layer structure below the outer diffraction region when ∆θ → 0: a main boundary layer
where η = O(1) and a wall layer where

η̃ ≡ η

∆ϕ
= O(1). (4.20)

The solution to (4.16), which is essentially the same as that in F/K, implies that the wall
boundary condition (4.17) can be written as

p2

(
˜̃x2, 0

)
= 1 −

˜̃x2√
2πiα̃ (M2

∞ − 1)

∫ 1

0

i
√

σ√
σ − 1

α̃

[
v1

(
˜̃x2σ, ∞

)
√

˜̃x2σ

]
dσ. (4.21)

It turns out that the wall layer flow can be balanced if the lowest order solution {u, v, w, p}
in the main boundary layer behaves like

{u, v, w, p} ={U(η), 0, 0, 1} + δ̂





u1

(
˜̃x2, η

)

∆ϕ
,

[
ǫ3

(∆θ)
1/2

∆ϕ

]1/2

v1

(
˜̃x2, η

)
, w1

(
˜̃x2, η

)
,

p1

(
˜̃x2

)}
exp

{
i

[(
α̃

∆θ
+ α̃1

)
x + βz − t

]}
,

(4.22)

with

v1 = iα̃U(η)Ã
(
˜̃x2

)√
2˜̃x2 and u1 = −U ′(η)Ã

(
˜̃x2

)

T (η)
. (4.23)

The wall layer flow will be completely viscous when the convective and viscous terms in
the wall layer equations, which are proportional to αη and (2x)−1∂2/∂η2 respectively,
are of the same order. This occurs when

α̃

(
∆ϕ

∆θ

)
= O

(
1

2x (∆ϕ)
2

)
(4.24)

or

x = O
(

∆θ

(∆ϕ)
3

)
(4.25)

and, since ˜̃x2 = O(1), it follows from (4.19) that this occurs when

∆ϕ =

[
ǫ3

(∆θ)
1/2

]1/4

(4.26)
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or equivalently when

∆ϕ

∆θ
=

(
ǫ2/3

∆θ

)9/8

. (4.27)

Inserting (4.26) into (4.19) shows that

˜̃x2 ≡ x2

ǫ3/4 (∆θ)
11/8

=
xǫ9/4

(∆θ)
11/8

= xǫ4/3

(
ǫ2/3

∆θ

)11/8

= x

[
ǫ6

(∆θ)
11/3

]3/8

,

˜̃y2 ≡ y2

(∆θ)
31/64

ǫ15/16
.

(4.28)

The distinguished limit corresponds to the case where the wall layer flow is also time
dependent. This occurs when ∆ϕ = ∆θ or, in view of equation (4.27), when ∆θ =
O
(
ǫ2/3

)
. The corresponding wall layer solution, which is given in Appendix B, shows that

the wall normal velocity v1

(
˜̃x2, ∞

)
=limη→∞ v1(˜̃x2, η) is given in terms of the integral∫∞

ξ0
Ai(ξ)dξ and the derivative Ai′(ξ0) of the Airy function Ai(ξ0) by

v1

(
˜̃x2, ∞

)
√

2˜̃x2

= ip1

(
˜̃x2

) (α̃2 + β̃2
)

T 2
wξ0

λAi′ (ξ0)

∫ ∞

ξ0

Ai (ξ) dξ, (4.29)

which behaves like

v1

(
˜̃x2, ∞

)
√

2˜̃x2

∼ − ip1

(
˜̃x2

) (
α̃2 + β̃2

)
T 2

w

λ
(4.30)

as ˜̃x2 → ∞ since (Abramowitz & Stegun 1964, pp. 446-447)

Ai′(ξ0)∫∞

ξ0
Ai(q)dq

→ −ξ0 as ξ0 → ∞. (4.31)

Inserting (4.17) and (4.30) into (4.21) shows that

p1

(
˜̃x2

)
= 1 − γ0

∫ 1

0

√
σ√

1 − σ
p
(
σ ˜̃x2

)
dσ, (4.32)

where

γ0 ≡
˜̃x2

(
α̃2 + β̃2

)
α̃1/2T 2

w

λ
√

2πi (M2
∞ − 1)

, (4.33)

which is formally the same as the equation considered by F/K who showed that the
solution is given by

p1

(
˜̃x2

)
∼ exp

[
γ2

0π
(
˜̃x2

)2
]

as ˜̃x2 → ∞. (4.34)

This result also applies when

ǫ2/3

∆θ
= ǫr, 0 < r < 2/3. (4.35)

But the wall layer flow will be inviscid when ∆θ > ǫ2/3 and the time dependent term
must again balance the convective term in the wall layer equations, which means that
the wall layer scale factor ∆ϕ must also be set equal to ∆θ in this case. Equation (4.19)
then becomes

˜̃x2 ≡ x2

(∆θ)
5/2

=
xǫ3

(∆θ)
5/2

= O(1), ˜̃y2 ≡ y2

(∆θ)
7/4

= O(1), k̃ ≡ k∆θ, (4.36)
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which is consistent with equation (4.28) when ∆θ = ǫ2/3 and shows that the diffraction
region moves upstream when ∆θ → 0. The expansion breaks down when the length of the

diffraction region x = (∆θ)
5/2 ˜̃x2ǫ−3 is equal to the wavelength ∆θ when ∆θǫ−2 = O(1).

Equation (4.27) shows that ∆ϕ (∆θ)
−1 ≫ 1 when ǫ2/3 (∆θ)

−1 ≫ 1. This implies that

the time dependent terms will drop out of the wall layer equations when ǫ2/3 (∆θ)
−1 ≫ 1,

which occurs when ξ is replaced by ξ in the analysis of Appendix B. The relevant solution
for the wall normal velocity v1 can therefore be obtained from equation (4.29) by taking
the limit ξ0 → 0, with p1, ξ0 held fixed. And, since (Abramowitz & Stegun 1964, pp.
448-449)

∫∞

ξ0
Ai (ξ) dξ

Ai′ (ξ0)
→ −Γ(1/3)

32/3
as ξ0 → 0, (4.37)

where Γ(x) denotes the Gamma function, it follows that

v1

(
˜̃x2, ∞

)
√

2˜̃x2

= − ip1

(
˜̃x2

) (α̃2 + β̃2
)

T 2
wξ0Γ(1/3)

32/3λ
= ip1

(
˜̃x2

) (
α̃2 + β̃2

)

× T 2
wi1/3

[
Γ(1/3)

32/3λ

](√
2˜̃x2

α̃λ

)2/3(
Tw

µw

)1/3

.

(4.38)

And inserting (4.17) and (4.38) into (4.21) shows that

p2 = 1 −
(
˜̃x2

)4/3
γ1

∫ 1

0

√
σ

1 − σ
σ1/3p2

(
˜̃x2σ
)

dσ, (4.39)

where

γ1 ≡
(
α̃2 + β̃2

)
T 2

w

21/3Γ(1/3)

λ5/332/3
√

iπα̃ (M2
∞ − 1)

(
iTwα̃

µw

)1/3

(4.40)

is a constant.
Equation (4.39) possesses a power series solution of the form

p2 =
∞∑

n=0

anZn, (4.41)

where

Z ≡ γ1

(
˜̃x2

)4/3 √
π, (4.42)

which is somewhat different from the corresponding solution obtained by F/K. Inserting
(4.42) into (4.39), equating coefficients of like powers of Z, summing the resulting recur-
rence relation and using equation 6.1.8, 6.2.1 and 6.2.2 of Abramowitz & Stegun (1964)
shows that

an =

n∏

j=1

Γ(4j/3 + 1/2)

Γ(4j/3 + 1)
. (4.43)

It therefore follows from equations (4.42) and (C.5) that

p1 ∼ 3

4
A(8π)1/4

√
πγ1

(
˜̃x2

)4/3
exp

[
3γ2

1π
(
˜̃x2

)8/3

8

]
as ˜̃x2 → ∞, (4.44)

where γ1 is given by (4.40). Equations (4.17) and (4.22) show that the pressure p
(
˜̃x2

)
in
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the main boundary layer is given by

p
(
˜̃x2

)
− 1 = δ̂p1

(
˜̃x2

)
exp

{
i

[(
α̃

∆θ
+ α̃1

)
x +

β̃z

∆θ
− t

]}
. (4.45)

The acoustically generated boundary layer disturbance considered in this section as
well as the vortically generated disturbance considered in §3 will eventually evolve into
propagating eigensolutions in regions that lie further downstream. The resulting flow
will have a triple-deck structure of the type considered by Smith (1989), Wu (1999),
and Ricco & Wu (2007) in the latter (i.e. vortically generated) case. But the acoustically
generated disturbance considered in the present section can also potentially have a triple-
deck structure when ∆θ = O(ǫ). We therefore begin by considering the flow in this region
and show that the resulting triple-deck solution will match onto the compressible Lam-
Rott eigensolutions (3.16) and (3.17). We then further investigate whether an analogous
matching occurs for the acoustically generated small-∆θ F/K solution.

5. The triple-deck region

As shown by Smith (1989), Wu (1999), and Ricco & Wu (2007) the linearized Navier-
Stokes equations possess an eigensolution of the form

{u, v, w, p} = δ̂Φ(y, ǫ) exp

{
i

[
1

ǫ3

∫ x1

0

κ (x1, ǫ) dx1 + βz − t

]}
(5.1)

in the triple-deck region where

x1 ≡ ǫ2x = O(1) (5.2)

and

z ≡ z

ǫ
=

z∗ω∗

ǫU∗
∞

(5.3)

is a scaled transverse coordinate and, as noted in Goldstein (1983), κ has the expansion

κ (x1, ǫ) = κ0 (x1) + ǫκ1 (x1) + ǫ2κ2 (x1) + ..., (5.4)

where the lowest order term in this expansion satisfies the following dispersion relation

κ2
0 + β

2
=

1

(iκ0)
1/3

(
λ√
2x1

)5/3(
µw

T 7
w

)1/3

[
β

2 −
(
M2

∞ − 1
)

κ2
0

]1/2

Ai′ (ξ0)
∫∞

ξ0
Ai (q) dq

(5.5)

and

ξ0 = −i1/3

(√
2x1

κ0λ

)2/3(
Tw

µw

)1/3

, (5.6)

which is easily obtained by rewriting equation (5.2) of Ricco & Wu (2007) or equation
(3.17) of Wu (1999) in the present notation.

The solution in the main boundary layer where η = O(1) is given by

{u, v, w, p} =δ̂

{
A (x1) U ′(η)

T (η)
, −iκ0A (x1) U (η)

√
2x1, −ǫ2β PT (η)

κ0U(η)
, ǫ2P

}

× exp

{
i

[
1

ǫ

∫ x

0

κ (x1, ǫ) dx + βz − t

]}
,

(5.7)

where δ̂ ≪ 1 is the common scale factor used in (3.6).
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The solution in the upper deck where

y ≡ y

ǫ
=

y∗ω∗

ǫU∗
∞

= O(1) (5.8)

is given by

p = δ̂p̃(2) exp

{
−
[
β

2 −
(
M2

∞ − 1
)

κ2
0

]1/2

y

}
exp

{
i

[
1

ǫ

∫ x

0

κ (x1, ǫ) dx + βz − t

]}
,

(5.9)
when the branch of the square root is chosen so that

ℜ
{[

β
2 −

(
M2

∞ − 1
)

κ2
0

]1/2
}

> 0 (5.10)

in order to exclude solutions exhibiting unphysical wall normal exponential growth.
Continuity of pressure and wall normal velocity requires that

p(2) = P ,
∂p(2)

∂y
= −

√
2x1κ2

0A for y = 0 (5.11)

which implies that P and A are related by

[
β

2 −
(
M2

∞ − 1
)

κ2
0

]1/2

P = κ2
0

√
2x1 A. (5.12)

The equation for w can be written as

w = δ̂ǫ2 κ0β
√

2x1 AT (η)
[
β

2 − (M2
∞ − 1) κ2

0

]1/2

U(η)

exp

{
i

[
1

ǫ

∫ x

0

κ (x1, ǫ) dx + βz − t

]}
. (5.13)

As expected these equations reduce to equations (5.2) and (5.3) of Goldstein (1983) with
H defined by the right hand side of (4.52) of that reference when β and M∞ are set to
zero.

5.1. Matching with the Lam-Rott solution

Equations (5.5) and (5.6) can be satisfied at small values of x1 if κ0 ∼ √
x1 and

ξ0 → ζn, for n = 0, 1, 2, ... as x1 → 0, (5.14)

where ζn is the nth root of (3.19). Inserting (5.14) into (5.5) shows that

κ0 → 1

λζ
3/2
n

(
2Twx1

iµw

)1/2

as x1 → 0. (5.15)

Inserting (5.15) into (5.4) shows that (5.1) matches onto (3.16)-(3.19). Equation (5.13)
then implies that

w ∼ δ̂ǫ2 2x1TA

U
as x1 → 0. (5.16)

It therefore follows from (5.7) that

w

u
∼ ǫ2x1

λ
as x1 → 0 (5.17)

and, therefore, that
w

u
= O

(
ǫ4
)

for x = O(1). (5.18)
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This shows that w drops out and the flow in the main deck becomes two dimensional as
x1 → 0 and is therefore compatible with the quasi-two dimensional Lam-Rott solution
(3.16)-(3.18).

5.2. Matching with the small-∆θ Fedorov/Khokhlov solution

As explained at the end of §4 it is necessary to investigate whether the acoustically-
driven small-∆θ F/K solution matches onto the triple-deck instability downstream. To
this end we note that the triple-deck dispersion relation (5.5)-(5.6) also has a solution
that behaves like

κ0 → β

(M2
∞ − 1)

1/2
− β

11/3
[α̃0(0)]

2
x

5/3
1 + O

(
x2

1

)
as x1 → 0, (5.19)

where

α̃0(x) ≡ M2
∞T 2

w(2i)1/3
∫∞

x
Ai (q) dq

Ai′(x)λ5/3 (M2
∞ − 1)

17/12
(µw/Tw)

1/3
=

(
α̃2 + β̃2

)
T 2

w(2iα̃)1/3
∫∞

x
Ai (q) dq

Ai′(x)λ5/3 [α̃ (M2
∞ − 1)]

1/2
(µw/Tw)

1/3

(5.20)
and α̃ is given by (4.6) and (4.7). It, therefore, follows that

1

ǫ3

∫ x1

0

[κ0 (x1) + ǫκ1 (x1)] dx1 → α̃x

∆θ
− 3ǫ6 [α̃0(0)]

2
x8/3

8 (∆θ)
11/3

=

α̃x

∆θ
− 3 [α̃0(0)]

2

8



x

[
ǫ6

(∆θ)
11/3

]3/8




8/3

=
α̃x

∆θ
− 3 [α̃0(0)]

2

8
˜̃x

8/3
2

(5.21)

when β is set equal to ǫ/∆θ = O(1) and ˜̃x2 is given by (4.28), which shows that the
F/K solution (4.44), (4.45) and (4.40) matches onto the pressure component of the
outer triple-deck solution (5.7) when ∆θ = ǫ/β = O(ǫ) with the lowest order term
in the expansion (5.4) determined by the Smith-Ricco-Wu dispersion relation (5.5),

which is only valid when
[
β

2 − (M2
∞ − 1)κ2

0

]1/2

satisfies (5.10). But inserting (5.19)

into
[
β

2 − (M2
∞ − 1)κ2

0

]1/2

shows that the real part of this quantity is less than zero,

which means that (5.10) is not satisfied and therefore that (5.5) is invalid. This shows
that there are no global solutions with obliqueness angles close to the critical angle that
extend (4.44) and (4.45) into the downstream region since these solutions would exhibit
unphysical exponential growth in the wall normal direction.

It is therefore necessary to increase the magnitude of the critical angle deviation ∆θ
in the F/K solution (given in (4.22)) in order to construct a non-local solution that can
be extended downstream. This can be accomplished by putting ǫ/∆θ = O (ǫr) where r
is required to lie in the range

0 < r < 1 (5.22)

since (as explained above) we want the deviation ∆θ of the obliqueness angle from the
critical angle to remain small in order to compare the result with the viscous triple-deck
solution. Inserting the rescaled variables

β = β/ǫr, κ0 = κ0/ǫr, x̂1 = x1ǫ4r (5.23)

into (5.5), using (4.31) and taking the limit as ǫ → 0 with β, κ0 and x̂1 held fixed, shows
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that the rescaled wavenumber κ0 satisfies the inviscid dispersion relation

κ0
2 + β

2
=

λ

[
β

2
−
(
M2

∞ − 1
)

κ2
0

]1/2

κ0

√
2x̂1T 2

w

(5.24)

when the square root

[
β

2
− (M2

∞ − 1)κ2
0

]1/2

is required to remain finite as ǫ → 0. It can

then be shown by direct substitution that the solution κ0 behaves like

κ0 → β

(M2
∞ − 1)

1/2
− β

5
α̂2

0x̂1 as x̂1 → 0, (5.25)

where

α̂0 ≡ M2
∞T 2

w

(M2
∞ − 1)

7/4
λ

. (5.26)

The square root

[
β

2
− (M2

∞ − 1)κ2
0

]1/2

now satisfies the inequality (5.10) when x̂1 → 0

and (5.24) therefore remains valid in this limit.
The pressure component of the resulting solution (5.7) will then match onto the

downstream limit (4.33), (4.34) and (4.45) of the F/K diffraction region solution when

β = O
(
ǫ1−r/∆θ

)
with 1/36r<1 and ˜̃x2 is given by (4.36) since it follows from (3.1),

(5.2), (5.23) that

1

ǫ3

∫ x1

0

κ0 (x1) dx1 =
1

ǫ3(r+1)

∫ x̂1

0

κ0 (x̂1) dx̂1 →

α̃x

∆θ
− ǫβ

5
α̂2

0x2/2 =
α̃x

∆θ
− β

5
α̂2

0

(
ǫ3x
)2

/2 =
α̃x

∆θ
− α̂2

0
˜̃x

2
2/2.

(5.27)

We can investigate the remaining range ǫ < O (∆θ) < ǫ2/3 of ∆θ by noting that a
different limiting form of equations (5.5) and (5.6) can be obtained when κ0 is allowed

to approach β/
(
M2

∞ − 1
)1/2

as ǫ → 0. Inserting the first two of the rescaled variables
(5.23) into these equations and putting

κ0 =
β

(M2
∞ − 1)1/2

− ǫ6r [â (x̆1)]
2

(5.28)

where

x̆1 ≡ x1/ǫ2r (5.29)

shows that the resulting rescaled equations will be satisfied to lowest order in ǫ if we put

â (x̆1) ≡ M2
∞β

11/6

(M2
∞ − 1)

5/4

(√
x̆1

λ

)5/3(
iT 7

w

µw

)1/3
∫∞

ξ0
Ai (q) dq

Ai′ (ξ0)
(5.30)

where

ξ0 = −i1/3

[√
2 (M2

∞ − 1) x̆1

βλ

]2/3(
Tw

µw

)1/3

. (5.31)

The asymptotic behavior of the upstream diffraction layer solution is given by (4.40),
(4.44), and (4.45) when ∆θ < O

(
ǫ2/3

)
. The resulting pressure component of the inviscid
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triple-deck solution (5.7) will match onto these equations when κ0 is given by (5.28)-
(5.31) with β set equal to ǫ/∆θ since

â → M2
∞β

11/6

(M2
∞ − 1)

5/4

(√
x̆1

λ

)5/3(
iT 7

w

µw

)1/3 ∫∞

0
Ai (q) dq

Ai′ (0)
as x̆1 → 0 (5.32)

and it therefore follows that

1

ǫ3

∫ x1

0

κ0 (x1) dx1 =
1

ǫ3+r

∫ x̆1

0

κ0 (x̆1) dx̆1 →

xα̃

∆θ
− 3α̃2

0

8

{
x
[
ǫ6/ (∆θ)

11/3
]3/8

}8/3

=
xα̃

∆θ
− 3α̃2

0

8

(
∆θ ˜̃x2

∆ϕ

)8/3

,

(5.33)

where α̃ is given by (4.6) and (4.7) and α̃0 is an O(1) constant. But it follows from

(5.28) that the square root

[
β

2
−
(
M2

∞ − 1
)

κ2
0

]1/2

does not satisfy (5.10) in this case,

which shows that a global solution does not exist when ∆θ = o
(
ǫ2/3

)
. The results of

this section therefore show that the small-∆θ F/K solution (4.45) only matches onto
a physically realizable inviscid triple solution when ǫ2/3 6 O (∆θ) < 1. This implies,
among other things, that the former solution can only be continued downstream when
the unsteady and convective terms both appear in the wall layer equations.

6. The next stage of evolution

It follows from (4.31), (5.5) and (5.6) that

β → 1

κ
1/3
0 T 2

w

(
λ√
2x1

)5/3(√
2x1

κ0λ

)2/3

=
λ

κ0T 2
w

√
2x1

(6.1)

when x1 → ∞ and, therefore, that

κ0 → λ

βT 2
w

√
2x1

(6.2)

when κ0 is allowed to approach zero when x1 → ∞, and that

κ0 = ±iβ +
c√
2x1

+ ... (6.3)

when it is not. Substituting this latter result into (5.5) shows that the constant c is given
by

c = −λM∞

2βT 2
w

. (6.4)

But we exclude this latter case because it does not seem to match onto a nontrivial
solution downstream.

It is easy to show that the solution to the reduced dispersion relation (5.24) satisfies
the rescaled version

κ0 → λ

βT 2
w

√
2x̂1

as x̂1 → ∞ (6.5)

of (6.2), which can be considered to be a special case of this result if we allow r to lie in
the half closed interval 06r< 1 instead of the open interval (5.22). (The subset 0<r<1/3
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will be of little interest since there are no global solutions in this range.) The expansion
(5.4) then generalizes to

κ (x1, ǫ) = κ0 (x̂1) + ǫ1−rκ1 (x̂1) + ǫ2(1−r)κ2 (x̂1) + ..., (6.6)

where

κ, κ1, κ2... = κ/ǫr, κ1, κ2ǫr... (6.7)

and x̂1 is defined in (5.23).
Equation (6.5) implies that the streamwise wavenumber goes to zero as the distur-

bance propagates downstream. Its growth rate approaches or is equal to zero but does
not become negative. The spanwise length scale remains constant at O

(
ǫ1−r

)
, but the

boundary layer thickness continues to increase and the triple-deck scaling breaks down
when the boundary layer thickness, which is of O

(
ǫ3

√
x
)
, becomes of the order of the

spanwise length scale. This occurs when

x1 = xǫ4+2r = O(1), (6.8)

which is upstream of the location where the unsteady flow is governed by the full Rayleigh
equation considered in F/K. The instability wave becomes more oblique in this limit and
it follows from (5.4) and (5.23) that

exp

{
i

[
1

ǫ3

∫ x1

0

κ (x1, ǫ) dx1 + βz − t

]}
= exp

{
i

[
1

ǫ3(1+r)

∫ x̂1

0

κ0 (x̂1, ǫ) dx̂1

+
1

ǫ2+4r

∫ x̂1

0

κ1 (x̂1, ǫ) dx̂1 +
1

ǫ1+5r

∫ x̂1

0

κ2 (x̂1, ǫ) dx̂1 + O
(
ǫ−4r

)
+ ǫrβz − t

]}

→ exp

{
i

[
1

ǫ4+2r

∫ x1

0

α (x1, ǫ) dx1 + βz − t

]}
as x̂1 → ∞,

(6.9)

where α (x1) is an O(1) function of x1 (given by (6.8)) and

z ≡ ǫrz =
z

ǫ1−r
, (6.10)

which means that the solution should be proportional to exp
{

i
[
ǫ−(4+2r)

∫ x1

0
α (x1, ǫ) dx1 + βz − t

]}
,

where α (x1) is an O(1) function of x1 that behaves like

α → λ

βT 2
w

√
2x1

+ ... as x1 → 0, (6.11)

in this next stage and should exhibit a double layer structure consisting of an inviscid
region whose thickness is of the order of the boundary layer thickness and a completely
passive viscous wall layer (i.e. a Stokes layer). The scaled variable

Y ≡ ǫ3y√
2x1

(6.12)

will be O(1) in the latter region and the scaled variable

y ≡ y

ǫ1−r
(6.13)

will be O(1) in the former region since the boundary layer thickness is now of the order
of the spanwise length scale, O

(
ǫ1−r

)
. It therefore follows from (6.8) and (6.13) that
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the transverse pressure gradients are expected to come into play and the solution in this
region should expand like

{u, v, w, p} ={U, 0, 0, 0} + δ̂A (x1)
{

u(y; x1), ǫ1−rv(y; x1), ǫ1−rw(y; x1), ǫ2(1−r)p(y; x1)
}

× exp

{
i

[
ǫ−(4+2r)

∫ x1

0

α (x1, ǫ) dx1 + βz − t

]}
+ ...,

(6.14)

where A (x1) is a function of the slow variable x1. Substituting this into the linearized
Navier-Stokes equations shows that

iα u +
∂v

∂y
+ iβw = iǫ2(1−r)M2

∞ (1 − αU) p + O
(

ǫ4(1−r)
)

, (6.15)

−i (1 − αU) u +
dU

dy
v = −ǫ2(1−r)iαTp + O

(
ǫ4(1−r)

)
, (6.16)

−i (1 − αU) v = −T
∂p

∂y
, (6.17)

(1 − αU) w = Tβp, (6.18)

since the density and temperature fluctuations can be eliminated between the energy
equation and continuity equations to obtain a single equation for the pressure and veloc-
ity fluctuations at this order of approximation (Goldstein 1976, 2003). Eliminating the
velocity between (6.15)-(6.18) leads to the incompressible reduced Rayleigh equation

(1 − αU)
2

T

d

dy

[
T

(1 − αU)
2

dp

dy

]
− β

2
p = O

(
ǫ2(1−r)

)
(6.19)

for a variable temperature mean flow. Equation (6.19) is a limiting form of the full
(compressible) reduced Rayleigh equation

(1 − αU)
2

T

d

dy

[
T

(1 − αU)
2

dp

dy

]
−
{

β
2

+ ǫ2(1−r)

[
α2 − M2

∞ (1 − αU)
2

T

]}
p = 0. (6.20)

It is well known that the incompressible Rayleigh equation can also be expressed in terms
of the wall normal velocity v. In fact, substituting (6.17) into (6.20) and differentiating
with respect to y shows that

T
d

dy

{
(1 − αU)

2

T

d

dy

[
v

1 − αU

]}
−
(

β
2

+ ǫ2α2

)
(1 − αU) v =

− ǫ2(1−r)T
d

dy

[
M2

∞ (1 − αU)
2

T
p

] (6.21)

and therefore that

T
d

dy

(
1

T

dv

dy

)
+

[
Tα

1 − αU

d

dy

(
1

T

dU

dy

)
−
(

β
2

+ ǫ2(1−r)α2

)]
v =

− ǫ2(1−r) T

(1 − αU)
2

d

dy

[
M2

∞ (1 − αU)
2

T
p

]
,

(6.22)
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whose solution must satisfy the following boundary conditions

v ∼ e−βy for y → ∞, (6.23)

v = 0 at y = 0. (6.24)

Matching with the upstream solution (5.1) and (5.4) requires that α (x1) satisfy the
matching condition (6.11) as x1 → 0.

Inserting (2.7), (2.11) and (6.13) into (6.22) and using (6.24) shows that

d

dη

(
1

T 2

dv

dη

)
+

[
α

1 − αU

(
U ′

T 2

)′

−
(

β
√

2x1

)2
]

v = O
(

ǫ2(1−r)
)

, (6.25)

v = 0 at η = 0, (6.26)

which means that

α = f
(

β̂
)

, (6.27)

where

β̂ ≡ β
√

2x1 (6.28)

clearly approaches zero when

x1 → 0, (6.29)

which means α that will be consistent with the matching condition (6.9) if we require
that it behave like

α = α0/β̂ + α1 + α2β̂ + ... as x1 → 0, (6.30)

where α0 = λ/T 2
w and α1, α2... are (in general complex) constants such that

α1 = lim
x̂1→∞

κ1 (x̂1) (6.31)

and

α2 = lim
x̂1→∞

κ1 (x̂1)

β
√

2x̂1

. (6.32)

We, therefore, need to consider the expansion (6.30) in order to show that the solution
matches with the triple-deck solution. Substituting (6.30) into (6.25) shows that

d

dη

(
1

T 2

dv

dη

)
− 1

U

(
U ′

T 2

)′
[

1 − β̂

Uα0
+

β̂2 (1 − α1U) (2 − α1U)

(Uα0)
2 + ...

]
v − β̂2v = 0,

(6.33)
which suggests that v should expand like

v = v0 + β̂v1 + β̂2v2 + ... (6.34)

when η = O(1). Inserting (6.34) into (6.33) and equating coefficients of like powers of β̂
yields

d

dη

[
U2

T 2

d

dη

(v0

U

)]
= 0, (6.35)

d

dη

[
U2

T 2

d

dη

(v1

U

)]
− 1

Uα0

(
U ′

T 2

)′

v0 = 0 (6.36)

and (6.24) implies that

v0 = v1 = 0 at η = 0. (6.37)
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But equation (6.25) also shows that

d2v

dη̂2
− v = 0 (6.38)

when

η̂ ≡ ηβ̂ = O(1), (6.39)

which means that

v = e−η̂ = e−β̂η (6.40)

in this region. And, since expanding (6.40) for small η̂ shows that

v = 1 − β̂η +
(

β̂η
)2

/2 + ... as η̂ → 0, (6.41)

matching the inner solution (6.34), (6.35) and (6.37) to this result implies that

v0 = U. (6.42)

Inserting (6.42) into (6.36) and integrating the result yields

v1 = − 1

α0
− c1U

[∫ ∞

η

(
T 2

U2
− 1

)
dη − η

]
+ ĉ1U, (6.43)

where c and ĉ1 are integration constants. Matching (6.43) with (6.41) and imposing the
boundary condition (6.37) shows that

c1 = −1, ĉ1 = 1/α0, α0 = λ/T 2
w, (6.44)

and it therefore follows from (6.30) and (6.32) that

α =
λ

T 2
wβ

√
2x1

+ α1 + α2β̂ + ..., (6.45)

which is consistent with the matching condition (6.11). Notice that (6.42) is consistent
with (5.7).

While α is initially real it can eventually become complex and thereby produce expo-
nential growth or decay because

(
U ′/T 2

)′
can equal zero at some finite value of η and

equation (6.25) can, therefore, have the equivalent of a generalized inflection point there.

7. Numerical procedures

The Newton-Raphson method was used to solve the dispersion relation (5.5). The
complex eigenvalue κ0 was first computed at small-x1 values, where quick numerical
convergence was achieved by using the asymptotic formula (5.15) as an initial guess
for the iterative procedure. The numerically computed κ0 values at the two previous
x1 locations were interpolated to construct the initial guess for the κ0 calculations at
larger x1 locations. The same procedure was used to solve (5.24). The Airy function was
computed with an in-house code based on the method developed by Gil et al. (2001).

An implicit second-order finite-difference scheme was used to solve the modified Rayleigh
boundary value problem (6.23), (6.25), and (6.26). The eigenvalue α was computed by
setting dv/dη|η=0 to an order-one constant and using the Newton-Raphson method to
iteratively update the computed value of α until |v(0)| was smaller than 10−8, and the
difference between the absolute values of two successively computed values of α was also
smaller than 10−8. The computation was first performed at small β̂ values, where quick
numerical convergence was achieved by using the asymptotic formula (6.11) as an initial
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guess for the iterative procedure. The numerically computed α values at the two smaller
β̂ values were interpolated to construct the initial guess for the α calculations at the
larger β̂ values.

8. Results and discussion

This paper uses asymptotic analysis to compare the generation of oblique 1st Mack
mode instabilities by free-stream acoustic disturbances with those generated by elongated
vortical disturbances. The focus is on explaining the relevant physics and not on obtaining
accurate numerical predictions. The appropriate small expansion parameter turns out to
be ǫ = F1/6, where F denotes the frequency parameter defined in (2.14).

The free-stream vortical disturbances generate unsteady flows in the leading edge re-
gion that produce short spanwise wavelength instabilities in a viscous triple-deck region
which lies at an O

(
ǫ−2
)

distance downstream. The mechanism is analogous to the one
considered by Goldstein (1983) in incompressible flows, but the instability onset occurs
much further upstream in the present supersonic case and is, therefore, much more ro-
bust. The triple-deck instability does not possess an upper branch and evolves into an
inviscid 1st Mack mode instability with short spanwise wavelength at an O

(
ǫ−4
)

distance
downstream.

Slow free-stream acoustic waves whose obliqueness angles differ from the critical an-
gle θc by an O(1) amount generate slow boundary layer disturbances over a relatively
long region of length O

(
ǫ−3
)
. And these latter disturbances then produce O(1) spanwise

wavelength inviscid 1st Mack mode instabilities at a much larger O
(
ǫ−6
)

distance down-

stream. But the physical streamwise distance x∗ = (U∗
∞)

3
/
[
(ω∗)

2
ν∗

∞

]
corresponding to

this scaled downstream location is at least equal to about 7 meters for the typical super-
sonic flight conditions at M∞=3 (U∗

∞ = 888 m/s, ν∗
∞ = 0.000264 m2/s) at an altitude of

20 km, with an upper bound of 100 kHz for typical “low” characteristic frequency. This
means that this instability occurs too far downstream to be any practical interest.

However, the present results show that the slow boundary layer disturbances are gener-
ated over shorter streamwise length scales and produce (possibly unstable) eigensolutions
in a region that lies at an O

(
ǫ−(4+2r)

)
distance downstream when the deviation ∆θ of

the acoustic wave obliqueness angle from its critical angle θc is reduced to O
(
ǫ1−r

)
,

with 1/36r<1. This region lies closer to the leading edge and the latter eigensolutions
are therefore more likely to be of practical interest than the ∆θ = O(1) 1st Mack mode
instabilities that appear in the F/K analysis. The relevant flow structure is depicted in
figure 1.

The dispersion relation (5.5), which determines the complex wavenumber of the triple-
deck instabilities, is expected to have at least one root corresponding to each of the
infinitely many roots of the Lam-Rott dispersion relation (3.19). But only the lowest
order n = 0 root of (3.19) can produce the spatially growing modes of (5.5). The wall
temperature Tw and viscosity µw can be scaled out of this equation by introducing the
rescaled variables

κ†
0 = κ0T 1/2

w µ1/6
w , x†

1 = x1T 2
w/µ2/3

w , β
†

= βT 1/2
w µ1/6

w . (8.1)

Figures 2 and 3 are plots of the real and negative imaginary parts, respectively, of the
scaled wavenumber κ†

0 as a function of the scaled streamwise coordinate x†
1 calculated

from (5.5) together with the n = 0 Lam-Rott initial condition (5.15) for M∞ = 2, 3, 4 and

three values of the frequency scaled transverse wavenumber β
†
> 2. The dashed curves

in the main plot of figure 2 show the re-scaled large-x†
1 asymptote (6.2). The insets are
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Figure 2: ℜ
(

κ†
0

)
as a function of the scaled streamwise coordinate x†

1 calculated from the

dispersion relation (5.5) together with the Lam-Rott initial condition (5.15) for M∞ =
2, 3, 4 (double dot dashed, dot dashed, and solid lines, respectively) and three values of

the frequency scaled transverse wavenumber β
†
> 2. In the main graph, the dashed curve

is the rescaled large-x†
1 asymptote (6.5).

included to more clearly show the changes at small x†
1. The dashed curves in the in-

sets denote the real and imaginary parts of the small-x†
1 asymptotic formula (5.15). The

composite Lam-Rott triple-deck eigensolution can undergo a significant amount of damp-
ing before it turns into a spatially growing instability wave at the lower branch with the
amount of damping determined by the upstream behavior of the triple-deck solution (5.1)
since this solution actually contains the Lam-Rott solution as an upstream limit. Equa-
tion (5.1) shows that the exponential damping factor is proportional to ℑ

[∫ xLB

0
κ (x1) dx

]

= ǫ−2 ℑ
[∫ (x1)

LB

0
κ (x1) dx

]
, where xLB denotes the streamwise location of the lower

branch of the neutral stability curve and (x1)LB denotes the scaled streamwise location
of that curve. In other words it is proportional to the area under the growth rate curve
in figure (3) between zero and the lower branch. The inset in figure 3 is particularly

relevant because it shows that the length ∆x†
1 = 0.01 of this upstream region is very

short and thefore that the amount of damping is relatively small. The supersonic leading
edge receptivity mechanism is therefore expected to be much more relevant than in the
incompressible case considered by Goldstein (1983).

The rapid changes allow small changes in x†
1 to produce order-one changes in κ†

0 which

means that the asymptotic expansion will not be accurate in the region where x†
1 ∈ ∆x†

1

unless the small expansion parameter ǫ is much smaller than ∆x†
1 (though it is still likely
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Figure 3: −ℑ
(

κ†
0

)
as a function of the scaled streamwise coordinate x†

1 calculated from

the dispersion relation (5.5) together with the Lam-Rott initial condition (5.15) for M∞ =
2, 3, 4 (double dot dashed, dot dashed, and solid lines, respectively) and three values of

the frequency scaled transverse wavenumber β
†
> 2.

to be accurate in the region where x†
1 = O(1)). This requirement will probably not be

satisfied at realistic values of ǫ and the full linearized Navier-Stokes equations will then
have to be used to obtain accurate results in this upstream region. This was done by
Wanderley & Corke (2001) for the incompressible case considered by Goldstein (1983).
Analogous calculations were carried out by Ricco & Wu (2007) who solved the boundary
region equations driven by highly oblique free-stream disturbances and obtained expo-
nentially growing (i.e. unstable) solutions which exactly correspond to the large β limit of
the triple- deck dispersion relation (5.5). But the full linearized Navier-Stokes equations
would have to be used in the present case in order to account for the streamwise pressure
gradients that enter into the β = O(1) triple-deck solutions.

Since these results show that the complex wavenumber κ†
0 is nearly independent of the

Mach number for the Mach number range being considered here, the remaining discussion
of the triple-deck regime is restricted to the M∞ = 3 case.

Realistic values of the actual unscaled streamwise location of the triple-deck region can

be estimated by first selecting the characteristic scaled spanwise wavenumber β
†

and tak-
ing x†

1 to be the streamwise coordinate of the downstream location of maximum growth

rate. It follows from figure 3 that typical values of β
†

and x†
1 are β

†
= 2 and x†

1 = 0.25,

which satisfies the requirement, alluded to above, that the scaled streamwise location x†
1

be significantly larger than the short streamwise region of length ∆x†
1 = 0.01 where the
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Table 1: Estimation of location of triple-deck viscous instability for flight conditions at
at an altitude of 20km.

λ∗
z = 2π

β∗ (m) x∗ (m) Rex =
U∗

∞x∗

ν∗
∞

0.02 0.05 180000
0.03 0.1 343000
0.04 0.16 544000
0.05 0.23 777000

gradient of the growth rate is too large for the asymptotic balance to be valid. By express-

ing β
†

and x†
1 in terms of dimensional quantities, β

†
=2π (U∗

∞)
2/3

(ν∗
∞)

1/6
T

2/3
w /

[
λ∗

z (ω∗)
2/3
]
,

and eliminating the frequency ω∗, the dimensional (unscaled) downstream location can

be estimated as x∗ = x†
1

(
β

†
λ∗

z

)8/5

(U∗
∞)

3/5
/
[
(2π)

8/5
(ν∗

∞)
3/5

T
12/5
w

]
. The streamwise

locations of the points of maximum instability wave growth are given in Table 1 for typical
supersonic flight conditions and realistic values of the spanwise wavelength λ∗

z = 2π/β∗.
We, therefore, conclude that the triple-deck instability can play an important role in the
boundary layer transition process on actual supersonic aircraft wings.

Figure 4 is a plot of the real part of κ̂0 as a function of the frequency scaled transverse

wavenumber β
†

for various values of the scaled streamwise coordinate x†
1 calculated

from the dispersion relation (5.5) together with the Lam-Rott initial condition (5.15) for
M∞ = 3. It shows that the results are well approximated by the (appropriately rescaled)
large-x1 asymptote (6.2) and therefore that this formula is also the lowest order term in

the large-β
†

asymptotic expansion of κ̂0 at fixed x1 for β
†

> 2.
Figure 5 is a plot of the complex wavenumber κ†

0 for M∞ = 3 and various values of

β
†

< 5. The β
†

< 0.978 curves are discontinued at the value of x†
1 where ℑ (κ̂0) = 0

because the upper deck solution, which is proportional to exp

[
−y

√
β

2 − (M2
∞ − 1) κ2

0

]
,

becomes unbounded at large y when the curves are continued to larger x†
1 values. Similar

behavior was found to occur in rotating-disk boundary layers (Healey 2006). The inset in

figure 5 shows that the bifurcation occurs at β
†

= 0.978 and x†
1 = 0.025. Figure 6 shows

that this happens because the real part of the exponent

√
β

2 − (M2
∞ − 1) κ2

0 becomes

negative when ℑ
(

κ†
0

)
becomes negative if β

†
< 0.978 but remains positive if β

†
> 0.978,

which means that the n = 0 Lam-Rott solution cannot be continued into the downstream
region when M∞ = 3 and β

†
6 0.978 and a linear steady state (time periodic) global

solution will not exist. But the higher order n > 0 modes shown in figure 7 exist for all

x†
1 when β

†
> 0.978, which means that there will be at least one global solution for all

values of β
†
. The lowest order n = 0 modes have a positive growth rates for at least some

values of x†
1 when β

†
> 0.978 and have negative or zero growth at all x†

1 values when β
†

is less than this critical value 0.978. The higher order n > 0 modes have negative growth
rates for all values of x†

1.

The dashed curves in figure 5 show the small-x†
1 asymptote (5.15) which is the initial

condition for the calculation. The dashed curves in figure 7 show the small-x†
1 asymptotes

(5.15) for n > 0.
While the slow F/K solution constructed in §4 can be matched onto a viscous triple-
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Figure 4: ℜ
(

κ†
0

)
as a function of the frequency scaled transverse wavenumber β

†
for three

values of the scaled streamwise coordinate x†
1 calculated from the dispersion relation (5.5)

together with the Lam-Rott initial condition (5.15) for M∞=3. The dashed curve is the

rescaled large-x†
1 asymptote (6.5), which shows that this result is also valid when β → ∞

and x†
1=O(1).

deck solution when β ≡ ǫ/∆θ = O(1), we have shown (after equation (5.21)) that this
result is unphysical because it does not remain bounded at large wall normal distances
from the plate. This means that a global triple-deck solution can only exist at larger ∆θ,
which corresponds to the scaling

β =
ǫ1−r

∆θ
= O(1) (8.2)

with 0<r<1. But §5 shows that the resulting solution can only be matched onto the
slow F/K solution when 1/3 6 r < 1, which means that the F/K solution cannot be
continued into the downstream region when 0 6 r < 1/3. The minimum ∆θ, which is

determined by β = ǫ2/3/∆θ = O(1) in (8.2), corresponds to an upstream diffraction
region solution that matches onto an inviscid triple-deck solution in the downstream
region where x̂1 = x1ǫ4/3 = O(1), which is still further downstream than the viscous
triple-deck region where x1 = O(1) but upstream of the full Rayleigh equation region
where the ∆θ = O(1) solution becomes unstable.

Figure 8 is a plot of the scaled wavenumber κ0/β = κ0/β as a function of the scaled

streamwise coordinate
(

βTw

)4

x̂1/λ2=
(
βTw

)4
x1/λ2 for various values of the free-stream
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Figure 5: Top: ℜ
(

κ†
0

)
, bottom: scaled growth rate −ℑ

(
κ†

0

)
as a function of the scaled

streamwise coordinate x†
1 calculated from the dispersion relation (5.5) together with the

initial condition given by (5.15) with n = 0 for M∞=3 and various values of the frequency

scaled transverse wavenumber β
†

< 5.
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Figure 8: Scaled wavenumber κ0/β = κ0/β as a function of the scaled streamwise coor-

dinate
(

βTw

)4

x̂1/λ2=
(
βTw

)4
x1/λ2 for various values of the free-stream Mach number

M∞. The solid lines represent the numerical solution while the dashed lines represent
the asymptotic solution (5.25).

Mach number M∞ calculated from the inviscid triple-deck dispersion relation (5.24)
together with the F/K asymptotic initial condition (5.25) which is shown by the dashed
curves in the figure. The wavenumber is now completely real and the disturbance growth
rates are therefore zero. This means that these F/K disturbances are potentially much
less significant than the Lam-Rott instabilities which occur upstream and can exhibit
significant streamwise growth.

The non-local Lam-Rott instabilities are low frequency disturbances that occur when

the scaled frequency parameter β
−1

is less than the critical value 1/0.4925 for M∞ = 3
and the non-local F/K instabilities are high frequency disturbances that occur when

β
−1

= ǫ−r, 1/36r<1. Since ǫ1/3 could easily be equal to 0.4925 numerically and since
the leading edge shock wave can convert acoustic disturbance into convected disturbances
this may explain the results plotted in figure 13 of Fedorov (2003) which show that the
F/K solution significantly under-predicts the experimental data of Maslov et al. (2001)
in the vicinity of the critical angle.

We have also shown that the solutions in the (viscous or inviscid) triple-deck regions
eventually evolve into a Rayleigh equation phase whose eigenvalues α are determined
by the boundary value problem (6.23), (6.25), and (6.26) and must therefore occur in
complex conjugate pairs since the coefficients in (6.25) are all real. These equations
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Figure 9: ℜ (ᾱ) vs β̂ calculated from the modified Rayleigh equation eigenvalue problem.
The dashed curves are calculated from the asymptotic formula (6.11).

suggest that α will depend on the single parameter β̂, but it will, in reality, also be Mach
number dependent since (2.8)-(2.11) show that the mean streamwise velocity U = F ′(η)
and mean temperature distribution T (η) exhibit this dependence. The eigenvalues that
satisfy this non-local problem must also satisfy the initial conditions (6.30)-(6.32). We
assume in the following that the Prandtl number Pr is equal to unity and that the
viscosity µ(T ) satisfies the simple linear relation µ(T ) = T (η).

Figures 9 and 10 are plots of the real and imaginary parts respectively of these eigen-
values as a function of β̂. They clearly show that ℑ (α) undergoes very rapid changes at

small values of β̂. But, as in the triple-deck case, these changes again allow small changes
in β̂, say ∆β̂ = 0.05, to produce order-one changes in α which means that the asymptotic
solution may not be accurate in the region where β̂ ∈ ∆β̂. It may even lead to unphysical
results unless the expansion parameter is much smaller than ∆β̂, though, analogously
to the triple-deck solution, it should still be accurate in the region where β̂ = O(1) and

the results should still be qualitatively correct for all β̂. It is again unlikely that this
restriction on ǫ will be satisfied for realistic values of epsilon and the full linearized
Navier-Stokes equations may again have to be used to obtain accurate solutions in this
region.

Figures 9 and 10 also show that the numerical solution for α is consistent with the
initial conditions (6.11) and (6.32) provided that ℑ (α1)=ℑ [limx̂1→∞ κ1 (x̂1)] = 0 and

α2 = limx̂1→∞ κ2 (x̂1) /β
√

2x̂1=±iC, where the values of C are given in the caption of
figure 10.

The last of these three conditions would determine the sign of ℑ (α) and therefore
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Figure 10: |ℑ (ᾱ) | vs β̂ calculated from the modified Rayleigh solution. The dashed

lines in the inset are |ℑ (ᾱ) | = Cβ̂, where the following values for the scale factor C
were obtained by optimizing the fit to the computations: C=36 for M∞=2, C=129.4 for
M∞=3, and C=340.1 for M∞=4.

whether the Rayleigh instability will grow or decay, if the solution for the 2nd order term
in the triple-deck expansion (5.4) were known. We do not pursue this further since κ2 (x̂1)
is determined by a very complicated higher order triple-deck problem. But equations (6.8)
and (6.28) show that actual streamwise length of the region where |ℑ (α) | > 0 increases
as r → 1 (i.e. the flow will become more unstable when ℑ (α) < 0) and setting β equal
to ǫ/∆θ in (5.23) suggests that present solution will merge into the ∆θ = O(1) solution
constructed by Fedorov (2003) when r approaches this limit, which tends to support the
positive growth option for the F/K result since the Fedorov solution is known to produce
spatially growing instabilities. But the Lam-Rott instability may exhibit negative growth
at large values of β since the Ricco & Wu (2007) boundary region equation solutions
suggest that its amplitude exhibits a single peak as it increases from zero and eventually
decays back to zero at large streamwise distances (refer to their figure 10). But the
present results allow us to compare the F/K and Lam-Rott transition mechanisms even

when this issue remains unresolved. The comparison is most meaningful with β rather
than β held fixed. Equations (5.1) and (5.2) show that the maximum scaled growth
rate of the Lam-Rott instability is O

(
ǫ−1
)

and occurs at x = O
(
ǫ−2
)

while (6.8) and
(6.14) now show that the maximum scaled growth rate of the F/K instability can only
be mathcalO(1) and must occur further downstream at x = O

(
ǫ−(4+2r)

)
for 1/36r<1.

The computations show that the growth rates go to zero when β̂ = 0.477 and that no
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solutions, other than the trivial solution

{u, v, w, p} = {0, 0, 0, 0}, (8.3)

exist beyond this point, which might suggest that there are no global solutions to the
receptivity problem. But equation (6.25) has a critical layer at the point where U(η) =
α−1 when α is real. The Rayleigh equation solution will be regular (i.e. analytic) there

since this point coincides with the generalized inflection point where
(
U ′/T 2

)′
= 0. But

viscous effects must be taken into account within a thin critical layer surrounding this
point before continuing the solution into the downstream region because the streamwise
and spanwise velocity perturbations still become singular there.

The viscous effects actually come into play in a thin critical layer at the point, say xc,
where ℑ (α)=O

(
ǫ4/3

)
which lies slightly upstream of the neutral stability point xn.s..

The difference between the corresponding scaled streamwise coordinates, say x1c − xn.s.,
will also be O

(
ǫ4/3

)
at this point, but its actual location can otherwise be arbitrarily

specified. The critical layer flow can only be balanced by allowing the unsteady flow to
evolve on the relatively fast streamwise length scale

x1 ≡ ǫ4/3 (x − xc) (8.4)

which can be done by changing the amplitude function in (6.14) and using (6.16) to show
that the streamwise velocity outside of the critical layer should expand like

u =U(η) + δ̂

{
A
(
x1

)
v(η; x1c)U ′(η)

iT (η)
√

2x1c [1 − αcU(η)]
+ ǫ4/3u1

(
η, x1

)
+ ...

}

× exp

{
i

[
1

ǫ4+2r

∫ x1

0

α (x1, ǫ) dx1 + β z − t

]}
,

(8.5)

where x1c denotes the scaled streamwise coordinate x1 at the location of the critical point

αc = αR + iǫ4/3κ ≡ α (x1c) (8.6)

and v (η; x1) denotes the solution to the Rayleigh equation (6.25) described in §6. The
second order solution can be determined from (6.15)-(6.18) with α replaced by the oper-
ator αc +ǫ4/3∂/∂x1 but the O

(
ǫ2(1−r)

)
terms have to be included when 1/36r61, which

is the range of r-values associated with the F/K solutions.

Since (6.8) and (8.4) show that x1 ≡ ǫ4/3 (x1 − x1c) /ǫ4+2r and since x1c − x1n.s. must
be O

(
ǫ4/3

)
the relatively short streamwise distance x1 can be as large as ǫ−(2r+4/3) and

still lie in the upstream region where the Rayleigh problem can be solved, which means
that the limit x1 → ∞ will also lie in this region in a strict asymptotic sense. The outer
solution (8.5) will therefore still exist and be compatible with the trivial solution (8.3)
if the, as yet undetermined, amplitude function A

(
x1

)
goes to zero as x1 → ∞. But it

now has a singularity at the critical point which must be eliminated by accounting for
viscous effects.

Balancing the viscous and convective terms shows that the streamwise velocity within
the critical layer should expand like

u = Uc+δ̂
{

ǫ−4/3u0

(
η, x1

)
+ u1

(
η, x1

)
+ ...

}
exp

{
i

[
1

ǫ4+2r

∫ x1

0

α (x1, ǫ) dx1 + β z − t

]}
,

(8.7)
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where the lowest order scaled dependent variable u0 is determined by

i
(
αRU ′

cη + iUcκ
)

u0 + Uc
∂u0

∂x1
+ A

(
x1

) v (ηc, x1c)

Tc

√
2x1c

U ′
c =

1

T 2
c 2x1c

∂2u0

∂η2 , (8.8)

where ηc denotes the transverse location of the critical layer,

Uc ≡ U (ηc) = αR
−1, (8.9)

Tc and U ′
c denote the mean temperature and mean velocity derivative at that level and

η ≡ η − ηc

ǫ4/3
. (8.10)

The solution to (8.8) is given by

u0 = −v(ηc, x1c)U ′
c

UcTc

√
2x1c

∫ x1

−∞

A (x̂) Γ̂
(
x1 − x̂

)
dx̂, (8.11)

where

Γ̂ (x̂) ≡ exp

{
−
[

ix̃

Uc

(
αRU ′

cη + iUcκ
)

+

(
x̃

Uc

)3
(αRU ′

c)
2

6T 2
c x1c

]}
. (8.12)

Integrating by parts shows that

u0 → − v(ηc, x1c)U ′
cA (x̂)

i
(
αRU ′

cη + iUcκ
)

Tc

√
2x1c

as η → ±∞ (8.13)

and, therefore, that (8.11) matches with (8.7).
The slowly varying amplitude A

(
x1

)
is determined by requiring that the change in the

second order outer streamwise velocity u1

(
η, x1; x1c

)
balance the change in the second

order inner streamwise velocity u1

(
y, x1

)
across the critical layer. We will not go through

the details here but the results are expected to show that A
(
x1

)
→ 0 as x1 → ∞ which, as

noted above, implies that the instability wave will vanish on the relative fast streamwise
length scale x1 and is therefore compatible with the nonexistence of a nontrivial Rayleigh
equation solution downstream of the neutral point.

The dimensional streamwise location of the neutral stability point (which lies well out-

side the small region ∆β̂ where the complex wavenumber α undergoes rapid change and
the modified Rayleigh equation is therefore expected to accurately predict the unsteady
flow at this location) is given by x∗ = β̂2U∗

∞ (λ∗
z)

2
/
(
8π2ν∗

∞

)
, where λ∗

z = 2π/β∗ is the
spanwise wavelength. We can estimate the downstream distance to this point under typ-
ical supersonic flight conditions for the case where M∞ = 3 as we did for the ∆θ = O(1)
F/K Rayleigh instability and for the triple-deck instability. The results, which are given
in Table 2, show that these distances are probably too large to be relevant to the transi-
tion process on actual aircraft wings and we therefore do not further pursue the critical
layer analysis.

Figure 11 is a plot of the Rayleigh solution wall normal velocity profiles as a function
of the transverse Blasius coordinate η defined by (2.7) for small and intermediate values

of β̂. The dashed curves denote the one-term uniformly valid composite solution v =

e−β̂η + U − 1 + ..., constructed from (6.40)-(6.42). The numerical results are in excellent

agreement with the asymptotic results when β̂ ≪ 1.
The Rayleigh equation (6.25) develops a critical layer when α becomes real, which

occurs when β̂ → 0. And it follows from the expansion (6.30) that the critical layer

moves toward the wall and lies at η = β̂ (Tw/λ)
2

when β̂ → 0. It eventually moves into
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Table 2: Estimation of modified Rayleigh neutral point location for flight conditions at
M∞ = 3 (U∗

∞ = 888 m/s, ν∗
∞ = 0.000264 m2/s) at an altitude of 20km.

λ∗
z = 2π

β∗ (m) x∗ (m) Rex =
U∗

∞x∗

ν∗
∞

0.02 3.98 2300000
0.03 8.53 5150000
0.04 15.36 9170000
0.05 24.49 14000000
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Figure 11: Wall normal velocity profiles of the real parts of the Rayleigh solution as a
function of the transverse Blasius coordinate η for M∞ = 3. Left: for small values of β̂
(dashed curves denote uniformly valid composite solution constructed from (6.40)-(6.42).

Right: for intermediate values of β̂.

the viscous wall layer when x1 = O
(
ǫ2+r

)
. This corresponds to x̂1 = O

(
ǫ3r
)
6 O(1)

which will lie well within the triple-deck region for realistic values of ǫ.
The present study can also be extended to two-dimensional mean flow boundary lay-

ers on slightly curved surfaces. And while the analysis is probably not relevant for the
boundary layers on highly swept wings such as the ones on current subsonic transports
it is expected to be very relevant to boundary layer transition on the nearly straight
wing on aircraft such as the low-sweep Aerion AS2 supersonic Bizjet, shown in figure 12
- especially for wind tunnel testing, where strong acoustic disturbances are generated on
the wind tunnel walls.

The analysis is also easily extended to supersonic wedge flows. It would directly apply
to the flow behind the leading edge shock if the free-stream disturbance downstream of
the shock rather than the disturbance field upstream of the shock were taken as input.
But the shock wave will now couple the acoustic and vortical (as well as the entropic)
free-stream disturbances and the downstream boundary layer can even produce reflected
acoustic disturbance, which, as shown by the theoretical analysis of Duck et al. (1997)
and Cowley & Hall (1990), will not play a significant role in the moderate supersonic
Mach number regime being considered in this paper. The simultaneous consideration
of the acoustic and vortical free stream disturbances is however essential in this case.
And finally it should be noted that the F/K disturbances are expected to become more
significant than the Lam-Rott disturbances at sufficiently high free stream Mach numbers
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Figure 12: Low-sweep Aerion AS2 supersonic Bizjet. Posted by Tim Brown on the man-
ufacturer Newsletter.

number (say, M∞>4) and/or sufficiently cold walls (for which Tw is smaller than the
adiabatic wall temperature), where the growth rate of the second Mack mode becomes
larger than that of the oblique first mode. In fact, the main purpose of the F/K analysis
was to deal with such hypersonic cases.

9. Concluding remarks

High Reynolds number asymptotics was used to study the non-local behavior of bound-
ary layer instabilities generated by small amplitude free-stream disturbances at moderate
supersonic Mach numbers. The vortical disturbances produce an unsteady boundary flow
that develops into oblique instability waves with a viscous triple-deck structure in the
downstream region where the frequency scaled streamwise coordinate x is O

(
ǫ−2
)
. The

analysis is analogous to the leading edge receptivity analysis carried by Goldstein (1983)
in the incompressible limit, but the present results are expected to be much more robust
because the instability waves now undergo very little decay before they begin to grow.
F/K analyzed the generation of inviscid instabilities in supersonic boundary layers by fast
and slow acoustic disturbances in the free stream. They considered the case where the
deviation ∆θ ≡ θc −θ of the obliqueness angle from its critical value is mathcalO(1) and
showed that downstream propagating slow acoustic disturbances with ∆θ > 0 generate
unsteady boundary layer disturbances that match onto the inviscid 1st Mack instability
mode when the frequency scaled distance x is O

(
ǫ−6
)
=O

(
F−1

)
which is much further

downstream than the region where the viscous triple-deck instability emerges from the
vortically generated unsteady boundary layer flow. But, as shown in §8, this instability
emerges too far downstream to be of interest when scaled up to actual flight conditions
for the small incidence angle disturbances considered in this paper. However, the invis-
cid instability, which first appears at an O

(
ǫ−(4+2r)

)
distance downstream when ∆θ is

reduced to O
(
ǫ1−r

)
with 1/36r<1, can be of considerable importance when scaled to
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flight conditions. It is therefore appropriate to compare the vortically-generated instabil-
ities with the instabilities generated by oblique acoustic disturbances with obliqueness
angles in this range as is done in this paper. These acoustic disturbances generate slow
boundary layer disturbances which eventually develop into oblique stable disturbances
with inviscid triple-deck structure in a region that lies downstream of the viscous triple-
deck region. The acoustically generated oblique F/K disturbances are therefore likely
to be insignificant compared to the vortically-generated Lam-Rott instabilities. The pa-
per shows that both of these instabilities eventually develop into modified Rayleigh-type
instabilities (which can either grow or decay) further downstream.

The global Lam-Rott instabilities are low frequency disturbances that occur when the

scaled frequency parameter 1/β
†

is less than the critical value 1/0.978 and the global F/K
instabilities are high frequency disturbances that occur when 1/β = 1/ǫr, 1/3 6 r < 1.
Since ǫ1/3 could easily be equal to 0.978 numerically and since the leading edge shock
wave can convert acoustic disturbance into convected disturbances this may explain the
results given in Fedorov (2003) which show that the F/K solution significantly under-
predicts the experimental data of Maslov et al. (2001) in the vicinity of the critical angle.

This research was sponsored by NASA’s Transformational Tools and Technologies
(TTT) Project of the Transformative Aeronautics Concepts Program under the Aero-
nautics Research Mission Directorate. PR acknowledges the financial support by the Air
Force Office of Scientific Research award number AFOSR Grant FA9550-15-1-0248. The
authors would also like to thank Dr. Meelan Choudhari for making them aware of the
photograph in figure 12.

Appendix A. Rescaling of F/K solution for ∆θ ≪ 1

Inserting

˜̃x2 ≡ x2

(∆θ)
a

(∆ϕ)
a1

= O(1) (A 1)

and

˜̃y2 ≡ y2

(∆θ)
b

(∆ϕ)
b1

= O(1), k̃ ≡ k∆ϕ (A 2)

into (4.12)-(4.15) yields

1

(∆θ)
2b

(∆ϕ)
2b1

∂2p2

∂ ˜̃y
2
2

=
2iα̃

(
M2

∞ − 1
)

(∆ϕ)
a1 (∆θ)

a+1

∂p2

∂ ˜̃x2
, (A 3)

1

(∆ϕ)
b1 (∆θ)

b−1

∂p2

∂ ˜̃y2

= −iα̃v1(∞), p2 = p1(x2) at y2 = 0, (A 4)

v1(∞) =
iα̃k̃ (∆θ)

a/2
(∆ϕ)

a1/2

∆ϕ∆θ cos2 θ

(√
2˜̃x2

α̃λ

)2/3√
˜̃x2p2. (A 5)

These equations will therefore remain unchanged if we put

2b = a + 1, 2b1 = a1, b1 = 1 − a1/2, b − 1 = 1 − a/2 (A 6)

and it follows that

a =
3

2
, b =

5

4
, b1 =

1

2
, a1 = 1 (A 7)

and therefore that ˜̃x2 and ˜̃y2 are given by (4.28).
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Appendix B. Solution for the ∆θ = O

(
ǫ2/3

)
viscous wall layer

The solution in the main boundary layer is given by (4.22) and (4.26). The solution in
wall layer where

η̃ ≡ η

∆ϕ
=

y

ǫ3∆ϕTw

√
2x

=
y

Twǫ15/8 (∆θ)
27/16

√
2˜̃x2

= O(1), (B 1)

Y ≡ y

ǫ3
[
∆θ/ǫ2/3

]27/16
(B 2)

expands like

{u, v, w, p} =
∆θλη

Tw

√
2˜̃x2

+
δ̂

∆θ



U

(
˜̃x2, η̃

)
,

[
ǫ3

(∆θ)
1/2

]7/8

V
(
˜̃x2, η̃

)
, W

(
˜̃x2, η̃

)
,

∆θ p1

(
˜̃x2

)}
ei(αx+βz−t).

(B 3)

Inserting (B 3) along with (4.19) into the Navier-Stokes equations shows that U
(
˜̃x2, η̃

)
,

V
(
˜̃x2, η̃

)
, W

(
˜̃x2, η̃

)
satisfy

iα̃U +
∂V

∂Y
+ iβ̃ W = 0, (B 4)

−i

(
1 − α̃

λY

Tw

√
2˜̃x2

)
U +

λ

Tw

√
2˜̃x2

V = −iαTwp1 + µwTw
∂2U

∂Y 2
, (B 5)

−i

(
1 − α̃

λY

Tw

√
2˜̃x2

)
W = −iβ̃Twp1 + µwTw

∂2W

∂Y 2
, (B 6)

subject to the boundary conditions

U → −λA

Tw
+

T 2
w

√
2˜̃x2β̃2p1

α̃2λY
, W → − β̃p1T 2

w

√
2˜̃x2

α̃λY
as Y → ∞, (B 7)

U(0), V (0), W (0) = 0 (B 8)

which upon introducing the variable

ξ ≡ ξ0 + ξ (B 9)

where

ξ ≡ Y

(
iλα̃Tw

µw

√
2˜̃x2

)1/3

(B 10)

and

ξ0 = −i1/3

(√
2˜̃x2

α̃λ

)2/3(
Tw

µw

)1/3

(B 11)

becomes

ξW = β̃Twξ0p1 +
∂2W

∂ξ2
, (B 12)

ξ
∂U

∂ξ
=

β̃

α̃
W +

∂3U

∂ξ3
, (B 13)
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U = 0, W = 0,
∂2U

∂ξ2
= −α̃Twξ0p1 at ξ = ξ0. (B 14)

The solution to this problem, which is now pretty standard, is

W = −πβ̃Twξ0p1Gi (ξ0)

[
Ai (ξ)

Ai (ξ0)
− Gi (ξ)

Gi (ξ0)

]
, (B 15)

U =
πβ̃2Twξ0p1

α̃
Gi (ξ0)

[
Ai (ξ)

Ai (ξ0)
− Gi (ξ)

Gi (ξ0)

]
− p1Tw

(
α̃2 + β̃2

)
ξ0

α̃Ai′(ξ0)

∫ ξ

ξ0

Ai (q) dq, (B 16)

where Ai and Gi denote the Airy function and Airy function integral defined on pp. 446
and 448 of Abramowitz & Stegun (1964).

Matching with (4.22) and (4.23) shows that

Ãλ = p1T 2
w

(
α̃2 + β̃2

)
ξ0

α̃Ai′(ξ0)

∫ ∞

ξ0

Ai(ξ)dξ (B 17)

and, therefore, that the wall normal velocity v(˜̃x2, ∞) ≡ limη→∞ v1

(
˜̃x2, η

)
is given by

(4.29).

Appendix C. Asymptotic solution to the diffraction region problem

Since the dominant contribution to the sum

ln an =
n∑

j=1

ln
Γ(4j/3 + 1/2)

Γ(4j/3 + 1)
(C 1)

(obtained by taking the logarithm of (4.43)) comes from the terms with j > j0 where
1 6 j0 6 n when n ≫ 1 it follows from equation 6.1.40 of Abramowitz & Stegun (1964)
that

ln an ∼
n∑

j=j0

ln
Γ(4j/3 + 1/2)

Γ(4j/3 + 1)
∼ −1

2

n∑

j=j0

ln

(
4j

3

)
∼ −1

2

∫ n

j0

ln

(
4η

3

)
dη

∼ −n

2

[
ln

(
4n

3

)
− 1

] (C 2)

and, therefore, that

an ∼ A

(
3e

4n

)n/2

, (C 3)

where A is a constant. Then since the main contribution to the series (4.41) comes from
its infinite tail when Z → ∞ it follows that (Bender & Orszag 1999, pp. 376-379).

p1 =

∞∑

n=0

anZn ∼ A

(2π)1/4

∞∑

n=N

(
e1/2Z

)n

(4n/3)
n/2

∼ A

(2π)1/4

∫ ∞

T

(
Z

√
3e

4t

)t

dt

∼ 3AZ2

4(2π)1/4

∫ ∞

4T/3Z2

( e

τ

)3τZ2/8

dτ ∼ 3AZ2

4(2π)1/4

∫ ∞

0

e−(3τZ2/8)(ln τ−1)dτ.

(C 4)

Then since the dominant contribution to this integral comes from the saddle point at
ln τ = 0, applying the method of steepest descent shows that p1 behaves like

p1 ∼ 3A

4(2π)1/4

√
4π

Z2
Z2e3Z2/8 =

3AZ

2

(π

2

)1/4

e3Z2/8. (C 5)
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Appendix D. Comparison with Ricco-Wu-2007 solution

Ricco & Wu (2007) show that

∫ ∞

ξ0

Ai(q)dq = (iα)
−1/3

[
F ′′(0)√

2x̃1

]5/3(
µw

T 7
w

)1/3

[
1 −

(
M2

∞ − 1
)

(α1ŝ)
2
]1/2

1 + (α1ŝ)
2 Ai′ (ξ0) ,

(D 1)

x̃1 =
k3x

k1

√
k1

R∆
, ξ0 = −i1/3

[ √
2x̃1

α1F ′′(0)

]2/3(
Tw

µw

)1/3

(D 2)

and

ŝ ≡ k
5/4
1 R

1/4
∆

k
3/2
3

, k1 ≡ ω∗∆∗

U∗
∞

, (D 3)

where ∆∗ denotes their spanwise scale factor, k3 denotes a scaled spanwise wavenumber
and it follows from (2.13) and (2.14) that

R∆ ≡ U∗
∞∆∗

ν∗
∞

→ k1

ǫ6
. (D 4)

Comparing (D 2)-(D 4) with (3.6), (4.6), and (5.12) of Ricco & Wu (2007) shows that

k3

k1
→ β

ǫ
, α1 →

√
βκ0. (D 5)

And it, therefore, follows that

ŝα1 → κ0

β
, x̃1 → βx1. (D 6)
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