

This is a repository copy of International survey on high- and low-dose synacthen test and assessment of accuracy in preparing low-dose synacthen.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/127049/

Version: Accepted Version

Article:

Cross, A.S., Kemp, E.H. orcid.org/0000-0002-0313-8916, White, A. et al. (7 more authors) (2018) International survey on high- and low-dose synacthen test and assessment of accuracy in preparing low-dose synacthen. Clinical Endocrinology , 88 (5). pp. 744-751. ISSN 0300-0664

https://doi.org/10.1111/cen.13559

Reuse

Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of the full text version. This is indicated by the licence information on the White Rose Research Online record for the item.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

eprints@whiterose.ac.uk https://eprints.whiterose.ac.uk/

1	International survey on high- and low-dose synacthen test and assessment of
2	accuracy in preparing low-dose synacthen
3	
4	Alexandra S. Cross ¹ *, E. Helen Kemp ^{1*} , Anne White ² , Leanne Walker ² , Suzanne
5	Meredith ² , Pooja Sachdev ³ , Nils P. Krone ¹ , Richard J. Ross ¹ , Neil P. Wright ⁴ , and
6	Charlotte J. Elder ¹
7	
8	Short Title: Synacthen: Survey and low-dose test inaccuracy
9	
10	¹ Department of Oncology and Metabolism, University of Sheffield, Sheffield, United
11	Kingdom
12	² School of Medical Sciences, University of Manchester, Manchester Academic Health
13	Sciences Centre, Manchester, United Kingdom
14	³ Department of Endocrinology, Nottingham Children's Hospital, Nottingham
15	University Hospitals NHS Trust, Nottingham, United Kingdom
16	⁴ Department of Endocrinology, Sheffield Children's NHS Foundation Trust, Sheffield,
17	United Kingdom
18	*These authors contributed equally to the study.
19	
20	Correspondence: Dr Charlotte Elder, Academic Unit of Child Health, Sheffield
21	Children's Hospital, Western Bank, Sheffield S10 2TH, United Kingdom. Tel.: +44 114

22 305 3282; E-mail: c.j.elder@sheffield.ac.uk

23 ACKNOWLEDGEMENTS

We thank the named Learned Societies for help in survey distribution and their members
for their time in completion of the survey. We also thank Sarah Massey (Knowledge
and Library Services Manager, Sheffield Children's NHS Foundation Trust, Sheffield,
United Kingdom) for her help in literature searching. L.W. and S.M. were supported by
the Mawer-Fitzgerald Endowment Fund.

29

30 CONFLICT OF INTEREST STATEMENT

R.J.R. is a Director of Diurnal Group Plc., and holds shares. C.J.E. and N.P.W. have a
patent application for nasal synacthen. All other authors declare there is no conflict of
interest that could be perceived as prejudicing the impartiality of the research reported.
A.S.C., E.H.K., A.W., L.W., S.M., P.S., and N.P.K. report no conflicts of interest in this
work.

36

37 KEYWORDS

38 dilution; low-dose synacthen; pituitary-adrenal function tests; questionnaires; surveys

39

40 **ABBREVIATIONS**

APEG, Australasian Paediatric Endocrine Group; CI, confidence interval; CV,
coefficient of variation; ESA, the Endocrine Society of Australia; ESE, European
Society of Endocrinology; ESPE, European Society for Paediatric Endocrinology; HDT,

- 44 high-dose test; LDT, low-dose test; PES, Pediatric Endocrine Society; SST, short
- 45 synacthen test; SfE, Society for Endocrinology.
- 46
- **47 Word Count Text:** 3,514
- 48 Summary Word Count: 227
- 49 **Figures:** 2
- 50 **Tables:** 2

51 Summary

52 **Objective:** The short synacthen test (SST) is widely used to assess patients for adrenal 53 insufficiency but the frequency and protocols used across different centres for the low-54 dose test (LDT) are unknown. This study aimed to survey centres and test the accuracy 55 of ten different synacthen preparation strategies used for the LDT.

Methods: Members of six international endocrine societies were surveyed regarding
diagnostic tests used for adrenal insufficiency, and in particular the SST. Synacthen was
diluted for the LDT and concentrations measured using a synacthen ELISA.

59 **Results:** Survey responses were received from 766 individuals across 60 countries (52%) 60 adult, 45% paediatric endocrinologists). The SST is used by 98% of centres: 92% using 61 high-dose (250 µg), 43% low-dose, and 37% both. Ten low-dose dilution methods were 62 assessed and variation in synacthen concentration was demonstrated with intra-method 63 coefficients of variation (CV) ranging from 2.1% to 109%. The method using 5% 64 dextrose as a diluent was the least variable (CV of 2.1%). The variation in dilution 65 methods means that the dose of synacthen administered in a LDT may vary between 66 0.16 µg and 0.81 µg.

67 Conclusions: The high-dose SST is the most popular diagnostic test of adrenal 68 insufficiency but up to 72% of paediatric endocrinologists use a LDT. There is 69 considerable variation observed both within and between low-dose synacthen dilution 70 methods creating considerable risk of inaccurate dosing and thereby invalid results.

71 **INTRODUCTION**

72 The use of the ACTH-stimulation test, or short synacthen test (SST), has been growing in popularity,^{1,2} and is the most widely used investigation of adrenocortical function in 73 74 some countries.³ It is being considered increasingly as the "standard" for the diagnosis 75 of adrenal insufficiency.⁴⁻⁶ The SST mimics the ACTH stimulus to the adrenal cortex 76 and involves administration of either high-dose supra-physiological 250 µg or low-dose 77 physiological, usually 1 µg, synacthen. Both the high and low-dose tests are used in 78 clinical practice and results of meta-analyses do not show significant superiority of one test over the other.⁷⁻¹¹ Worldwide clinician preference for adrenal function testing and 79 80 the popularity of the high and low dose SST are unknown. We report the results of an 81 international survey, of both paediatric and adult endocrinologists, to assess current 82 practice.

83 One form of diagnostic-grade synacthen is commercially available, 84 manufactured in 250 µg/mL ampoules, necessitating large dilutions if administration of 85 a low-dose is required. A British survey of paediatric endocrinologists in 2012 reported 86 that, amongst the 82% of respondents who use the low-dose test, 14 different dilution methods were used.³ These varied in the amount of synacthen utilised for the initial 87 88 dilution (0.1 mL to 1 mL), the volume of the diluent (10 mL to 1 litre), the diluent type 89 (5% dextrose and 0.9% saline), and the number of dilution steps (one, two, or three) 90 employed to prepare the required concentration.³

91 There is a paucity of literature on the accuracy or reproducibility of making up 92 low-dose synacthen. The majority of related work pertains to the analysis of adsorptive 93 losses on glass and plastic equipment during the dilution process, with losses 94 proportionate to the length of the plastic device used for administration.¹²⁻¹⁴ We 95 addressed this important clinical issue in an in vitro study and report the accuracy and

- 96 reliability of making up 1 μ g doses of synacthen by ten of the different methods
- 97 currently in use.

98 MATERIALS AND METHODS

99 International survey

100 A thirteen-question online survey (Supporting Information) was distributed to the 101 members of six endocrine learned societies with a total of 6744 members: the USA 102 based Pediatric Endocrine Society (PES, n = 1381), the UK based Society for 103 Endocrinology (SfE, n = 1188), European Society of Endocrinology (ESE, n = 1540), 104 European Society for Paediatric Endocrinology (ESPE, n = 1239), The Endocrine 105 Society of Australia (ESA, n = 1100), and the Australasian Paediatric Endocrine Group 106 (APEG, n = 296). The survey sought to ascertain: the popularity of various diagnostic 107 tests for adrenal insufficiency; the indications for choosing the low-dose (LDT) or high-108 dose (HDT) SST in preference to the other; LDT dose, administration route of 109 synacthen, cortisol sampling times and cortisol thresholds for test interpretation.

Survey invitations were sent via the e-mailing list or communications bulletin of the societies between March 2016 and January 2017. A follow-up reminder was sent after the initial email. Respondents were given the choice of completing the survey using an online surveying platform (https://surveyplanet.com) or an emailed Microsoft WordTM document. Minor changes were made to the survey in order to meet the various stipulations of the societies.

116

117 Low-dose synacthen dilution study

118 Results from the 2012 survey of British paediatric endocrinologists were used to 119 investigate precision and accuracy of the ten most commonly employed dilution 120 methods for making up 1 μ g low-dose synacthen (Table 1).³ Each dilution protocol was 121 followed and the resultant solution made up five times in order to evaluate intra-method 122 variability. In the nine methods yielding a sufficient final solution, three 1 mL samples 123 were taken (from the top, middle and bottom of the bag of diluent or the syringe) to 124 assess any variation that may be caused by insufficient mixing. Samples were extracted 125 from the superior quarter of the sample bag/final mL of the syringe (top samples), the 126 vertical halfway point of the sample bag/middle mL of the syringe (middle samples), or 127 taken from the sample bag port/first mL ejected from the sample syringe (bottom 128 samples). All samples were prepared on a single day, by one of three investigators, with 129 each method made up by the same investigator.

130 Medical ward equipment (syringes, fluid bags, needles) was used in preference 131 to laboratory equipment to simulate clinical conditions. The 1 mL synacthen ampoules 132 containing 250 µg/mL (Mallinckrodt Pharmaceuticals, Dublin, Ireland) were all from 133 the same manufacturing batch. Synacthen is an inherently unstable drug, rapidly 134 degrading in natural light and at room temperature; therefore ampoules were refrigerated until use.^{12,14} New needles were used for each dilution step to avoid cross contamination 135 136 with more concentrated samples. Syringes were re-flushed three times when injecting 137 into bags of diluent. Mixing was performed by slowly inverting the sample bag or the 138 syringe five times, replicating typical ward-based practice. All samples containing the 139 required final concentration of synacthen were frozen immediately at -80°C.

140

141 Synacthen ELISA

142 Synacthen concentrations were estimated using an ELISA format. Unless otherwise stated, all reagents were from Sigma-Aldrich (Poole, UK). NUNC MaxiSorp[™] high 143 144 protein-binding capacity 96-well ELISA plates (ThermoFisher Scientific Inc., Waltham, 145 MA, USA) were coated with anti-ACTH mouse monoclonal antibody A1A12 (which 146 recognises ACTH 1-24) at 2.5 µg/mL in coating buffer (103 mM sodium chloride; 41 147 mM di-potassium hydrogen phosphate; 8.75 mM potassium dihydrogen phosphate; pH 148 7.4). Standards were prepared in 0.9% saline at 0-10,000 pg/mL using solid synacthen 149 (Bachem, Bubendorf, Switzerland). Samples containing synacthen were diluted in 0.9%

saline to a concentration that was within the standard linear dynamic range (1000-7500 pg/mL) of the ELISA. To assess any variation or reduction in synacthen dose resulting from the laboratory dilutions necessary for the ELISA quantification, two vials of synacthen (250 μ g/mL) were diluted as required and analysed in the ELISA.

154 A 100 µL aliquot of sample diluent (phosphate-buffered saline, pH 7.4; 4% 155 bovine serum albumin; 0.05% Tween 20) was added to each well followed by 100 µL 156 of synacthen standard or test sample in duplicate. Plates were incubated at room 157 temperature for 10 min, and then washed three times with washing buffer (150 mM 158 sodium chloride; 8.5 mM di-potassium hydrogen phosphate; 1.75 mM potassium 159 dihydrogen phosphate; 0.025% Tween 20; 0.0125% ProClin 300; pH 7.0). A 200 µL (1 160 ug/mL) aliquot of anti-ACTH (7-23) antibody conjugated to HRP (Bioss Antibodies, 161 Woburn, MA, USA) was applied to each well, and plates incubated for 30 minutes at 162 room temperature. Subsequent to washing three times, 200 µL of 3,3',5.5'-163 tetramethylbenzidine substrate reagent (Europa Bioproducts Ltd., Cambridge, UK) were 164 added to each well. Following incubation at room temperature for 45 min the reaction 165 was stopped by the addition of 100 µL of 0.5 M hydrochloric acid. A Labtech LT4500 166 spectrophotometer (Labtech International Ltd., Uckfield, UK) was used to read 167 absorption of the wells at 450 nm. Synacthen concentrations (pg/mL) were estimated 168 from standard curves and corrected by the appropriate dilution factor (50-1000 times) 169 to give the expected concentration in the synacthen solution used to deliver a 1 µg dose 170 (Table 1). All samples were assayed four to six times and the mean synacthen171 concentration determined.

The intra-assay coefficient of variation (CV) was 1.70% at 2500 pg/mL, 1.69%
at 5000 pg/mL, and 2.35% at 7500 pg/mL. The inter-assay CV was 4.54% at 5000
pg/mL.

175

176 Statistical analyses

177 Summary statistics of frequency (%) and mean were used to analyse survey data. Free 178 text responses detailing the clinical scenarios in which the HDT or LDT were used were 179 categorised into themes using content analysis. For each of the ten dilution methods 180 studied in the low-dose synacthen dilution analysis, intra-method and intra-bag/syringe 181 variance was calculated and expressed as mean, SD and CV. Method 7 was excluded 182 from intra-bag/syringe variance calculations due to an insufficient final volume. 183 Unpaired t-tests with Welch's correction were employed to compare components of the 184 different methods, including number of dilution steps, volume of diluent, and initial 185 volume of synacthen used. A threshold of \pm 10% (0.9 to 1.1 µg) was chosen as the 186 acceptable range for deliverable synacthen dose values to fall within, reflecting standard 187 laboratory practice.

188 **RESULTS**

189 International survey

190 Responses were received from 766 society members (11% overall response rate), 191 working in 60 countries (single response received from 19 countries). Response rates 192 varied between the societies: PES, 21% (n = 290), SfE, 19% (n = 220), ESE, 13% (n = 220), ESE, 13\% (n193 220), ESPE, 3% (n = 36), ESA, < 1% (n = 7), and APEG, 4% (n = 13). Responses were 194 received from clinicians working in the USA (36%), UK (29%), mainland Europe 195 (25%), North America (excluding the USA) (4%), Asia (3%), Australasia (3%), Africa 196 (< 1%), and South America (< 1%). Endocrinologists who worked mainly or entirely 197 with adults made up 52% of respondents and 45% worked mainly or entirely with 198 children and/or adolescents (97% of USA respondents). The remaining 3% of 199 respondents either did not indicate their patient base or were not clinicians.

200 The SST was the most popular test for assessing adrenal insufficiency (Table 2). 201 It was used by 98% overall with 92% using the HDT, 43% the LDT, and 37% both. The 202 LDT was considerably more popular amongst paediatric endocrinologists (72%) 203 compared with adult endocrinologists (17%). There was variation of LDT utility 204 amongst respondents from different geographical regions: 76% of all respondents 205 working in the USA used the LDT, 50% from the Middle East, 34% from mainland 206 European countries, 30% from Australasia and 6% from the UK (82% UK paediatric 207 endocrinologists in 2012 survey, not resurveyed). The most commonly utilised LDT 208 dose was 1 μ g (86% of question respondents) and an intermediate dose (between 5 μ g and 15 μ g) was used by 8%. Body surface area based doses (0.1 μ g/m² to 1 μ g/m²) were 209 210 used by 5%, 2% used weight-based calculations.

Respondents stated their rationale for using the HDT or LDT: the most popular reasons for using the HDT were diagnosis of primary adrenal insufficiency and congenital adrenal hyperplasia, or because it was standard procedure. The LDT was preferred to investigate secondary adrenal insufficiency. The majority administer the
HDT by the intravenous route (81%), with 37% and 5% using intramuscular and
subcutaneous routes, respectively.

217 Thirty different combinations of cortisol sampling times were specified for the 218 HDT and 37 for the LDT (Fig. 1). The most common times to sample were at 0, 30 and 219 60 minutes (HDT 46%, LDT 51%), while 17% of LDT respondents utilised a 20-minute 220 sample in their protocol. The most commonly used interpretive threshold for adequacy 221 of adrenal function (a "pass") was > 500 nmol/L, used in 48% of HDT and 61% of LDT. 222 More HDT users (27%) than LDT users (11%) utilised the higher threshold of > 550223 nmol/L. Similar proportions used thresholds below 500 nmol/L: HDT, 21% (range 374 224 to 475 nmol/L), and LDT, 25% (range 380 to 495 nmol/L).

Serum cortisol levels without stimulation were used in the diagnosis of adrenal insufficiency by 76% (Table 2). When asked to specify further (n = 290), 92% used morning serum cortisol and 19% random cortisol sampling. Paired ACTH and serum cortisol sampling was used by 71% of all respondents. Less popular tests included the insulin tolerance test (used by 36% of respondents: adult, 54%; paediatric 15%), glucagon stimulation test (27%), metyrapone test (4%), clonidine stimulation test (3%), corticotrophin releasing hormone test (2%), and depot (prolonged) synacthen test (1%).

232

233 Low-dose synacthen dilution study

For eight of the ten different dilution strategies, a marked intra-method variability of the final synacthen concentration was observed, with CVs of over 10% (Table 1). The least variable was method 6, with a CV of 2.1%; the most variable was method 10, with a CV of 109%. Optimal dilution would have yielded synacthen concentrations able to deliver a dose close to 1 μ g (acceptable range, 0.9 to 1.1 μ g). However, the method means ranged from 0.16 μ g (least accurate) to 0.81 μ g (most accurate) (Table 1). The methods 240 bearing results closest to the range chosen as acceptable were 1, 4, and 6 (Fig. 2). Three 241 methods (7, 9 and 10) had a mean concentration of less than half the expected dose 242 ranging from 0.16 to 0.36 µg (Fig. 2), reflecting substantial losses of synacthen. To 243 assess any variation or reduction in synacthen dose resulting from the laboratory 244 dilutions necessary for the ELISA quantification, two vials of synacthen (250 µg/mL) 245 were diluted and samples run over 23 assays. This yielded results of $247 \pm 11 \,\mu g/mL$ 246 and $223 \pm 12 \mu g/mL$, and indicated that the wide variation in deliverable dose detected 247 in samples was not due to inaccuracies in the required laboratory dilutions.

Intra-bag/syringe variability was high but unpredictable, with no part of the bag/syringe tending towards higher concentrated samples than another. Overall, top samples (n = 45) had a mean \pm SD deliverable dose of 0.593 \pm 0.298 µg synacthen, CV of 50.2%, middle samples (n = 45) 0.545 \pm 0.286 µg, 52.5%, and bottom samples (n = 45) 0.573 \pm 0.293 µg, 51.3%.

253 Method 6 was the only one to use 5% dextrose as a diluent and was the least 254 variable method (CV of 2.1%) and most accurate, with means closest to the desired 1 255 μ g (0.79 to 0.84 μ g). Six methods (n = 90 samples) involved a single dilution step, and 256 together had a mean synacthen deliverable dose of $0.547 \pm 0.319 \mu g$, whilst four 257 methods (n = 50) used double dilutions with an overall mean of $0.583 \pm 0.24 \ \mu g$ (P = 258 0.46; 95% confidence interval (CI): -0.058 to 0.131 µg). When comparing the different 259 initial volumes of the 1 mL ampoule of 250 µg/mL synacthen used for dilution, six 260 methods (n = 90) used all 1 mL and resulted in a mean synacthen deliverable dose of $0.668 \pm 0.212 \mu g$. The remaining four methods (n = 50) used 0.5 mL or less and had a 261 mean synacthen deliverable dose of $0.365 \pm 0.318 \,\mu g$ (P < 0.0001; 95% CI: -0.404 to -262 263 $0.204 \mu g$). A bag of diluent, rather than a syringe, was utilised in eight of the methods 264 (n = 120), four of which (n = 60) used a large volume of diluent, ≥ 250 mL, and had a 265 mean synacthen deliverable dose of $0.572 \pm 0.314 \,\mu\text{g}$, and four methods (n = 60) used

- a small volume of diluent, 50 mL, yielding a mean synacthen deliverable dose of 0.584
- $267 \qquad \pm \ 0.283 \ \mu g \ (P = 0.837; \ 95\% \ CI: \ -0.097 \ to \ 0.119 \ \mu g).$

268 **DISCUSSION**

This is the largest international survey of diagnostic tests for adrenal insufficiency to date. Although the response rate of 11% was low, this was a survey of society members some of whom are not in clinical practice and the response rate is in keeping with similar internet surveys.¹⁵⁻¹⁶ There was geographical variations in responses. Not all endocrine societies approached distributed the survey and this has contributed to the imbalance in paediatric and adult endocrinologist responses from certain regions.

275 The SST was the most popular test for assessing HPA axis function and has been 276 growing in popularity amongst endocrinologists, increasing from 24% in 1988,¹ 69% in 1993,² 59% in 2005,¹⁷ to 98% in this survey and 100% of paediatric endocrinology 277 centres in the UK in 2012.³ It is regarded now as the "standard" test for adrenal 278 279 insufficiency.⁴ This is the first international survey to distinguish proponents of the HDT 280 from the LDT. Whilst the HDT is used by 92% of respondents, and is the test of choice 281 for diagnosing primary adrenal insufficiency, the LDT is used by 43%. Similar 282 proportions of survey respondents practised as adult and paediatric endocrinologists. 283 The LDT is popular amongst paediatric endocrinologists, 72% compared with 17% of 284 adult endocrinologists, resonating the results of the British Society for Paediatric Endocrinology and Diabetes (BSPED) survey, where 82% used the LDT.³ This may 285 286 reflect respiratory guidelines, which recommend the LDT for assessment of adrenal function in children on inhaled corticosteroids.^{18,19} 287

The sampling times and diagnostic cut-offs practised by the majority of respondents were in keeping with Endocrine Society guidelines,⁴ which state a peak cortisol less than 500 nmol/L at 30 or 60 min indicates adrenal insufficiency. Deviations from these guidelines were seen in 52% of HDT and 39% LDT users for cut-off and < 1% HDT and 5% LDT users for timing. The tendency to employ lower diagnostic thresholds for serum cortisol is likely reflect a change in practice to locally derived cutoffs, dependent on the assay platform used. Additionally clinicians review the SST
 results in the context of the clinical suspicion of adrenal insufficiency.^{20,21}

Responses were received from people working in 60 countries and six continents, demonstrating a range of practises, resource settings and patient populations. There was a preponderance of responses from endocrinologists working in Europe and the USA; therefore the survey may not be truly representative of worldwide practice. Additionally, national practice cannot be assumed in the 136 countries with no respondent and 19 countries with a single respondent.

302 This study has shown a high inter-method variability between different 303 commonly employed dilution strategies for the low-dose SST. The variation in dose was 304 from 0.16 μ g to 0.81 μ g when the dose should be 1 μ g, thereby in all cases the dilution 305 methods used provide inadequate dosing, with doses up to seven-fold less than required. 306 There was variation when the same method was used to make up the 1 µg dose five 307 times (intra-method variability) and variation when individual samples from the same 308 final solution were compared (intra-bag/syringe variability), inferring inadequate 309 mixing. This inaccuracy in dosing and variability between and within dilution methods 310 may result in false positive synacthen tests with potentially important clinical sequelae. 311 When similar methods (e.g., volume of diluent, proportion of synacthen ampoule 312 used, number of dilution steps) were grouped and compared only the initial volume of 313 synacthen was shown to significantly affect the final concentration: dilution methods 314 using the full ampoule gave significantly higher concentrations and closer to the desired 315 concentration. The most accurate and least variable method was the only one to use 5% 316 dextrose, suggesting that dextrose may be the most suitable diluent for making up low

dose synacthen. However, this would require further investigation along with otherpossible diluents for synacthen.

319 The plateau of the synacthen/cortisol dose response curve is thought to begin at approximately 5 μ g of synacthen.¹² The lowest dose of synacthen to maximally 320 321 stimulate the adrenal gland has been found to be between 0.5 ug and 1 ug.^{12,22-25} The 322 supra-physiological dose of 250 µg of synacthen employed by the HDT means that even 323 marked variation in the actual dose delivered to the patient is unlikely to manifest 324 clinically. However, the doses employed in the LDT are much closer to the amounts 325 needed to produce a maximal adrenal response and thus, small variations in the 326 administered dose, may have clinical ramifications, with the potential of false positive 327 diagnoses of adrenal insufficiency. Using the results of this study, a patient undergoing 328 a 1 µg LDT, using dilution methods 7, 9 or 10, may receive between 0.16 µg and 0.36 329 µg of synacthen. These three methods used half or less of the synacthen ampoule, with 330 methods 7 and 9 using 0.2 mL or less, a volume too small to draw up accurately using 331 1 mL ward syringes.

Intra-bag/syringe variability was high but similar between different parts (top, middle, bottom), suggesting mixing inadequacy but no specific area the synacthen settled in. In laboratory practice, mixing of constituents similar to those used in this study may take place over many hours with the use of specialised equipment, to be assured of uniform distribution throughout the diluent.

There is no "standard" way to make up the 1 μ g synacthen dose. The method of adding 250 μ g/mL to 250 mL of 0.9% saline (method 3), described by Dickstein et al¹² on introducing the 1 μ g test in 1991, was later recommended by the meta-analysis of

Kazlauskaite and colleagues,⁸ but was neither the most popular method in the 2012
British survey³ nor the most accurate method in the current study.

342 Other sources of variation have been considered. These include potential losses 343 caused by the adherence of synacthen to plastic, reported to be between 21.6 and 58.6% 344 and proportional to the length of the device.^{13,14} This study made up low-dose synacthen 345 under replicated ward conditions, using plastic syringes. Additional plastic laboratory 346 equipment was used in the dilutions prior to ELISA analysis, potentially adding to the 347 losses. However, the "control" samples diluted from a vial of synacthen with laboratory 348 equipment showed very little variation and only minimal losses. Pharmaceutical 349 industry standards require that an ampoule of 250 µg/ml synacthen contains between 95 350 and 105% of the declared content, 237.5 µg and 262.5 µg, respectively (Mallinckrodt 351 Pharmaceuticals, Dublin, Ireland) and this variation may be amplified when diluting the 352 synacthen to physiological doses.

353 Ward, rather than specialised, calibrated laboratory equipment was used for 354 simulation purposes, reflecting current clinical practice, but other variables were 355 controlled as far as possible. The synacthen was kept refrigerated until the point of use 356 and a single investigator performed all dilutions for each individual method. The 357 additional dilutions required to run the samples on the ELISA were performed under 358 strict laboratory conditions and by a single investigator. In the reality of a less controlled, 359 busy clinical environment ambient temperatures may vary, synacthen may degrade in 360 sunlight or if left out of the refrigerator and many different personnel may perform the 361 dilutions, all potentially increasing the inaccuracy of dilution and variability further. A 362 systematic review has shown pre-prepared syringes for intravenous medication can reduce errors in the preparation and administration by 21%.²⁶ 363

Our international survey showed the synacthen test is employed by 98% of
endocrinologists, with 43% using the LDT. Our dilution study demonstrated

- 366 considerable variation and inaccuracy when preparing the low-dose of synacthen. The
 367 least variable methods were 1, 4 and 6 (Table 1). Although method 6 used 5% dextrose,
 368 the effect of diluent needs to be investigated further before any recommendations can
 369 be made. In addition, it would be expected that controlled laboratory/pharmacy
 370 conditions would impact positively on the accuracy of the delivered dose.

372 **REFERENCES**

- 373 1 Stewart PM, Corrie J, Seckl JR, Edwards CR, Padfield PL. A rational approach
 374 for assessing the hypothalamo-pituitary-adrenal axis. Lancet. 1988;331:1208–
 375 1210.
- Davies MJ, Howlett TA. A survey of the current methods used in the UK to
 assess pituitary function. J Royal Soc Med. 1996;89:159–164.
- 378 3 Elder CJ, Sachdev P, Wright NP. The short Synacthen test: a questionnaire
 379 survey of current usage. Arch Dis Child. 2012;97:870–873.
- Bornstein SR, Allolio B, Arlt W, et al. Diagnosis and treatment of primary
 adrenal insufficiency: An Endocrine Society clinical practice guideline. J Clin
 Endocrinol Metab. 2016:101:364–389.
- 383 5 Charmandari E, Nicolaides NC, Chrousos GP. Adrenal insufficiency. Lancet.
 384 2014;383:2152–2167.
- 385 6 Nieman LK. Diagnosis of adrenal insufficiency in adults. UpToDate. (Website)
 386 (available at: https://www.uptodate.com/contents/diagnosis-of-adrenal387 insufficiency-in-adults). Accessed on 24 November 2017.
- 388 7 Dorin RI, Qualls CR, Crapo LM. Diagnosis of adrenal insufficiency. Annals Int
 389 Med. 2003;139:194–204.
- Kazlauskaite R, Evans AT, Villabona CV, et al. Corticotropin tests for
 hypothalamic-pituitary-adrenal insufficiency: A metaanalysis. J Clin
 Endocrinol Metabol. 2008;93:4245–4253.
- Magnotti M, Shimshi M. Diagnosing Adrenal Insufficiency: Which test is best
 The 1-µg or the 250-µg cosyntropin stimulation test? Endocr Prac.
 2008;14:233–238.
- 396 10 Ospina NS, Nofal AA, Bancos I, et al. ACTH stimulation tests for the diagnosis
 397 of adrenal insufficiency: Systematic review and meta-analysis. J Clin

- 398 Endocrinol Metabol. 2016;101:427–434.
- 399 11 Ng SM, Agwu JC, Dwan K. A systematic review and meta-analysis of
 400 Synacthen tests for assessing hypothalamic-pituitary-adrenal insufficiency in
 401 children. Arch Dis Child. 2016;101:847–853.
- 402 12 Dickstein G, Shechner C, Nicholson WE, et al. Adrenocorticotropin stimulation
 403 test: Effects of basal cortisol level, time of day, and suggested new sensitive low
 404 dose test. J Clin Endocrinol Metab. 1991;72:773–778.
- 405 13 Murphy H, Livesey J, Espiner EA, Donald RA. The low dose ACTH test A
 406 further word of caution. J Clin Endocrinol Metab. 1998;83:712–713.
- 407 14 Wade M, Baid S, Calis K, Raff H, Sinaii N, Nieman L. Technical details
 408 influence the diagnostic accuracy of the 1 μg ACTH stimulation test. Eur J
 409 Endocrinol. 2010;162:109–113.
- 410 15 Cook D, Wittich C, Daniels W, West CP, Harris AM, Beebe TJ. Incentive and
 411 reminder strategies to improve response rate for internet-based physician
 412 surveys: A randomized experiment. J Med Internet Res. 2016;18:244.
- 413 16 Cunningham CT, Quan H, Hemmelgarn B. Exploring physician specialist
 414 response rates to web-based surveys. BMC Med Res Methodol. 2015;15:4–11.
- 415 17 Reynolds RM, Stewart PM, Seckl JR, Padfield PL. Assessing the HPA axis in
 416 patients with pituitary disease: A UK survey. Clin Endocrinol (Oxf).
 417 2006;64:82–85.
- 418 18 Miller WL. The adrenal cortex and its disorders. In: Brook C, Clayton P, Brown
 419 R, eds. *Brook's Clinical Pediatric Endocrinology*, Edition 6. Oxford: Wiley420 Blackwell; 2009:283–326.
- 421 19 British Thoracic Society. British guideline on the management of asthma 2014.
 422 (available at: https://www.brit-thoracic.org.uk/document-library/clinical423 information/asthma/btssign-asthma-guideline-2014). Accessed on 24th

424 November 2017.

- 425 20 Chitale A, Musonda P, McGregor AM, Dhatariya KK. Determining the utility
 426 of the 60 min cortisol measurement in the short synacthen test. Clin Endocrinol
 427 (Oxf). 2013;79:14–19.
- Elder CJ, Somerset LM, Ram V, Wright NP, Wales JK, Dimitri PJ. Letter in
 response to Chitale et al.: Determining the utility of the 60-minute cortisol
 measurement in the short synacthen test. Clin Endocrinol (Oxf). 2014;80;925.
- 431 22 Crowley S, Hindmarsh PC, Holownia P, Honour JW, Brook CGD. The use of
 432 low doses of ACTH in the investigation of adrenal function in man. J
 433 Endocrinol. 1991;130:475–479.
- 434 23 Daidoh H, Morita H, Mune T, et al. Responses of plasma adrenocortical steroids
 435 to low dose ACTH in normal subjects. Clin Endocrinol (Oxf). 1995;43:311–315.
- 436 24 Nye EJ, Grice JE, Hockings GI, et al. Comparison of adrenocorticotropin
 437 (ACTH) stimulation tests and insulin hypoglycemia in normal humans: Low
 438 dose, standard high dose, and 8-hour ACTH-(1-24) infusion tests. J Clin
 439 Endocrinol Metab. 1999;84:3648–3655.
- 440 25 Mayenknecht J, Diederich S, Bahr V, Plockinger U, Oelkers W. Comparison of
 441 low and high dose corticotropin stimulation tests in patients with pituitary
 442 disease. J Clin Endocrinol Metab. 1998;83:1558–1562.
- 443 26 Mcdowell SE, Mt-Isa S, Ashby D, Ferner RE. Where errors occur in the
 444 preparation and administration of intravenous medicines: a systematic review
 445 and Bayesian analysis. Qual Safety Health Care. 2010;19:341–345.

FIGURE LEGENDS

FIGURE 1 Chosen cortisol sampling times for respondents using high-dose and lowdose synacthen tests. Each bar represents the percentage of respondents (HDT, n = 716, and LDT, n = 284) who measure cortisol levels at the times provided. For clarity, not all combinations of timings have been included in the graph (HDT, n = 30 different combinations and, LDT, n = 37). HDT, high-dose test; LDT, low-dose test.

FIGURE 2 Accuracy and variability of 1 μ g low-dose synacthen dilution methods. For each method tested, except method 7, each individual point indicates the mean deliverable amount of synacthen as calculated from three samples taken from the final bag/syringe dilution. For method 7, each individual point relates to a single sample measurement. Each method mean was calculated from five separate dilution experiments and is depicted by a short black line. The unbroken line at 1 μ g represents the expected amount of synacthen administered if dilutions were optimal. The broken lines represent the upper (1.1 μ g) and lower (0.9 μ g) limits of the accepted range of dose variability of \pm 10%. TABLE 1 Dilution methods used to make up 1 μ g synacthen dose and intra-method variability

Method number	Method summary	Dilution factor	Expected final concentration of synacthen	Observed final concentration of synacthen (mean ± SD; n = 5)	Intra- method variability (% CV)	Volume to deliver a 1 µg dose	Actual dose (μ g) of synacthen deliverable in injected volume (mean ± SD; n = 5)
1	1 mL of synacthen ^a injected into a 1 litre bag of saline.	1000	250 ng/mL	$195\pm22~\text{ng/mL}$	11.3	4 mL	0.78 ± 0.09
2	 1 mL of synacthen^a transferred to 10 mL syringe containing 9 mL of saline. 1 mL of resultant solution transferred to 10 mL syringe containing 4 mL of saline. 	50	5 μg/mL	$2.73\pm0.79~\mu\text{g/mL}$	28.9	0.2 mL	0.55 ± 0.16
3	1 mL of synacthen ^a injected into 250 mL bag of saline.	250	1000 ng/mL	$522\pm202~\text{ng/mL}$	38.8	1 mL	0.52 ± 0.20
4	1 mL synacthen ^a injected into 50 mL bag of saline. 1 mL of resultant solution transferred to 10 mL syringe containing 9 mL of saline.	500	500 ng/mL	391 ± 36 ng/mL	9.06	2 mL	0.78 ± 0.07
5	1 mL of synacthen ^a injected into 50 mL bag of saline. 0.2 mL of resultant solution transferred to 2.5 mL syringe containing 0.8 mL of saline.	250	1000 ng/mL	$559 \pm 89 \text{ ng/mL}$	15.9	1 mL	0.56 ± 0.09
6	1 mL of synacthen ^a injected into 500 mL bag of 5% (w/v) dextrose.	500	500 ng/mL	$407\pm8~ng/mL$	2.06	2 mL	0.81 ± 0.02
7	0.2 mL of synacthen ^a transferred into 10 mL syringe containing 10 mL saline. 0.2 mL of resultant solution transferred to 2.5 mL syringe containing 0.8 mL of saline.	250	1000 ng/mL	161 ± 39 ng/mL	24.7	1 mL	0.16 ± 0.04
8	0.2 mL of synacthen ^a injected into 50 mL bag of saline.	250	1000 ng/mL	$632 \pm 230 \text{ ng/mL}$	36.4	1 mL	0.63 ± 0.23
9	0.1 mL of synacthen ^a injected into 50 mL bag of saline.	500	500 ng/mL	181 ± 118 ng/mL	65.2	2 mL	0.36 ± 0.24
10	0.5 mL synacthen ^a of injected into 500 mL bag of saline.	1000	250 ng/mL	$42 \pm 47 \text{ ng/mL}$	109.6	4 mL	0.17 ± 0.19

 a Synacthen starting concentration was 250 μ g/mL. Where the method states "saline", a 0.9% sodium chloride solution was used.

TABLE 2 Percentage of adult and paediatric respondents using the different diagnostic

tests for adrenal insufficiency

Diagnostic test for advenal	Percentage respondents using test			
insufficiency	Total	Adult	Paediatric	
insufficiency	(n = 766)	(n = 398)	(n = 345)	
Short cosyntropin test	97.8	97.7	98.8	
High-dose test	92	95.7	88.4	
Low-dose test	42.6	17.4	72.1	
Paired ACTH and serum cortisol	71	73.3	66.9	
Serum cortisol	76.4	67.3	87.5	
Salivary cortisol	20.2	25.2	14.2	
Insulin tolerance test	36	54.2	14.5	
Glucagon stimulation test	26.9	25.4	29.1	
Metyrapone test	4	5	2.9	
Clonidine stimulation test	2.6	1.5	3.5	
Corticotrophin releasing hormone test	1.9	1.8	2	

Figure 1

Cortisol sampling times

Figure 2

Supporting Information

Diagnostic Tests for Adrenal Insufficiency Survey

Dear Endocrinologist/Endocrine Specialist Nurse/ Paediatric Endocrine Society/ The Endocrine Society/ ESA/ ESE/SfE/ESPE member,

We are surveying clinical approaches to diagnosing adrenal insufficiency, in particular the (short) Synacthen test (Cosyntropin, Cortrosyn, ACTH test, tetracosactide), within endocrinology departments (adult and paediatric) via the membership of Paediatric Endocrine Society, The Endocrine Society, Endocrine Society of Australia, European Society of Endocrinology, Society for Endocrinology and European Society of Paediatric Endocrinology.

The different testing strategies for the HPA-axis, in particular the use of different doses of Synacthen, are controversial and this is the first survey to gather such information worldwide.

We would be grateful if you would take a few minutes to complete this very short questionnaire.

Thank you for your time.

Alex Cross, Charlotte Elder, Neil Wright, Nils Krone, Richard Ross. University of Sheffield/Sheffield Children's Hospital, UK.

If you have any problems completing this document, please contact Alex Cross on ascross1@sheffield.ac.uk

- 1. In which country do you work?
- 2. Which endocrine patient group do you work with?

Drop down box: Children/adolescents only

Mainly children/adolescents but some adults Both children/adolescents AND adults Mainly adults but some children/adolescents Adults ONLY Other (specify/add comments in the text box provided)

3. Which tests do you use to assess hypothalamic-pituitary-adrenal (HPA) axis hypofunction? Please select all that apply.

Early morning serum cortisol
Random serum cortisol
Paired ACTH and serum cortisol
Salivary cortisol
Insulin tolerance test
Standard-dose (short) Synacthen (Cosyntropin, Cortrosyn) test (250 mcg)
Low-dose (short) Synacthen (Cosyntropin, Cortrosyn) test (e.g. 1 mcg)
Glucagon stimulation test
Metyrapone test
Clonidine stimulation test
Other (please specify)

4. We want to know what makes people choose between the standard-dose and low-dose (short) Synacthen (Cosyntropin, Cortrosyn) test.

If you have indicated that you use the Synacthen test (standard-dose AND/ OR low-dose), please detail in which clinical scenarios/situations you would use each test, in preference to the other test.

Standard-dose (short) Synacthen (Cosyntropin, Cortrosyn) test (250 mcg)

Low-dose (short) Synacthen (Cosyntropin, Cortrosyn) test (e.g. 1 mcg)

Any other comments

- 5. In the assessment of adrenal insufficiency, if you use the STANDARD-DOSE (250 mcg) form of the (short) Synacthen (Cosyntropin, Cortrosyn) test, which route(s) do you most commonly administer it? Please select all that apply.
 - Intravenous (IV) Intramuscular (IM) Subcutaneous (SC)
- 6. In the assessment of adrenal insufficiency, if you use the LOW-DOSE form of the (short) Synacthen (Cosyntropin, Cortrosyn) test, what **DOSE** do you use?
- 7. If you use the **STANDARD-DOSE** (short) Synacthen (Cosyntropin, Cortrosyn) test (**250 mcg**), at what times do you take your cortisol samples?

Please select all that apply

I do not use the STANDARD-DOSE		
Synacthen test		
0 minutes		
10 minutes		
20 minutes		
30 minutes		
60 minutes		
90 minutes		
Other time(s)		
(please specify)		

 If you use the LOW-DOSE (short) Synacthen (Cosyntropin, Cortrosyn) test (e.g. 1 mcg), at what times do you take your cortisol samples?

Please select all that apply

I do not use the LOW-DOSE
Synacthen test
0 minutes
10 minutes
20 minutes
30 minutes
60 minutes
90 minutes
Other time (s)
(please specify)

9. Which assay(s) do you use to analyse your cortisol samples? If you do not know, please write "don't know" in the text box provided.

10. How have your diagnostic cut offs for adrenal insufficiency been set? Drop down box: Locally according to your specific assay

Locally- other (please specify below) From textbook definitions (please specify below) From another source (please specify below) Don't know

Please add further information here

11. If/when interpreting the results of a (short) Synacthen (Cosyntropin, Cortrosyn) test (standard or low-dose), which of the following diagnostic criteria do you use?

Drop down box: I do not use the Synacthen (Cosyntropin, Cortrosyn) test Peak cortisol ONLY

Rise from baseline (absolute or fold increase) ONLY

Both peak cortisol and rise from baseline

12. If you use the **STANDARD-DOSE** (short) Synacthen (Cosyntropin, Cortrosyn) test, what cut off for normal do you use?

Please select all that apply, e.g. peak threshold AND rise from baseline increment.

I do not use the STANDARD -dose Synacthen test	
Peak cortisol >400 nmol/l	
(>14.5 μg/dL)	Rise from baseline
Peak cortisol >450 nmol/l	>150 nmol/l (> 5.4 µg/dL)
(>16.3 µg/dL)	Rise from baseline
Peak cortisol >500 nmol/l	> 200 nmol/l (> 7.2 µg/dL)
(>18 μg/dL)	
Peak cortisol >550 nmol/l	Other concentration
(>20 μg/dL)	(please specify)
Peak cortisol >580 nmol/l	
(>21 µg/dL)	
	I do not use the STANDARD -dose Synacthen test Peak cortisol >400 nmol/l (>14.5 µg/dL) Peak cortisol >450 nmol/l (>16.3 µg/dL) Peak cortisol >500 nmol/l (>18 µg/dL) Peak cortisol >550 nmol/l (>20 µg/dL) Peak cortisol >580 nmol/l (>21 µg/dL)

13. If you use the **LOW DOSE** (short) Synacthen (Cosyntropin, Cortrosyn) test, what cut off for normal do you use?

Please select **all** that apply, e.g. peak threshold AND rise from baseline increment.

	I do not use the LOW-dose Synacthen test
	Peak cortisol >400 nmol/l
	(>14.5 μg/dL)
	Peak cortisol >450 nmol/l
	(>16.3 µg/dL)
	Peak cortisol >500 nmol/l
	(>18 µg/dL)
	Peak cortisol >550 nmol/l
_	(>20 µg/dL)
\square	Peak cortisol >580 nmol/l
_	(>21 µg/dL)
	Rise from baseline
	>150 nmol/l (> 5.4 µg/dL)
	Rise from baseline
	> 200 nmol/l (> 7.2 μg/dL)

Other concentration (please specify)