
1 INTRODUCTION 

1.1 Background 
Over the past 50 years there has been a growing 
awareness that healthcare systems are capable of in-
flicting harm to patients, and this harm should be re-
duced (Health Foundation, 2011). Two key reports by 
the US Institute of Medicine (Mullan et al, 2001) and 
the UK Department of Health (DoH, 2000) helped to 
spread the message that iatrogenic patient harm 
within healthcare systems is an important issue. No-
tably, if the community pharmacy dispensing error 
rate of 3.3% (Franklin & O’Grady, 2007) is consid-
ered, this could mean that around 36 million UK pre-
scriptions per year contain errors. 

As well as safety concerns, studies have shown 
that patient satisfaction with pharmacy services is 
linked to waiting times (Afolabi & Erhun, 2003). Ex-
tended waiting times have been given as a reason why 
patients will not return to a particular pharmacy 
(Somani & Daniels, 1982), and content customers are 
increasingly likely to return to their specific 
healthcare provider (Dansky & Miles, 1997).   
 
1.2 Reliability engineering 
Reliability engineering techniques are used by many 
industries and it has become common for complex 
systems to be subjected to risk assessment processes 
(Andrews, 2009). These assessments have histori-
cally been carried out in conventional high risk in-
dustries, such as the aviation (Netjasov & Janic, 
2008), nuclear (Hsueh & Mosleh, 1996) and space 

sectors (Garrik, 1988), where effects of failure can 
be catastrophic.  

Fault trees and event trees are an example of a 
widely used reliability engineering techniques. They 
use combinatorial logic to combine events to produce 
both qualitative and quantitative analysis of failures 
(Vesely et al, 2002). Fault tree analysis requires that 
the occurrence of events is independent.  

Markov models are memoryless processes capable 
of modelling more complex systems, which might 
typically contain repair strategies and dynamic be-
havior (Boyd, 1998). A key limitation to implement-
ing a Markov model for a given system, arises from 
the fact that the number of system states to consider 
grows exponentially with the number of components 
in the system. 

Petri Nets are an effective tool for modelling pro-
cesses or systems exhibiting concurrency (Schnee-
weiss, 1999). Since the publication of Carl Adam Pe-
tri’s thesis in 1961, a number of extensions of the 
basic technique have been developed. Two important 
examples of Petri Net extensions are timed and Col-
oured Petri Nets (Jensen, 1996). Timed nets use either 
deterministic or stochastic delay timings, to control 
the timing of transitions. This gives the opportunity 
to model temporal processes. Meanwhile, incorporat-
ing token colour sets into Petri Net modelling enables 
token specific information to be propagated around 
the net. This can then be used to control and manipu-
late the nets behavior. Coloured Petri Nets have been 
utilized to model complex systems in a wide range of 
areas (Liu, 2017). 
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The healthcare sector, primary care especially, 
represents a relatively new area for reliability model-
ling. Previous healthcare modelling studies have been 
centred in secondary healthcare settings. In this field, 
Petri Nets have been used to model hospital depart-
ments (Dotoli et al, 2010), hospital information sys-
tems (Darabi & Galanter, 2009), and mental health 
care services (Dammasch & Horton, 2007). Michael 
R. Cohen et al utilized fault trees to conduct a risk 
assessment of dispensing in community pharmacies 
(Cohen et al, 2012), and their error probabilities are 
also used in this paper.  

The novelty of the proposed approach in this paper 
is the ability to perform safety and efficiency evalua-
tion within the framework of a single modelling tech-
nique. Therefore, a timed CPN model is developed 
and a wide range of performance indicators is ob-
tained, using simulations. Model outputs can be used 
to support resource management and safety improve-
ment decisions. The community pharmacy dispensing 
process is presented in section 2, section 3 outlines 
how the model is built, section 4 presents results and 
analysis and section 5 concludes the paper.  

 
2 COMMUNITY PHARMACY DISPENSING 

PROCESS 

2.1 The main stages of dispensing 
A standard community pharmacy dispensing process 
is described in this section. The six key stages of the 
community pharmacy dispensing process are given in 
Figure 1 (Langley & Belcher, 2009 & NPSA, 2007 & 
Waterfield 2008). 
 

 
Figure 1. Dispensing process flow chart 

 
To begin with, prescriptions must be received by a 

member of staff as and when patients bring them into 
the pharmacy. Prescriptions are then legally and clin-
ically checked, to ensure that the prescription is clin-
ically appropriate before continuing. After being re-
ceived, the prescriptions’ labels are generated. The 
labels include key information about the medicine. 
The next stage of the process is bringing the constitu-
ent parts of the prescription together to create the final 

product. First, the set of items included on the pre-
scription is gathered together from the pharmacy 
stock. After this, an intermediate accuracy check is 
recommended, before applying the labels to medi-
cines. After the prescription is fully assembled, it is 
passed onto either a pharmacist or an ACT (Accred-
ited Checking Technician) to perform a final accuracy 
check on the prescription. The final accuracy check is 
the final opportunity for a pharmacy to intervene if a 
prescription has been dispensed incorrectly at some 
point in the process. The accuracy check involves 
making sure that the prescription being provided by 
the pharmacy exactly matches what has been written 
on the prescription form. This includes checking that 
the labels, items, doses, quantities and form of medi-
cation are all correct before handing the prescription 
out. Any mistakes that go unnoticed at the final accu-
racy check are likely to reach patients. Each stage of 
the process can be completed by a single member of 
staff, although, only pharmacists or ACTs are quali-
fied to final accuracy check prescriptions. 

 
2.2 Resources  
A typical community pharmacy staff team consists 
of a group of pharmacists, ACTs and dispensers, but 
the number of staff varies between pharmacies. 
Larger stores can have teams of up to 12 people, 
while the smallest independent store may be run by a 
single pharmacist. However, for a pharmacy to be 
allowed to dispense prescriptions, there must be a re-
sponsible pharmacist present during all hours of op-
eration. 

The full list of resources used in the dispensing 
process is as follows: prescriptions, dispensers, phar-
macists, medicines, labels, labelling stations and a 
private room. 

 
2.3 Non-dispensing tasks 
As well as completing dispensing tasks, there are a 
number of non-dispensing tasks in pharmacies that 
members of staff are required to complete (Davies et 
al, 2014). These non-dispensing tasks include, stock 
management, patient counselling, advanced phar-
macy services, non-prescription services, staff train-
ing, and general housekeeping. Advanced services 
are a set of 6 services offered in pharmacies, one ex-
ample of which is the smoking cessation service.  
 In this study, the set of non-dispensing tasks re-
quiring to be completed by staff is limited to stock 
management, advanced services and patient counsel-
ling. Although not strictly a task, lunch hours for 
dispensers are also included in the model. 

 
. 



Figure 2. A CPN model for community pharmacy dispensing 
 

 
2.4 Failure modes 
Dispensing correct prescriptions reliably and in a 
time that is convenient for customers are the two 
main goals of community pharmacies. Therefore, the 
dispensing process can be considered to fail if either:  

 
1. A prescription is incorrect when 

handed/delivered to a patient.  
2. A prescription takes an extended amount of 

time to be dispensed, causing the patient to 
decide not to return in the future. 

 
Prescriptions can be incorrect in a number of dif-

ferent ways, for example, the labels may indicate to 
take too much or too little of the medicine. This would 
be classified as a labelling error. Other examples in-
clude, items being included which are different to 
those prescribed. This would be classified as a con-
tents error, and it can be due to wrong dose, wrong 

volume, or being a completely different medicine. 
Additionally, it may be the case that the labels and 
items were generated and picked correctly, but they 
are mixed up when applying the labels, this is classi-
fied as a label application error.  

If one of the above errors makes it through the final 
accuracy check and is handed out to a patient, this is 
then classified as a dispensing error. If however, the 
error is spotted and rectified at the final accuracy 
check, this is classified as a near miss (Chua et al, 
2003).  

 
2.5 Definitions: process reliability and efficiency  
Reliability of the dispensing process, R, is defined in 
Equation (1) as:  
 

𝑅 =
𝑝𝑐𝑐

𝑝𝑡𝑜𝑡𝑎𝑙 
                 (1) 

 



 where 𝑝𝑐𝑐 is the number of prescriptions dis-
pensed which are completely correct, and 𝑝𝑡𝑜𝑡𝑎𝑙 is 
the total number of prescriptions dispensed. 

Process efficiency is commonly defined as the ra-
tio between an output gained and the level of re-
sources needed to maintain the process. Since the cost 
of resources is not factored into this study, a set of 
efficiency indicators are used. Two examples of effi-
ciency indicators are, the total number of prescrip-
tions completed, and the average time to dispense 
walk-in prescriptions. Results for all performance in-
dicators can be found in Table 4. The ideal outcome 
of the process in terms of efficiency is a high number 
of prescriptions completed quickly. 

 
3 MODELLING APPROACH 

3.1 Overview 
This section of the paper presents the development 
of a Coloured Petri Net (CPN) for modelling the dis-
pensing process. The dispensing process being mod-
elled in this study is that of manual dispensing phar-
macy, as opposed to automated dispensing. Figure 2 
shows the CPN model of a community pharmacy. 
Overall, the model is built according to the process 
flow, considering resources and errors. Model out-
puts are obtained after the CPN model is simulated.  

 
3.2 Places and transitions 

Table 1 shows the description of each place and 
the type of token that may occupy the places. Note 
that the net uses three token types: e (basic), w (staff), 
and p (prescriptions). 

 
Table 1. Places 

Place Description Type 

1 Walk-in task generator. e 

2 Customer at counter. e 

3 Delivery task generator. e 

4 Staff receiving. w 

5 Prescriptions to be dispensed. p, e 

6, 10 Labelling stations available. e 

7, 9 Staff member choosing prescription. w 

8 Staff available for primary tasks. w 

11, 12  Staff member generating labels.  w, p 

13, 15, 17 

19, 21, 23 

These places are used to separate staff 

into parallel work streams.  

w, p 

14, 16, 18 

20, 22, 24 

Staff are assembling, and applying la-

bels to prescriptions.  

w, p 

25 Prescriptions waiting for secondary 

dispensing tasks. 

p, e 

26 Pharmacists available to complete sec-

ondary tasks. 

w 

27, 30, 33 Pharmacist allocated to complete sec-

ondary tasks for a prescription. 

w 

28, 31, 34 Pharmacists is checking a prescription. w, p 

29, 32, 35 Pharmacist is handing out/storing for 

delivery. 

w, p 

36 All completed prescriptions.  p 

37 Advanced service being completed.  w 

38 Advanced service waiting. e 

39 Advanced service task generator. e 

40 Stocking task generator. e 

41 Stocking waiting. e 

42 Stocking task being completed. w 

43 Dispenser lunch break generator. e 

44  Lunch break ready to be taken. e 

45 A dispenser is on their lunch break. w 

 
Overall, some places are used to keep track of re-

sources, and others are used as task generators, con-
trolling when new tasks arrive.  

Table 2, shows the description and distribution of 
each transition. Note that Det(x) stands for a deter-
ministic delay. Some transitions directly represent the 
community pharmacy dispensing tasks seen in Figure 
1. Other transitions are purely used to move tokens 
around the net. The types of distributions and their 
parameter values have been assumed in this paper.  
 
Table 2. Transitions 

Transition Description  (Y/N) * 

1 Walk in generation:  Exp(0.0033) N 

2 Receive a prescription: Uni(30, 60) N 

3 Move staff to counter: Det(0) N 

4 Delivery generation: Det(6000)  N 

5, 6 Staff choose prescription: Uni(5,10) N 

7, 8 Allocate a staff member: Det(ϵ) N 

9, 10 Label generation: Det(15) Y 

11- 21 Spreaders: Det(ϵ) N 

22- 27 Filling & label application: N(50,10) Y 

28, 32, 36 Pharmacist allocation: Det(ϵ) N 

29, 33, 37 Choose prescription: U(10, 15) N 

30, 34, 38 Final accuracy check: Uni(5,10) Y 

31, 35, 39 Hand out and counsel: Exp(0.025) N 

31, 35, 39 Store for delivery: Exp(0.05)  

40 Allocate to advanced service: Det(ϵ) N 

41 Complete advanced service: 

Uni(300, 600) 

N 

42 Advanced service generator: 

Exp(0.00006) 

N 

43 Move pharmacist primary: Det(10) N 

44 Stocking task generator: Det(6600) N 

45 Allocate to stocking: Det(ϵ) N 

46 Finish stocking: Uni(300, 900) N 

47 Begin triggering of lunch break: 

Det(7200) 

N 

48 Allocate dispenser to lunch: Det(ϵ) N 

49 Dispenser finished lunch: Det(3600) N 

* This column designates transitions as processors. 
 
In Table 2 each transition is also designated as ei-

ther a ‘processor’ transition, or not. A processor tran-
sition represents a task that is affected by the number 
of items in the prescription. For example, the transi-
tion, modelling generating labels, is a processor tran-
sition, since it will take longer to generate labels for a 
large prescription.  



 
3.3 Model assumptions 
Tasks in the model are separated into primary and 
secondary tasks, where primary tasks may be com-
pleted by all staff, whereas secondary tasks may 
only be completed by pharmacists. In addition a 
number of assumptions about staff behaviour and 
pharmacy specification are made. Below is a list of 
modelling assumptions about how staff behave. 

 
 Staff complete tasks in an identical way, i.e. 

the same probability distributions are used 
to determine how long tasks take, and to 
generate error probabilities for different 
staff.  

 Dispensers may only complete primary 
tasks, and pharmacists prioritise secondary 
tasks. Pharmacists are able to move to pri-
mary tasks if they are idle. 

 Once primary work is begun on a prescrip-
tion, the same member of staff continues 
working on it until the primary tasks are fin-
ished. 

 Upon a customer arriving with a walk-in, 
the first member of staff to become availa-
ble for primary tasks go to serve them.  

 Dispensers have a lunch hour. It is assumed 
that pharmacists fit their lunch in during 
moments when they are not working.  

 
Below are assumptions about the labelling sta-

tions, pharmacy opening hours, and prescriptions.  
 

 The pharmacy is open from 9am-5pm.  
 Walk-in prescriptions are prioritised over 

deliveries. Within the same type, there is a 
first come first served order. They arrive 
with increments of an Exponential distribu-
tion, as shown in Table 2. 

 Delivery prescriptions arrive at the phar-
macy in a single large bulk, at 10am, 1 hour 
after the pharmacy opens.  

 The pharmacy has 2 labelling stations capa-
ble of generating labels for prescriptions.  

 Walk-ins taking longer than 15 minutes to 
be dispensed are classed as delayed.  

 
3.4 Prescription modelling 
In the CPN model, prescription tokens each have 8 
colour fields which represent: 

1. Delivery or walk-in 
2. The number of items 

3. Time taken to dispense 
4. Number of iterations to compete 
5. The overall outcome 
6. Label error 
7. Content error 
8. Label application error 

 
In particular the number of iterations to complete 

is determined by how many times a pharmacist has 
had to send the prescription to be corrected after a fi-
nal accuracy check. The overall outcome is one of 3 
outcomes: completely correct, near miss, or dispens-
ing error. The last 3 colours, labels, contents and label 
application, are Boolean variables, which indicate 
whether an error of each type is contained within the 
prescription.  

Upon arrival, every prescription is allocated a ran-
dom number of items by sampling from a Geomet-
ric(0.35) random variable (mean = 2.86). This was 
chosen using two assumptions. Firstly, patients with 
a prescription will have at least 1 item on the prescrip-
tion. Secondly, prescriptions with more items are in-
creasingly less likely to occur than those with fewer. 
This number of items is then used to determine how 
long the processor transitions, designated in Table 2, 
take to fire. For example, a prescription containing 5 
items will use the sum of 5 samples from the distribu-
tion that describes the duration of label generation. 

 
3.5 Failures 
Failures are modelled using Bernoulli random varia-
bles. At three points of the process, label generation, 
prescription assembly and label application, an error 
can occur. The error probabilities were taken from 
Cohen et al (Cohen et al. 2012), and are shown in 
Table 3.  
 
Table 3. Error probabilities 

Task Error probability 

Labelling 0.06 

Filling 0.05 

Label application 0.03 

Final accuracy check 0.05 

 
The outcome of the final accuracy check depends 

on the state of the prescription being checked. It is 
assumed that prescriptions that are correct will always 
pass through the check. If there is an error present in 
the prescription, the pharmacist will spot it with prob-
ability 0.95, otherwise they will fail to spot it with 
probability 0.05.

 
 
 
 

 
 

 



Table 4. Simulation results 

 
 

4 PHARMACY SIMULATION SCENARIOS 
AND THEIR ANALYSIS 

4.1 Scenario specification 
This paper uses three pharmacy scenarios to demon-
strate the ability to evaluate performance using the 
CPN model. These three scenarios have been chosen 
to demonstrate the impacts, or efficiency improve-
ments, of adding an additional staff member.  

 
a) Scenario 1 
Staff - 1 pharmacist, 2 dispensers 
Failures - Chance of failure in labelling, filling, la-

  bel application and final accuracy check stages.  
Advanced services - Included.  
Stocking - Pharmacist must do 4 stints of stock  

  management, each period lasting 5-15 mins.  
Lunch hours - 1 hour for each dispenser, taken se-

  quentially (only 1 dispenser may be off at the same 
  time).  

 
b) Scenario 2 
Same as scenario 3, but with 1 pharmacist and 3   

  dispensers.  
 
c) Scenario 3 
Same as scenario 1, but with 2 pharmacists and 2 

  dispensers.  
 

4.2 Results and analysis 
A 9-5 day of pharmacy operation was simulated a 
total of 6000 times for each scenario. A test for con-
vergence was conducted to find whether 6000 was a 
large enough number to reach convergence. A fur-
ther 1000 simulations were carried out for each sce-
nario, then the indicator values for the set of 7000 
simulations were compared to the values calculated 
for 6000 simulations. Every field was the same be-
tween the two sets of data to 2 significant figures. 
Results of key performance indicators for each sce-
nario are shown in Table 4. 

Since walk-in (WI) prescriptions are given priority 
over delivery prescriptions, walk-in prescriptions get 
completed first, but a smaller pharmacy which takes 

longer to dispense prescriptions is unable to complete 
all their deliveries. This can be seen in scenario 1, 
where 39 of the 150 delivery prescriptions are unfin-
ished. In both scenarios 2 and 3, having an additional 
staff member of either type (pharmacist or dispenser) 
improved the efficiency of the pharmacy sufficiently 
so that on average almost all the deliveries were being 
completed. This suggests that the pharmacy may be 
able to complete a larger number of delivery prescrip-
tions when employing 4 staff. The average time to 
dispense was also improved by more staff in scenar-
ios 2 and 3. A large decrease (of 217s) in the average 
time to dispense walk-ins was seen when introducing 
an extra pharmacist in scenario 3. A smaller decrease 
(of only 75s) was gained by introducing an extra dis-
penser to the pharmacy team in scenario 2. 

Previous studies have reported near miss rates of 
between 0.024% (Knudsen et al, 2007) and 1.84% 
(Sanchez, 2013), and dispensing error rates of be-
tween 0.014% (Knudsen et al, 2007) and 3.3% 
(Franklin & O’Grady, 2007). There are many more 
near misses occurring during the simulations than 
have been seen in previous studies of errors, i.e. all 3 
scenarios had near misses occurring in over 10% of 
all prescriptions being dispensed. This may be due to 
underreporting of near-misses in self report based 
studies, or the final accuracy check failure probability 
is set too low in the model. The dispensing error rate 
produced by simulations fell within the reported 
range.  

These simulations suggest that the simulated dis-
pensing process has good reliability. The reliability 
for scenarios 1, 2 and 3 were as follows, R1 = 0.992, 
R2 = 0.992, R3 = 0.992. The same reliability for tall 
three scenarios is due to the fact that the error rates do 
not depend on the type of staff and pharmacy set-up.  

 
 

4.2.1 Distribution of time to dispense 
Figure 3 shows how the distribution of the time to 
dispense walk-ins depends on the scenario. The du-
ration of 600,000 walk-in prescriptions were used 
for comparison, i.e. around 100 walk-in prescrip-
tions from each of the 6,000 simulations.  

Scenario Efficiency Reliability 

 Deliveries 

completed  

Total com-

pleted 

Advanced 

services 

completed 

Delayed WI Dispense 

time mean 

R Near 

misses 

Dispensing 

errors 

     sec    

1 111.1 211 1.8 25.0 711 0.992 29.7 1.6 

2 149.4 250 1.8 19.3 636 0.992 32.8 1.9 

3 149.5 250 1.8 8.3 494 0.992 32.9 1.9 



 
Figure 3. Distributions of the time taken to dispense walk-in prescriptions 

 
It can be seen in Figure 3 that all scenarios have a 
similar underlying distribution. However the skew-
ness decreases with each additional member of staff. 
A larger decrease in skew is seen when an additional 
pharmacist is added. Note that the dashed vertical 
line represents 15 min dispensing time limit. 
 
4.2.2 Causes of delays 
A prescription could be delayed due to one of many 
reasons, such as, prescriptions containing more 
items taking longer to dispense, delays due to a large 
amounts of walk-ins already being processed or 
waiting in the queue when a patient arrives, mem-
bers of staff being busy with non-dispensing activi-
ties, or due to a near miss that has been picked up at 
the final accuracy check.  

Table 5 shows how looking at single scenarios, for 
more increasingly delayed prescriptions, the average 
size, and number of iterations required to complete 
prescriptions increases. This appears to confirm the 
prospect that prescriptions which contain more items, 
or need to be dispensed multiple times are more likely 
to be delayed.

 
Comparing scenarios, it can be seen that scenarios 

2 and 3 offer an improvement in the number of walk-
in prescriptions being completed on time. Scenario 3 
increased the percentage of prescriptions being com-
pleted on time by 16%, while scenario 2 managed an 
increase of only 5.5%.  

 
5 CONCLUSION 

In conclusion, this paper has demonstrated the use of 
CPNs as an effective tool for modelling the commu-
nity pharmacy dispensing process. CPN is a suitable 
tool to evaluate efficiency and safety in one model. 
Pharmacy dispensing complexity is captured 
through: the inclusion of all major dispensing stages, 
their duration, and a variety of staff roles, errors and 
remedial action. Adding a pharmacist improved the 
pharmacy efficiency more than adding a dispenser. 
Dispensing errors are within the range reported in 
the literature, whereas near misses are overesti-
mated.  
 
 

Table 5. Causes of delays  

Scenario  t < 15 15≤t<20 20≤t<25 25≤t<30 30≤t<35 35≤t<40 40 ≤ t 

  mins mins mins mins mins mins mins 

1 % of total 75.08 12.64 6.15 3.01 1.49 0.754 0.884 

 Avg items 2.37 3.83 4.20 4.49 4.76 5.02 5.79 

 Avg itts 0.074 0.226 0.349 0.498 0.673 0.838 1.24 

         

2 % of total 80.66 10.40 4.72 2.17 1.03 0.495 0.533 

 Avg items 2.40 4.10 4.52 4.88 5.25 5.70 6.70 

 Avg itts 0.0803 0.276 0.425 0.606 0.796 0.997 1.33 

         

3 % of total 91.74 5.27 1.77 0.66 0.295 0.141 0.122 

 Avg items 2.50 5.70 6.46 6.57 7.33 8.21 9.51 

 Avg itts 0.104 0.485 0.765 1.027 1.232 1.37 1.73 



Process reliability remained constant in all scenarios. 
By assigning staff wage costs to scenarios, this 
model could support decisions related to the cost-
benefit of employing extra staff member. 
 Future work will focus on optimizing a pharmacy 
dispensing process. This would involve finding the 
optimal choice of how many staff should work in the 
pharmacy, given the working conditions and cost of 
staff wages. Metaheuristics such as, genetic or ant 
colony optimisation algorithms, are promising meth-
odologies for this purpose. In addition, in-field data 
collection would be carried out, and ethical approval 
has been granted by the University of Nottingham.  
Other routes for future research could include con-
structing an alternative model capable of comparing 
the performance of automated and manual dispens-
ing pharmacies. Future iterations of the model could 
be designed to include the dependency between the 
overall state of the pharmacy, and staff error rates. 
For example, if a pharmacy is busy, with many pa-
tients waiting for walk-ins to be dispensed, this 
could put pressure onto staff, who may be then more 
likely to make errors.  Another possible improve-
ment to the model could be to consider how errors of 
each type, labelling, contents or label application, 
can actually occur in each item in a prescription. 
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