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Abstract

Ubiquitous transverse oscillations observed in spicular waveguides, identified as the kink wave-mode had
previously been reported along with periodic structural distortions of the flux tubes, observed as cross-sectional
width and associated photometric variations. Previous studies identified these perturbations as the observed
signatures of concurrent kink and sausage wave-modes. High-resolution Hα imaging-spectroscopy data from the
CRisp Imaging SpectroPolarimeter at the Swedish Solar Telescope are used to analyze the off-limb spicular
structures. For the first time, the evolution of the resultant transverse displacement of the flux-tube structure,
estimated from the perpendicular velocity components, is analyzed along with longitudinal, cross-sectional width,
photometric, and azimuthal shear/torsion variations. The pulse-like nonlinear kink wave-mode shows strong
coupling with these observables, with a period-doubling, -tripling aspect, supported by mutual phase relations
concentrated around 0° and 180 . The three-dimensional ensemble of the observed dynamical components
revealed complexities pertinent to the accurate identification and interpretation of, e.g., linear/nonlinear, coupled/
uncoupled magnetohydrodynamical wave-modes in spicules.
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1. Introduction

Motions in the solar convective zone can excite oscillations
in thin magnetic flux concentrations that emerge from inter-
granular lanes in the photosphere. This oscillatory behavior
may become apparent in the dynamics of chromospheric
magnetic flux-tube (MFT) structures observed by imaging-
spectroscopy, which are often inferred as magnetohydro-
dynamic (MHD) wave-mode(s) (Zaqarashvili & Erdélyi 2009).
Accurate interpretation helps to quantify the associated wave
energy flux that is transferred across the Interface Region
(chromosphere—Transition Region—lower corona) and to
identify potential dissipation mechanisms. Mathematically,
the MFTs are usually modeled as cylindrical waveguides.
These structures are highlighted in the limb (on-disk)
observations as intensity enhancements (depression), sugges-
tive of higher plasma density when compared to the back-
ground. At the solar limb, these thin magnetic structures are
often observed as short-lived jets, inclined at some angle to the
normal. Depending on the location (on-disk/limb/active-/
quiet Sun region) and the observed wavelength, these features
are often classified as spicules, mottles, fibrils, straws, Rapid
Blue/Red shifted Excursions (RBEs/RREs), and very recently
as Slender Ca II Fibrils (SCFs; Gafeira et al. 2017b).

MHD wave theory permits the possibility of an infinite
number of orthogonal wave-mode(s) in these structures,
categorized in linear domain by azimuthal (m) and axial (kz)
wavenumbers in the thin-tube approximation (tube radius
=observed length). However, due to observational limitations,
so far only the three low-order fundamental modes (kink,
sausage, and Alfvén) were reported in chromospheric features
(see review by Verth & Jess 2016). However, it must be noted
that the solar chromosphere is a highly dynamic, gravitationally
stratified, nonlinear, inhomogeneous environment where
plasma-beta (β) varies from large, across unity, to very small.
Interaction of MHD wave-modes embedded in localized MFT

structures with such inhomogeneities can give rise to physical
mechanisms that involve resonant absorption (Hollweg 1988),
phase-mixing (Heyvaerts & Priest 1983), mode-coupling
(Fazel 2016), and/or conversion.
The bulk motions of spicules have been extensively

examined and interpreted in terms of discrete MHD wave-
mode(s). Transverse displacements of spicules as a conse-
quence of the m=1 kink mode were reported in spicules
(Kukhianidze et al. 2006; De Pontieu et al. 2007b; Ebadi &
Ghiassi 2014; Tavabi et al. 2015), in their on-disk counterparts
or RBE/RREs (Rouppe van der Voort et al. 2009), in mottles
(Kuridze et al. 2012, 2013), and in fibrils (Pietarila et al. 2011).
Longitudinal (field-aligned) motions associated with mass
flows were reported in mottles (Loughhead 1974), spicules
(Pereira et al. 2012), and on-disk RBE/RREs (Sekse et al.
2013). A mix of propagating (upward/downward) and standing
transverse waves along the spicule structures was also reported
by Okamoto & De Pontieu (2011). Sekse et al. (2013) studied
on-disk spicule counterparts and noted transverse displace-
ments of the waveguides along with rotational motions as
prime components of spicule dynamics along with plasma
flows. Rotational motions were also observed and simply
interpreted as the m=0 torsional Alfvén wave by De Pontieu
et al. (2012). Cross-sectional and intensity oscillations in on-
disk SCFs were recently reported by Gafeira et al. (2017a) and
interpreted as sausage mode waves.
The presence of concurrent wave-modes in localized MFTs

was also claimed in a few studies. Transverse oscillations along
with cross-sectional width variations interpreted as kink
and sausage MHD wave-modes in spicule structures were
reported by Jess et al. (2012). Morton et al. (2012), also found
ubiquitous signatures of transverse, cross-sectional width, and
intensity oscillations in on-disk fibril structures. They postu-
lated that these independently excited wave-modes at MFT
foot-point can undergo mode-coupling and can also exchange
energies through a mode-conversion mechanism at the 1b =
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layer in the solar transition region. Morton et al. (2012) claimed
that simultaneous nonlinear kink and sausage waves were
present in chromospheric MFT structures. Sharma et al. (2017)
showed that the rotational motions in spicules appeared either
axisymmetric or non-axisymmetric depending on the line-of-
sight with respect to the bulk transverse motion.

In the linear regime, the cross-sectional width and photo-
metric variations are signatures for both m=0 sausage and
m 2 fluting modes in MFT structures. Beyond the small
amplitude regime, the nonlinear kink mode can also distort the
cross-sectional width/shape and induce stronger density/
intensity variations, resulting in accelerated wave damping
due to coupling to higher order fluting modes (Ziegler &
Ulmschneider 1997a, 1997b; Ruderman et al. 2010). Recent
numerical simulations (Magyar 2016) have shown for coronal
loop structures that nonlinear kink oscillations are coupled to
the m=2 fluting mode, causing cross-sectional width and
intensity fluctuations with half the period of the kink mode. All
of these factors can result in ambiguity in the identification of
MHD wave-modes in the Sun’s atmosphere.

This paper explores the complex and coupled evolution of
plasma three-dimensional (3D) motions in spicules by
examining the phase relationships between the resultant tube
displacement ( rx ), cross-sectional width (W ¢), intensity (I), and
azimuthal shear/torsion ( tx ) components in spatial and
temporal domains.

2. Observations

The Hα data and the observed spicules used in this study are
the same as those reported by Sharma et al. (2017). Data were
taken by using the CRisp Imaging SpectroPolarimeter (CRISP)
at the Swedish 1m Solar Telescope (Scharmer et al. 2003,
2008) on La Palma. The Hα imaging-spectroscopic data of
07:15–07:48 UT, 2012 June 21 is of Active Region NOAA
AR11504, which consisted of two sunspots at the limb position
(heliocentric coordinates with respect to the disk center, hereby
denoted by: Θ=893, Φ=−250). The AR was scanned using
31 equally spaced line positions with 86 mÅ, steps from
−1.376 to +1.29Å, relative to the line center, along with the
additional 4 positions in the far blue wing from −1.376 to
−2.064Å. This data was then further processed using the
Multi-Object Multi Frame Blind Deconvolution (MOMFBD;
van Noort et al. 2005) image restoration algorithm. Also,
standard procedures available in the image pipeline for CRISP
data (de la Cruz Rodríguez et al. 2015) including differential
stretching and removal of dark- and flat-fielding were
implemented. Any line-scan positions were, however, not
normalized to the local continuum. The final science-grade data
of ∼30 minutes duration had a pixel size of 0 059 (∼43 km),
angular-resolution of 0. 13 (∼95 km), and cadence of 7.7 s.

According to the Nyquist criterion, this pixel (cadence)
resolution allowed us to detect MHD waves in the spicular
waveguide with wavelength longer than 86 km (15.4 s),
though, the angular-resolution restricts any observed wave
behavior below ∼100 km to be unrealistic. The least-
superimposed spicule structures outlined as high-intensity
features were studied with a case study (SP1), presented here
for detailed analysis and shown in Figure 1. The respective
lifetimes, height, length, and other dynamical parameters are all
listed in Sharma et al. (2017).

3. Data Analysis

3.1. Longitudinal (Field-aligned) Motions

Longitudinal motions associated with mass upflows and
downflows were estimated by tracking the visible apex of the
spicule structure in intensity images. It is hereby assumed that
the apparent changes in apex location at each time frame is
solely due to the plasma motion and not due to any thermal or
seeing effects. The apex of the inclined spicule structure is
visually enhanced with respect to the background emission by
the use of an unsharp-mask (USM) procedure for correct
estimation of the height. The temporal evolution of the spicule
apex (marked as yellow dot) is shown in Figure 1.

3.2. Transverse Displacement

Transverse motions, as observed in the plane-of-sky (POS)
and the line-of-sight (LOS) domains by imaging-spectroscopy,
were used to estimate the resultant motion of the spicular
structure. These perpendicular displacement components were
measured using the time–distance (TD) diagrams, generated by
applying cross-cuts on intensity (for POS) and Doppler (for
LOS) images. The intensity images at Hα line-profile wing
positions were used to estimate the POS displacement. The
spicular feature was further enhanced with respect to the
background emission by the use of a USM procedure.
Perpendicular to the spicule axis, cross-cuts were placed at
every fourth pixel (∼172 km apart) in height, well above the
angular-resolution limit. Similar cross-cuts were also made for
the original (non-unsharp-masked) images for error estimation.
The oscillatory axis of the spicule structure in the resulting TD
diagrams was located as the nearest pixel with the maximum
intensity magnitude at each time step.
Spectroscopic measurements in the Hα spectral line at 35

line-scan positions were used to estimate the LOS velocity
components. Each image frame with the region-of-interest had
pixels with both absorption and emission profiles. This time/
space-dependent behavior of Hα line profiles is best fitted with
a single-Gaussian function for pixels near the limb but required
a different fitting function for the pixels with asymmetric
profiles at heights. This asymmetric behavior in spicular line
profiles was explained as a consequence of LOS superposition
effects from multiple thread-like structures in spicular wave-
guides by Skogsrud et al. (2014), generated by K–H vortices
(Antolin et al. 2014) formed due to large-amplitude transverse
MHD wave propagation (Scullion et al. 2011). All of these
factors restrict the use of simple fitting procedures. To address
this, a double-Gaussian function was employed, given by
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where I l( ) is the discrete intensity line profile, “λ” is the
wavelength, “b” is the background signal level, “I” is
the intensity, “μ” is the mean of the distribution, and “σ” is
the standard deviation. The index in subscript refers to the two
Gaussians. The estimated LOS Doppler velocity (Vy¢) is then the
normalized shift in wavelength, multiplied by the velocity of
light.
As the observed structure is inclined to an angle ( 23 .6q =  )

with the normal, there will be certain contribution from the
vertical flow component to the estimated Doppler velocity.
This is based on the assumption that the observed structure has
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similar inclination in the LOS, as measured from the POS
intensity images. It is, however, not possible to identify the
inclination of the observed structure in the LOS from the
current data set. The relationship between vertical flow velocity
(Vf), estimated from the longitudinal displacement of the apex
position between the two consecutive images (Figure 1), and
the apparent LOS velocity was given by Athay & Bessey
(1964). According to them, the apparent LOS velocity (Vȳ )
component from the flow velocities can be given as

V V
2

sin .y f
p

q=¯

This contribution from vertical flows to the Doppler velocity
measurements is then removed for accurate LOS transverse
estimates. The corrected LOS velocity component (Vy) for each
time step is given as, V V Vy y y= ¢ - ¯ . The displacement in the
LOS direction is then, V tl yx d= · , where td is the time
cadence. The resultant displacement ( rx ) is further given

as r p l
2 2x x x= + .

3.3. Cross-sectional Width and Intensity Fluctuations

The width of the spicule structure was estimated by fitting a
Gaussian function with a linear background to the cross-
sectional intensity profile (Figures 2(a), (b)). The linear
background term in the function incorporates the contribution
from the ambient plasma and the geometrical effects of the
structure on the radiated optically thick emission. These
estimates over the height excluded the regions near the foot-
points and at the diffuse apex (Figure 2(d)) of the spicular
feature because of flattened/non-Gaussian intensity profiles.
Contribution from the background intensity flux near the

spicule foot-point and/or from weak contrast in spicule and
background intensities at apex can result in a nearly flat
intensity profile, which can led to the erroneous estimation of
the Gaussian width and hence was not taken into account. The
Gaussian function fitted to the cross-sectional intensity profile
I(x) at each height of the spicular structure is given by

I x a
x

bexp
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Here, I(x) is the intensity profile across the MFT structure,
“a” is the peak flux, “μ” is the central position of the Gaussian-
fit, “σ” is the Gaussian width while “b” is the linear
background contribution. The cross-sectional width (W ¢) of
the spicular structure is approximated as the Full-width Half-
maximum (FWHM) of the Gaussian-fit and is given as 2σ
2 ln 2 1 2( ) . The mean magnitude of the estimated FWHM for
all heights is considered as the unperturbed width (W) of the
spicular waveguide. Averaged intensity magnitudes at ±1 pixel
to the central position (μ) of the Gaussian-fit are taken for the
photometric analysis.

3.4. Azimuthal Shear/Torsion

Torsional motion in spicular structures were reported before
by De Pontieu et al. (2012), where they used the relative tilt in
the horizontal wavelength directions in the observed spectro-
grams to measure the magnitude of azimuthal shear/torsion
( tx ). Here, the gradient in the Doppler velocities (Vy) at the
unperturbed width (W) of the spicular waveguide is used to
estimate the angular displacement or azimuthal shear/torsion.
In the presence of any shear forces, the magnitude of the
Doppler velocities at the two ends would be unequal, with one

Figure 1. Top panel: the temporal evolution of the spicule (SP1) structure at −1.204 Å, from the Hα line core, with the apex marked with a yellow dot in the unsharp-
masked (USM) images. Lower panel: the longitudinal motion of the marked position is used as a measure of field-aligned flows (Vf) along the spicular waveguide.
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Figure 2. Panel (a) shows an example of the Gaussian-fit (Ifit(x)) to the normalized intensity, along with s error-bars, across the width for the spicule (SP1). The
FWHM of the Gaussian-fit is taken as the measured width (W ¢), peak (marked as a vertical line) as the center of the spicular waveguide, and the averaged FWHM is
highlighted as the unperturbed width (W). Panel (b) showcases the measured width (perturbed and unperturbed) with the y-axis directing toward the observer’s LOS,
while the x-axis marks the POS of the observations. LOS velocities (V V,1 2), at the edges of unperturbed width were used to measure the azimuthal shear/torsion ( tdx ).
The top and bottom panels in (c) shows sample time–distance (TD) plots at H=3.2 Mm for intensity (top) and Doppler estimates (bottom). Pixels taken at the center
of the structure are highlighted by a line-overplot (green line). Consecutive panels (d), (e), and (f) show the spicule structure in Hα intensity, unsharp-masked, and
Doppler velocity (Vy¢, km s−1

), respectively. Transverse, cross-sectional width, and intensity oscillations are studied for the region marked in between the yellow lines,
with four sample cross-cuts (H1, H2, H3, and H4) marked to highlight the variations in the estimated parameters at different heights over time.

Figure 3. Evolution of the time–distance (TD) behavior for the spicule structure with height, sampled at every four pixels (∼172 km) apart. Panels (a)–(c) show
transverse components estimated in POS (a: pdx ), LOS (b: ldx ), and the resultant (c: rdx ). Panel (d) plots the variations in cross-sectional width estimates ( Wdx ), while
the azimuthal shear/torsion ( tdx ) components are shown in panel (e). The magnitude of the parameters shown here is in “km.”
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edge leading the other. Figure 2(b) shows that the net velocity
(V V2 1- ) between the two edges of W provides the displace-
ment (AB) at the leading edge of the spicular cross section. For
the given radius (OA) of the unperturbed cross section, the
shear-angle (θ) at the tube center is given by

AB

OA
tan .1q = - ⎜ ⎟

⎛

⎝

⎞

⎠

The angular displacement (AB¢) is then taken as
AB OAq¢ = · . The temporal evolution of the estimated
azimuthal shear/torsion is given in Figure 3(e).

3.5. Multi-taper Spectral Analysis (MSA)
and Phase Relationships

To analyze the phase relationships between the oscillatory
behavior of the spicular structure with the cross-sectional and
photometric variations, we used the MSA method (Thomson
1982; Percival & Walden 1993). This method overcomes the
problems (like inefficiency and spectral leakage) posed by
discrete Fourier transform methods for small data samples.
Other robust techniques available, like, Empirical Mode
Decomposition (EMD) and Recurrence quantification analysis
(RQA), for nonlinear analysis, were not employed due to the
small sample (temporal) size. For data sets with relatively small
sample sizes, estimating the amplitude and phase between
corresponding component frequencies (spatial or temporal)
could suffer from the inefficient statistical approximation of the
parameters. Although, this problem could be tackled by the use
of a sliding window (single-taper) with the assumption that the

input signal is stationary, but that it can further lead to spectral
leakage and contribute to the erroneous estimation of the
amplitude and phase angle. A possible solution to the above is
the use of multi-taper functions. A number of tapers are applied
to the data sample, and the power spectrum is estimated for
each of those tapers. The resulting averaged spectrum provides
the best estimate of any low-amplitude harmonic oscillations in
a relatively short sample size with a high degree of statistical
significance. This technique has previously been tested (Komm
et al. 1998) and used for the solar data analysis in a variety of
spatial and temporal scales (Prestes et al. 2006; Kilcik
et al. 2010; Mufti & Shah 2011).
The method used in this analysis is adapted from van Hoek

et al. (2016). Here, in our case, the spectrum (ĝ) is estimated in
the wavenumber (kz) and frequency ( f ) domains by taking Q

tapers to obtain a set of Q eigenspectra, including “q”

eigencomponents using the observed parameters (i and j) with
N data points and a constant sampling interval, so that
u N1, 2, 3 ,...= . For a given domain (ϝ) in the spatial (kz) or
temporal ( f ) regimes, the set of eigenspectra of i is defined as

g i u o u e ,
ii
q

i

N

q
u

1

2

å=
=

-ˆ (ϝ) ( ) ( ) ( ϝ )

where, oq(u) is the data taper for the qth eigencomponent and
e u-ϝ is the Fourier transform. The set of data tapers have the
shape of Slepian sequences (Slepian 1978) and provide a good
protection against leakage. The final multi-taper (gMTˆ ) is

Figure 4. Here, the spectral and temporal variations in transverse displacement ( rdx ), cross-sectional width ( Wdx ), intensity ( Id ), and azimuthal shear/torsion ( tdx )
parameters are shown. Panel (a) shows the temporally averaged spectral profiles (top to bottom: displacement, width, intensity, azimuthal shear), in wavenumber (kz)
domain, with the mean power (taken as background noise) removed. The shaded region highlights the half-max (horizontal dashed-line) width of the distribution of the
peak spectral power (vertical dashed-line). Panel (b) shows a similar analysis in the frequency ( f ) domain, with primary and secondary peaks in resultant
displacement, cross-sectional width and intensity marked with solid lines at 0.013 Hz (77 s) and 0.039 Hz (25.6 s). The peak in azimuthal shear/torsion is marked at
0.026 Hz (38.4 s) with a dashed-line. Panel (c) shows the time evolution of the parameters for the heights (H1, H2, H3, H4) marked in Figure 2. Examples of in-phase
and out-of-phase oscillations are marked with vertical dashed-lines.

5

The Astrophysical Journal, 853:61 (9pp), 2018 January 20 Sharma, Verth, & Erdélyi



estimated by taking the mean as

g
Q

g
1

.
ii

q

Q

ii
qMT

1

å=
=

ˆ (ϝ) ˆ (ϝ)

The cross-spectral density (CSD) provides an estimate of the
strength of the coupling between the observed parameters and
further the evolution in wavenumber/frequency domain. This
is computed using the real valued power-spectral density (PSD)
estimate for “i” defined as g

ii
MTˆ (ϝ) and the complex conjugate

of the PSD estimate of j defined as g
jj
MT*ˆ (ϝ) and given as

g
N

g g
1

.
ij

n

N

ii jj
MT

1

MT MT*å=
=

ˆ (ϝ) ˆ (ϝ) ˆ (ϝ)

The phase-angle estimate (j (ϝ)) gives an approximation of
the relative perturbations between the observed parameters and
with that from ambient atmosphere. The estimate is bounded
between p and is the phase difference at each wavenumber/
frequency bin between i and j. It is calculated from the

imaginary and the real part of the CSD

g

g
tan

img

real
,

ij

ij

1

MT

MT
j = -

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

(ϝ)
ˆ (ϝ)

ˆ (ϝ)

where, gimg
ij
MTˆ (ϝ) is the imaginary part while greal

ij
MTˆ (ϝ) is the

real part of the estimated CSD.

4. Results and Discussion

Detailed analysis of the different dynamical observables
(longitudinal, transverse, cross-sectional width, photometric,
and azimuthal shear/torsion variations) are presented here for
spicule (SP1), which, along with other similar structures, was
studied for wave-mode identification by Sharma et al. (2017).
From analysis of the 3D velocity components, it is shown that
the concurrent rotational and transverse motions in spicules
were most consistent with the kink mode. The observed feature
(SP1) had a length of 4.1 Mm with apex-height reaching up to
4.9 Mm from the visible limb at an inclination of 23 .6 from the

Figure 5. 3D visualizations of the coupled evolution of resultant transverse displacement ( rx ), cross-sectional width ( Wx ¢), and azimuthal shear/torsion ( tx ) parameters
are shown for an arbitrary view-angle. Top panels: coupled transverse and width (W ¢), with intensity taken in proportion to cross-sectional variations at four time-steps
(7.7, 30.8, 46.2, 69.3 s). The visualization here assumes an axisymmetric variation in the cross-sectional width. Bottom panels: transverse and azimuthal shear
components. The azimuthal shear/torsion component magnitude exhibits field-aligned upward and downward motions, possibly due to perturbed Lorentz forces.

(An animation of this figure is available.)
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normal. The temporal evolution in imaging showed nearly
constant inclination of the structure, with apex (marked in
Figure 1) undergoing periodic variations along the inclined
length. The average longitudinal flow velocity (Vf) is about
41±28 km s−1, which is consistent with the previous reports
for MFT waveguides (De Pontieu et al. 2007a; Pereira et al.
2012; Sekse et al. 2013).

The temporal evolution of the transverse motion of the
spicule structure at different heights was studied by TD
diagrams, generated by the procedures described in Section 3.2.
A visual inspection of a sample TD plot in the imaging-
spectroscopy (Figure 2(c)) at 3.2 Mm shows the bulk transverse
displacement of the spicule with the observed wave-period
comparable to the feature’s visible lifetime at the line-scan
position (±1.204Å, from the Hα line core). This gives an
impression of the presence of a single pulse being responsible
for the translation of the structure, with maximum transverse
displacement of 180±70 km from its mean axis. This pulse-
like behavior in other similar features was also evident from the
past statistical studies (De Pontieu et al. 2007a; Okamoto & De
Pontieu 2011), where the observed lifetimes coincided with
the wave-periods estimated from TD cross-cuts. Recently,
Martinez-Sykora et al. (2017) modeled the spicule-like events
and attributed the role of an impulsive release of the magnetic
tension (whiplash-effect), responsible for the observed
behavior of spicular structures. TD plots at every four pixels
over height in imaging and spectroscopic observations
(Figures 3(a), (b)), respectively, were used to study the
evolution of MFT dynamics in time and to generate the
resultant displacement profiles (Figure 3(c)), which reflects
the true motion of the waveguide. Here, it should be noted that
previous studies (Jess et al. 2012; Morton et al. 2012) only
considered the MFT motion confined in a particular plane,
whereas transverse spicular dynamics is the resultant of the

observed motion in the perpendicular observation planes (POS
and LOS).
The perturbed resultant displacement ( rdx ) along with the

cross-sectional width ( W WWdx = ¢ - , Figure 3(d)), intensity
( Id ), and azimuthal shear/torsion ( tdx , Figure 3(e)), with
average magnitude of 44±39 km, variations were examined
in both spatial and temporal domains in order to understand any
possible relationships between these observed parameters. The
unperturbed cross-sectional width (W) is found to be 156±
24 km, as compared to 360±120 km for on-disk fibril
structures (Morton et al. 2012), 260 km for RBE/RREs
(Kuridze et al. 2015) and on-disk SCF structures by Gafeira
et al. (2017a). The PSD estimate is taken at each time step (t)
for t T1, 2, 3 ,...= , over height to understand the wavenumber
(kz) dependence of these parameters over time. Similar
estimates were taken at each height (H) over time, to analyze
the evolution of observed parameters in the frequency ( f )
domain. The averaged-PSD is then defined as g k g f,ii z jjá ñ á ñˆ ( ) ˆ ( )

and given as

g k
T

g k g k
1

,ii z

t

T

ii z ii z

1

åá ñ = -
=

ˆ ( ) ∣ ˆ ( ) ¯ ( )∣

g f
H

g f g f
1

,jj
H

H

jj jj
1

åá ñ = -
=

ˆ ( ) ∣ ˆ ( ) ¯ ( )∣

where g kii z¯ ( ) and g fjj¯ ( ) are the mean magnitudes of the
estimated PSDs taken as the background noise and are removed
at each time/height-step.
The estimated averaged-PSD for displacement ( rdx ), cross-

sectional width ( Wdx ), intensity ( Id ), and azimuthal shear/
torsion ( tdx ) fluctuations are shown in Figures 4(a), (b) in the
wavenumber (kz) and frequency ( f ) domains, respectively.
The region enclosed ( 4454 1451zl = – km) by the half-max of

Figure 6. Scatter plots showing mutual variations of the estimated phase relations in frequency ((a)–(d): f ) and wavenumber ((e)–(h): kz) domains for the observed
parameters. The mutual phase relations between the parameter-pairs on x-axis and y-axis (on left) are marked as circle, while the relationship with the parameter-pairs
between x-axis and y¢-axis (on right) are marked here as star. The phase differences are mostly concentrated around 0° and p  with a deviation of 30 . Any further
deviation of the mutual phase relations could be indicative of the nonlinear evolution and/or background noise contribution from the small-scale dynamics at the
spatial/temporal scales below current observational resolution limit.
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the peak PSD ( 2800zl = km) of the resultant displacement
and the subsequent parameters is highlighted by the shaded
region (Figure 4(a)). The coincided peak PSD magnitudes for
all four of the observed parameters indicate a strong coherence
between these observables at smaller (larger) wavenumbers
(wavelengths). The remaining region, with increasing wave-
number (kz), shows an exponential decay in averaged-PSD
estimates for all of the observed quantities. The strong coherent
behavior between these observables is also evident in the
frequency ( f ) domain. In here, the results are two-fold.

First, the observed parameters ( I, ,r Wdx dx d ) show peaks at
0.013 Hz (77 s) and 0.039 Hz (25.6 s), i.e., a secondary peak at
around thrice the frequency of the primary peak, marked by the
vertical solid lines in Figure 4(b). Second, the azimuthal shear/
torsion ( tdx ) component shows a peak at 0.026 Hz (38.4 s), at
twice the frequency ( f f2

t r
=dx dx ) of the primary peak (at 77 s)

of the resultant displacement and other observables. This peak
in the averaged-PSD magnitude for the azimuthal shear/torsion
component is located at the first harmonic, where the other
observed parameters show a deficit in the frequency domain.
This subsequent period-doubling and -tripling pattern in
frequency domain (Linsay 1981; Jiang et al. 1998) for
observables could indicate the nonlinear nature of the spicular
dynamics. However, the existing nonlinear kink (analytic/
numeric) models have only produced period-doubling (Ziegler
& Ulmschneider 1997a, 1997b; Ruderman et al. 2010;
Magyar 2016) and have not yet produced period-tripling. The
3D visualizations of these coupled dynamical components are
shown in Figure 5.

Coupled transverse and non-axisymmetric deformation of
the MFT cross section could partly be due to the injected
photospheric perturbations (as assumed in previous studies)
and/or as a consequence of the flux tube to maintain the local
pressure equilibrium at the tube surface. The transverse
dynamics of the waveguide will be resisted by the inertia of
the spicular plasma (ionized, partially ionized and neutrals).
This can result in a non-axisymmetric deformation of the MFT
cross section with an anti-correlation between plasma and
magnetic pressures, in an attempt to maintain the overall
pressure equilibrium. While the gradients in plasma pressure
due to kink waves were already reported as acceleration at the
transverse nodes by Sharma et al. (2017), it is highly
reasonable to assume the deviation of spicular cross-sectional
geometry to a non-circular case, to compensate for the
asymmetry in pressure distribution between forward and
backward sides of the moving waveguide (see upper panel,
Figure 5).

The physical explanation is well supported by the observed
amplitudes for perturbed transverse displacement ( rdx ) and the
cross-sectional width ( Wdx ) oscillations, which are comparable
(Figure 4(c)). Similar observations were reported by Morton
et al. (2012) for on-disk fibrils. As the overall cross-sectional
width and the associated photometric variations are directly
related to the pressure perturbations, linked with the tube
dynamics, it is expected for these to be coupled at similar
wavenumbers and frequencies. This aspect is statistically
supported by the observations of comparable periods for
cross-sectional width and intensity oscillations for on-disk SCF
structures, reported recently by Gafeira et al. (2017a).

The coupling in between the transverse ( rdx ), cross-sectional
width ( Wdx ), and the azimuthal shear/torsion ( tdx ) parameters
could be attributed to the magnetic tension forces and/or

longitudinal plasma pressure perturbations. When local curvature
is formed between the mean axis and the maximum displace-
ment, there will be components, both perpendicular (vertical)
and along (horizontal) to the direction of transverse displace-
ment. Over a single wave-period, these vertical components will
reverse their sign twice, as compared to the horizontal
component. It must, however, be noted that similar vertical
components associated with plasma pressure changes would also
be present in the spicule due to cross-sectional width variations.
The frequency analysis, as shown in Figure 4(b), hints toward
the proposed mechanism, with azimuthal shear/torsion comp-
onent ( tdx ) having twice the frequency ( f f f2 2

t r W
= =dx dx dx ) of

the primary frequency of the transverse displacement ( rdx ) and
cross-sectional width ( Wdx ) parameters. Similar interpretations
were proposed by (Ulmschneider et al. 1991; Ziegler &
Ulmschneider 1997a) for their numerical analysis of the
dynamics of the thin MFT structures. These changes in the
vertical component will result in longitudinal compressions and
rarefactions, which will further perturb the associated Lorentz
forces, visible as the azimuthal shear/torsion (see lower panel,
Figure 5). Under the influence of longitudinal compressions and
rarefractions, the perturbed azimuthal shear/torsion ( tdx ) will
further showcase upward and downward motions along the
spicular structure (see, supplementary material for Figure 5).
This longitudinal motion of the perturbed Lorentz forces was
highlighted by Kitiashvili et al. (2013) in their numerical
simulations of vortex tube dynamics.
The strong coupling between the observables is also evident

from the evolutionary trends estimated at different heights.
Figure 4(c) shows the observed parameters at four consecutive
heights (1.92, 2.56, 3.20, 3.85 Mm) above the visible limb,
with σ error marked as shaded regions. A visible overview of
the cross-sectional width ( Wdx ), photometric ( Id ) and azimuthal
shear ( tdx ) components shows clear signatures of both in-phase
and out-of-phase behavior with the resultant displacement ( rdx )
of the spicular waveguide. For a better understanding of the
coupled behavior, the phase relationships between the paired
parameters were estimated using the CSDs in the spatial and
temporal domains by the procedure described in Section 3.5.
The mutual variations in between the estimated phase angles
show the phase difference congregated around 0° and 180 
with a deviation of 30  for the spectral bins located in
wavenumber ( zl in highlighted region, Figures 6(e)–(h)) and
frequency ( f=0.013 Hz, Figures 6(a)–(d)). However, the
phase angles for cross-sectional width, intensity, and azimuthal
shear/torsion pairs in wavenumber (Figure 6(h)) and frequency
(Figure 6(d)) domains appears to be strongly concentrated
around 0°, indicating collective behavior rather than uncoupled
azimuthal shear/torsion and sausage-type motions.

5. Conclusions

For the first time, the resultant displacement ( rdx ) estimated
from both the POS and LOS velocity components was analyzed
with the cross-sectional width ( Wdx ), photometric ( Id ), and
azimuthal shear/torsion ( tdx ) variations for off-limb spicules.
TD plots show the displacement of the oscillatory axis of the
spicular structure in both perpendicular planes of motion,
indicating the presence of the kink wave-mode, with periodic
longitudinal (field-aligned) flows (Vf). Observations of spicular
waveguide and TD analysis further reflected the “pulse-like”
behavior of the wave-mode with the dominant period of the
order of the flux tube’s lifetime.
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Concurrent temporal and spectral (k f,z ) analysis showed
profound coupling between the observables ( I, , ,r W tdx dx d dx )
over the tube/period-scale, supported by the mutual phase
relationships. The frequency ( f ) analysis showed a period-
doubling and -tripling aspect for these quantities, which could
indicate the nonlinear behavior of the system. An important
aspect to note here, is that the peak-frequency of the azimuthal
shear/torsion component was located exactly where other
parameters had lost their power densities, with the frequency
(period) twice (half) as that of the primary peaks of the
transverse displacement and cross-sectional width parameters.
The observed behavior could also be explained in terms of the
linear MHD theory, with independent wave-modes coupled in
the presence of the magnetic twist (internal and/or external) in
MFT waveguides (Terradas & Goossens 2012; Giagkiozis
et al. 2015). As a consequence of the twist, a single pulse-like
driver can result in the coupling observed in wavenumber and
frequency domains. However, in the absence of the twist, a
fine-tuning would be essential for all of the drivers, associated
with the observable wave-modes, which is highly unlikely.

The analysis further hints toward the possible association
between the transverse and longitudinal oscillations, which will
be the focus of future studies. Furthermore, the inclusion of more
robust analysis techniques (e.g., EMD, RQA) is foreseen to
extract the nonlinear phase relations, which might also exist
between the observed dynamical components. Our investigation
opens the door to obtaining more accurate information about the
actual complex three-dimensional spicular motion, whose
components were earlier identified ubiquitously/independently
as transverse, field-aligned, rotational, and cross-sectional
motions by the numerous studies listed in the Introduction
section. This study also provides much-needed insight into the
coupled behavior of the different dynamical components of the
spicule motion. The forthcoming Daniel K. Inouye Solar
Telescope, with the highest spatial/temporal resolution yet, will
provide another significant step forward in this regard.

The Swedish 1m Solar Telescope is operated by the
Institute for Solar Physics of the Royal Swedish Academy of
Sciences in the Spanish Observatorio del Roque de los
Muchachos of the Instituto de Astrofisica de Canarias. R.S.
acknowledges support from the School of Mathematics and
Statistics (SoMaS) for PhD studentship. R.E. acknowledges
support received by the Science and Technology Facility
Council (STFC), UK, and the Royal Society (UK). This work
also greatly benefited from the discussions at the ISSI
workshop—Towards Dynamic Solar Atmospheric Magneto-
Seismology with New Generation Instrumentation. This
research has made use of SunPy, an open source and free
community-developed solar data analysis package written in
Python (SunPy Community et al. 2015).
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