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1. Introduction 

The cornea consists of five layers: the Epithelium layer, 

the Endothelium layer [1] (Fig.1). It contains sensory and 

layer and the basal epithelium. Corneal Confocal Microscopy 
(CCM) is a rapid non-invasive in vivo clinical technique for 
capturing images of the different corneal layers [2]. 
Morphological alterations in the epithelium, stroma and 
endothelium provide insights into a variety of corneal diseases 
[3,4]  and assessment of  the effects of wearing contact lenses [1], 
LASIK or PRK [5], fungal keratitis [6], corneal transplantation 
[7] or conditions such as keratoconus [8,9]. CCM has also been 
used in the assessment of peripheral neuropathies 
[10,11,12,13,14,15,16,17,18,19]. The development of automated 
imaging algorithms for the processing of CCM images 
[20,21,22,23] is a necessary accompaniment to such work. 
Diabetes is the main cause of neuropathy complications and in 
the present work patients with a known history of cancer, 
chemotherapy, alcoholism, celiac disease or a deficiency of 
vitamin B12 or folate, abnormality in ANA or immunoglobulins 
were excluded to remove other causes of peripheral neuropathy 

from the input data. Diabetes can result in nerve disorders and 
nerve damage that affect various parts of the human body, such 
as the digestive tract and the cardiovascular system [15,17]. 
Quantifying corneal nerve morphology has been shown to have 
promise as an imaging biomarker for early diagnosis of sub-
clinical diabetic neuropathy [11,12,17,18] and to have value in 
predicting those who develop clinical neuropathy [16,24] and 
response to therapy [25]. Presently, most analysis methods of the 
corneal nerves are based on wearisome and very time consuming 
manual tracing programs [5,6,217,26]. As a result, the 
information obtained on the clinical parameters quantification is 
subjective and can have limited reproducibility [27]. A fully 
automatic and real-time system for tracing sub-basal nerves and 
extracting clinically meaningful parameters is required. Such a 
system would reliably and efficiently assess nerve pathology in 
diabetic patients and provide an objective means for diagnostic 
and staging purposes [28,29,30]. However, in order to build an 
efficient and robust system for segmenting the sub-basal nerves 
in corneal images, a number of issues need to be taken into 
account, including the visual contrast of the nerves, the 
discontinuities in some nerve images, and the inconsistent 
intensities of corneal sub-basal images, which can all play a 
significant role in decreasing segmentation performance. 

AB ST RACT  

 

Diabetic Peripheral Neuropathy (DPN) is one of the most common types of diabetes that can affect the cornea. An accurate analysis of the nerve 
structures can assist the early diagnosis of this disease. This paper proposes a robust, fast and fully automatic nerve segmentation and morphometric 
parameter quantification system for corneal confocal microscope images. The segmentation part consists of three main steps. Firstly, a preprocessing 
step is applied to enhance the visibility of the nerves and remove noise using anisotropic diffusion filtering, specifically a Coherence filter followed by 
Gaussian filtering. Secondly, morphological operations are applied to remove unwanted objects in the input image such as epithelial cells and small 
nerve segments. Finally, an edge detection step is applied to detect all the nerves in the input image. In this step, an efficient algorithm for connecting 
discontinuous nerves is proposed. In the morphometric parameters quantification part, a number of features are extracted, including thickness, 
tortuosity and length of nerve, which may be used for the early diagnosis of diabetic polyneuropathy and when planning Laser-Assisted in Situ 
Keratomileusis (LASIK) or Photorefractive keratectomy (PRK). The performance of the proposed segmentation system is evaluated against manually 
traced ground-truth images based on a database consisting of 498 corneal sub-basal nerve images (238 are normal and 260 are abnormal). In addition, 
the robustness and efficiency of the proposed system in extracting morphometric features with clinical utility was evaluated in 919 images taken from 
healthy subjects and diabetic patients with and without neuropathy. We demonstrate rapid (13seconds/image), robust and effective automated corneal 
nerve quantification. The proposed system will be deployed as a useful clinical tool to support the expertise of ophthalmologists and save the clinician 
time in a busy clinical setting. 
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In this paper, a robust, fully automatic segmentation and 
morphometric parameter quantification system for CCM images 
of human corneal sub-basal nerves is proposed. The 
segmentation part consists of three main steps. Firstly, a 
preprocessing step to enhance the visibility of the nerves and 
reduce noise by applying anisotropic diffusion filtering 
(Coherence filter) and a Gaussian filter. Secondly, unwanted 
features such as epithelial cells and other small structures, which 
are not nerves, are removed from the input image by applying a 
number of morphological operations. Finally, an edge detection 
process is applied to detect all the nerves in the input image. In 
the quantification of morphometric parameters a number of 
useful clinical features are extracted, including tortuosity, length 
and thickness of the nerve to aid in the early diagnosis of DPN. 

The main contribution of this work is developing an objective 
and fully automatic system that can be used for tracing the sub-
basal nerves in corneal images and extracting meaningful clinical 
features for early diagnosis of diabetic neuropathy. Moreover, an 
efficient algorithm is proposed for connecting discontinuous 
nerves without any manual intervention, which can play a 
significant role in calculating helpful and meaningful clinical 
features, such as the nerve tortuosity and the nerve length that 
mainly depend on the whole structure of the nerve. Finally, an 
efficient and accurate nerve thickness algorithm, without any 
manual intervention, is also proposed. 

This paper is organized as follows: Related work is discussed 
in Section 2. Section 3 includes descriptions of the materials 
used, and the proposed corneal sub-basal nerve segmentation and 
quantification system. The experimental results are presented in 
Section 4. Finally, conclusions and future research directions are 
stated in the last section. 
 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. The five distinct layers of the cornea [31]. 

2. Related Work 

Over the last few years, increased demand for a fully 
automatic segmentation system for corneal nerves has led to 
interesting developments in this field. However, most of the 
systems proposed are incapable of detecting the corneal nerves 
without the aid of manual support such as the provision of seed 
points. The work proposed in [28] is a phase symmetry-based 
system for the segmentation of corneal nerves of images acquired 
by corneal confocal microscopy. Firstly, the contrast of the 
nerves is increased and the noise is reduced, using contrast 
equalization, a phase symmetry-based approach and histogram 
processing. This is followed by a region growing, nerve 
reconstruction, technique to join the disconnected nerves. Small, 
isolated segments are discarded. Finally, two morphometric 

parameters are measured, which are nerve tortuosity and nerve 
length. The method was tested on a small dataset consisting of 15 
images and achieved 87% ± 8% correctly segmented nerves. The 
authors in [26] used the same algorithm as in [28] but with a 
different dataset to extract tortuosity, density, length, width and 
branching. These were used to identify the presence and severity 
of diabetic peripheral neuropathy. However, the authors found 
that the proposed nerve segmentation was limited in terms of 
accurately extracting the clinical features.  

Ruggeri and et al. [32] proposed a corneal nerve tracing and 
recognition system. The system starts by normalizing the contrast 
and luminosity of a corneal image and then applies an averaging 
filter to reduce its noise. A tracking procedure is then 
implemented starting from a set of automatically defined seed 
points. In the final stage, fuzzy c-mean clustering is applied to 

-
performance was tested on 12 images and the execution time was 
4-5 minutes per image, but there are no further details about how 
they measured execution time. The results showed that the 
performance of the system could be affected by the presence of 
cells in images. Epithelial cells were incorrectly identified as 
segments of nerves. Poletti and Ruggeri [33] presented an 
algorithm for corneal nerve recognition based on an 
automatically identified set of seed points lying all over the 
image. The nerves are traced by connecting the seed points using 
their minimum cost paths. This system was tested using a dataset 
consisting of 30 epithelium corneal images. The algorithm 
achieved an average sensitivity of about 0.85, a false detection 
rate of 0.05 and an execution time of 25 seconds per image, but 
again, further details about how the execution time was measured 
are not available.  

Ferreira and et al. [34] developed an automatic segmentation 
and morphometric analysis system for sub-basal corneal nerve 
images obtained by in vivo corneal confocal microscopy. The 
system starts by enhancing the image contrast using an adaptive 
histogram equalization method. To identify the nerve structures, 
a phase symmetry-based algorithm using a wavelet transform 
filter was used. Then, a nerve reconstruction process was 
implemented using a manually selected set of seed points, 
followed by a sequence of morphological operations to discard 
small segments. The system failed to recognize 5.3% of the 
nerves correctly. Scarpa and et al. [35] presented an algorithm for 
detecting corneal nerves in CCM images. Firstly, the algorithm 
starts by enhancing the luminosity and contrast of the corneal 
images by employing an equalization technique. This is followed 
by an automatic procedure to identify a set of seed points all over 
the input image to be used as starting points to detect each nerve 
in the image. The algorithm was tested on a dataset consisting of 
90 images of control subjects and patients. It correctly recognized 
80.4% and 83.8% of nerve length, compared with the manually 
traced nerve length, in control subjects and patients, respectively. 
Scarpa and et al. [36] presented an automatic algorithm to 
calculate and classify the tortuosity of corneal nerves using a 
dataset containing 30 corneal sub-basal nerve images. The 
proposed algorithm depends on the tracing and recognition 
system for corneal nerves in [35]. The nerve tortuosity was 
calculated using the proposed algorithm based on the number of 
twists in the curvature sign and on the amplitude. The results 
obtained were compared against the manual evaluation 
performed by an expert. Only 2 of the 30 images were 
misclassified using the proposed algorithm. Dabbah et al. [37] 
developed two techniques for nerve fiber detection. The first 
technique is based on a linear operator, which was devised 
originally for asbestos fibers. This technique exploits the line-like 
structure of the nerve. The second technique is based on Gabor 
wavelet filtering to detect nerve fibers in the corneal image, with 



a thresholding operation following both methods to obtain binary 
images which are thinned to provide skeleton images with a 
tolerance of about ± 3.1µm in nerve location. The two proposed 
techniques were tested on only 12 CCM images, which have 
limited ability to give a clear indication of the performance of the 
proposed techniques. 

An automatic analysis and classification system for detecting 
nerves in confocal microscopy corneal images based on a multi-
scale dual model detection algorithm is presented in [29]. Feature 
vectors are generated from this dual-model detection to be used 
in the classification stage, which is based on the Random Forest 
(RF) and Neural Networks (NN) to classify the pixels as nerve or 
non-nerve pixels. The performance of the proposed system was 
evaluated using database consisting of 521 CCM images, which 
is a subset of the second database used here. The proposed 
system achieved highest sensitivity and specificity at the Equal 
Error Rate (EER) of 15.44%. The work presented in [38] used an 
automatic system to trace sub-basal plexus nerves in images 
acquired by CCM. First a top-hat Morphological operation was 

-Gabor filter 
was applied to enhance the corneal nerve structure. This was 
followed by hysteresis thresholding to obtain candidate nerve 
segments that were input to a Support Vector Machine (SVM) to 
distinguish between nerve and non-nerve segments. The system 
performance was tested on 246 images and achieved an average 
sensitivity of 0.88 ±0.06. A supervised learning algorithm to 
classify CCM images based on manually traced tortuosity of the 
nerves was introduced in [39]. The method was applied to 100 
corneal nerve images and tortuosity was classified into four 
classes (normal, mild, moderate and severe) by three 
ophthalmologists. Curvature and number of inflection points 
were used in the feature vector for the proposed supervised-
learning system. In this system, a training phase is needed and 
the results obtained do not meet the desired level. 

Through this review of the research on corneal nerve tracing 
and clinical features extraction it is clear that there is a significant 
need for improved methodology to quantify corneal nerve 
morphology. Firstly, most of the existing methods are based on 
defining a set of seed points all over the image, whether manually 
or automatically. Secondly, relatively small datasets of CCM 
images have been employed in the evaluation of most of these 
methods. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Moreover, the processing time for tracing all the nerves in a 
single image can take more than one minute in some cases. To 
overcome these deficiencies, an accurate, fast and fully automatic 
corneal nerve segmentation system is proposed here.

 

3.  Materials and Methods 

The proposed automatic nerve evaluation system is divided 
into two main stages: the nerve segmentation stage and the 
morphometric parameters quantification stage. The segmentation 
stage consists of three main steps: a preprocessing step to 
enhance the images; a morphological operations step to remove 
unwanted objects and an edge detection step to detect the nerves. 
In the morphometric parameter quantification stage, the clinically 
useful nerve features, thickness, tortuosity, length and density, 
are extracted and presented in a quantitative format. A block 
diagram of the proposed system is shown in Fig. 2. 

3.1 Image Acquisition 

In this paper, two databases were used to assess the efficiency 
of the proposed system. The first consists of a total of 498 images 
from 20 subjects [26] and the number of images per subject 
varies between 12 and 38. 12 subjects had diabetes and 8 had no 
diabetes, with mean ages of 58 ± 10 years and 54 ± 7 years, 
respectively. Diabetic patients were classified into: 4 with No 
neuropathy (mean age 53 ± 11 years), 5 with Mild Neuropathy 
(mean age 58 ± 9 years) and 3 with Moderate neuropathy (mean 
age 60 ± 9 years). Images (Fig.3) were acquired using a 
Heidelberg Retinal Tomograph equipped with a Cornea Rostock 
Module (HRT-CRM: Heidelberg Engineering, Heidelberg, 
Germany). The images were saved in JPEG compressed format 
with a size of (384×384) pixels covering a 400  × 
frame size at an optical magnification of 63X. The second 
database [14] consists of a total of 919 images where 445 images 
are from 84 control subjects and the remaining 350 images are 
from 63 diabetic patients without neuropathy, and 124 images are 
from 25 patients with neuropathy. The CCM images were 
captured using a Heidelberg Retina Tomograph equipped with 
Rostock Cornea Module (HRT-III). The images have a size of 

 and 8-bit grey 
levels and were saved in BMP format. 

 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Overview of the automatic proposed corneal nerve segmentation and  quantification system. 



 

 

 

 

 

 

 

 

 

 

 

 
 

 

3.2 Preprocessing Stage 

The preprocessing stage aims to address a number of issues 
related to enhancing and improving the quality of the corneal 
images. Movements of the eye during the image acquisition 
process can cause a motion blurring effect and those CCM 
images of adjacent layers to be displaced laterally with respect to 
each other. In addition, the spherical shape of the cornea layer 
leads to unequal distribution of lighting in the different areas of 
the cornea during the acquisition process. The image acquisition 
process can also lead to the emergence of some observed 
artefacts.  

In order to address all these problems, coherence filtering 
(anisotropic diffusion filtering) and Gaussian filtering have been 
used to enhance edges in the corneal image and reduce noise 
while preserving the nerve structure. In this paper, a tensor form 
was used to adjust the diffusion to the underlying corneal image 
structure and reduce the noise along the edges of the nerves, 
rather than using a scalar diffusion constant. In general, the 
tensor can be built in many ways. In this work, either Coherence-
Enhancing Diffusion (CED) for enhancing line-like textures in 
the image or Edge-Enhancing Diffusion (EED) to reduce the 
noise while enhancing edges is used [40,41]. In this paper, a 
hybrid diffusion filter with a Continuous Switch (HDCS) has 
been used, combining the CED and EED algorithms [40]. The 
HDCS is an important approach for nerve enhancement, because 
the corneal image contains tubular and planar image structures. 
Therefore, if the structure of the image is tubular, the HDCS 
turns into CED and if it is planar, the HDCS turns into EED. In 
addition, the standard discretization scheme, nonnegative 
discretization scheme and the optimized discretization scheme 
have been used as diffusion schemes. 

 

3.2.1 Diffusion Filtering 

Dirk-Jan used anisotropic diffusion filtering [42] as an 
iterative filtering approach for edge preserving smoothing in 
medical images, which can also be used to enhance the edges in a 
corneal image, reduce noise and preserve the nerve structure. The 
structure of the local image required in diffusion filtering is 
described using a structure tensor , (also referred to as a 
"second-moment matrix") given by Eq.1. More details can be 
found in [43]. 

 

 

 

 

 

 

 

 

 

 

 

Here,  is the del or nabla operator,  is the image gradient 
and  denotes a Gaussian kernel and * is the convolution 
operator. The local orientation of the image is obtained from the 
eigen decomposition of the structure tensor: 

 

where are eigenvectors that give the orientation of the 
local image with , etc., and the eigenvalues, 
with  can be used to describe the average contrast in 
these directions. This structure tensor is used to define the 
diffusion tensor D, which can be defined as follows [44]:

 

where  is the image,  the diffusion time and 
 are the pixel coordinates and  is the gradient of the image 

. In general, the diffusion tensor D has the same eigenvectors 
set as given by the structure tensor: 
 

 
In Eq.2 and Eq.4, we notice the symmetry between 

which are the eigenvalues of the diffusion tensor 
and the structure tensor. Due to the nature of the corneal 
image, which consists of planar and tubular structures, the 
HDCS is used in this work. Depending on the local corneal 
image structure, the HDCS switches between CED and 
EED, the former if the local structure is tubular, or the 
latter if the local structure is planar. 

3.2.2 Hybrid Diffusion with Continuous Switch (HDCS) 

In general, medical images have complex structures with 
different intensities, shapes and sizes. If the EED is applied to a 
corneal confocal image, it filters the noise and enhances the 
edges and curves of the image, but blurs small structures. On the 
other hand, if the CED is applied, it enhances line-like structures 
such as nerves and preserves small structures [40]. Therefore, a 
new filter combining the advantages of both EED and CED could 
lead to better results. As mentioned before, a structure tensor is 
used to construct the diffusion tensors for the EED and CED.  

Figure 3. Images from the dataset used:The first two images  from the left side are from healthy control subjects, while the last two images are from 
diabetic patients. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Achilleas and Reiner [45] have proposed a discrete switch 
form to integrate EED and CED based on the difference ( -  
of the structure tensor eigenvalues. However, the proposed filter 
cannot be applied properly in some situations. On the other hand, 
Adriënne and et al. [40] have proposed a Hybrid Diffusion with 
Continuous Switch (HDCS) by continuously combining the 
intermediate geometries of the EED and CED. The eigenvalues 
of the proposed hybrid diffusion tensor  are adjusted to be a 
linear combination of the eigenvalues of the EED and CED 

, which are given as follows: 

 

where ( ) refers to the EED fraction which switches between 
using the eigenvalues of the EED eigenvalue  or the CED 
eigenvalue diffusion tensor. In this paper, Hybrid 
Diffusion with Continuous Switch (HDCS) is proposed to 
enhance the structure of the corneal sub-basal nerves and reduce 
the unwanted noise.  Therefore, the CED should be applied first, 
to preserve small structures and followed by EED, to reduce the 
noise isotropically. Details on HDCS can be found in [40]. 
 

3.2.3 Diffusion Schemes 

The diffusion tensor equation (Eq.3) can be solved 
numerically using finite differences methods, using central 
differences instead of the spatial differences, and a forward 
difference approximation to discretize  [45], as shown in 
Eq.6. The result is the basic structure of an explicit scheme, 
which can be used to compute the values at a new time level from 
the previous level as shown in Eq.7: 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Here,  refers to the time step size and refers to the 

approximation of  in pixel  at time . The notation 
 is a discretization of the diffusion tensor expression. In 

this paper, three schemes have been investigated. These are the 
standard discretization scheme [46], the nonnegative 
discretization scheme [47] and the optimized scheme [42]. Fig.4 
(a) and (b) show the stencil representations of the standard 
discretization and the non-negative discretization for 

assuming that the pixels have length 1 in both directions. 
Here a, b and c are the output of the diffusion tensor D. The last 
scheme is the optimized scheme for rotational invariant structures 
proposed by Dirk-Jan et al, for which more details to optimize 
the image derivatives in a numerical way can be found in [42]. In 
this paper, the coherence filter has been applied over four 
iterations, three in the preprocessing stage and one at the 
beginning of the edge detection stage. Each has been executed 
using a different diffusion scheme trying to enhance the structure 
of the corneal nerve without losing important information. In the 
preprocessing stage, the parameters have been set empirically, as 
follows: Diffusion Time = 2, Diffusion Time Step size = 0.5, = 
8, D = HDCS, with the diffusion scheme set to standard 
discretization in the first iteration and set to nonnegative 
discretization in the second and third iterations. In fact, all the 
parameter values in this step were chosen after an intensive 
empirical study investigating their influence on corneal images of 
different degrees of resolution. For example, we set the temporal 
step to be equal to 2, given that for lower values than 2, the 
produced image still has some noise, which results in detecting 
unwanted segments (e.g. small cells). Whereas for higher values 
than 2, a highly smoothed image will be produced with a large 
number of discontinues nerves. An example of a filtered image is 
shown in Fig.5 (b). The output of the coherence filter is 
smoothed further using a 2D-Gaussian filter, to reduce false 
artefacts, obtain a better corneal image for the edge detection 
stage and enhance the corneal image quality, with the result 

Figure 4. Notations for (a) the standard discretization scheme and (b) the non-negative discretization scheme. 



shown in Fig.5(c). The Gaussian filter [48] modifies the input 
signal through convolution with a 2D-Gaussian function defined 
as follows:  

where x and y are the distances from the origin along the 
horizontal and vertical axes respectively, and  (set to 2) is 
the standard deviation of the Gaussian distribution. 

3.3 Morphological Operations Stage

The main purpose of this stage is to describe the nerve 
structure more accurately by removing imperfections (e.g. 

make the nerve more visible. In this stage, the opening and 
erosion operations are used.  Morphological operations are also 
used in other places in the proposed system to eliminate 
unwanted areas (small segments) without affecting the overall 
shape of the nerve. Generally, the morphological operations 
require two inputs, the input image that is to be processed and a 
structuring element (for more details see [49]). The dilation and 
erosion operations are the basic operations used in most 
morphological operations and are defined as follows:  

 

 

where  is a greyscale image B is a structuring element.  
and  represent a dilation and erosion, respectively. The 
opening and closing operations are defined in terms of the 
dilation and erosion operations, in Eq.11 and Eq.12, respectively:  

 

 
 

In this stage, the values of the parameters used in this stage 
were selected empirically after a number of experiments were 
carried out using corneal sub-basal images with different levels 
of noise and illumination, taken into account to enhance the 
structure of the corneal nerve without losing important 
information in the whole image rather than a specific region of 
interest (ROI). The morphological opening operation is carried 
out on the image output from the Gaussian filter, using a disk 
shaped structure element of 4 pixels radius, followed by a 
background subtraction operation to separate out foreground 
objects from the background and detect the corneal nerves 
correctly. Then, an image contrast enhancement procedure is 
applied to enhance nerves visibility and to enhance the 
illumination uniformity of the corneal image by stretching the 
overall contrast of the image between two predefined lower and 
upper cutoffs which are empirically set to be 0.55, and 0.999, 
respectively. Finally, a morphological erosion operation using a 
structure element of 1 pixel is applied to refine the shapes of the 
corneal nerves, as shown in Fig.5 (d). Objects of 1 pixel size are 
discarded.  

3.4 Edge Detection Stage 
The edge detection process is used here to preserve useful 

structural information about nerve boundaries, and to drastically 
reduce unwanted areas. The main implemented approaches in the 
edge detection stage are shown in Fig.6. Firstly, the coherence 
filter is applied again for further enhancement and removal of 

noise introduced by the morphological stage, which can affect the 
accuracy of the nerve detection in the subsequent stages. In this 
step, the parameters of the coherence filter have been set 
empirically as follows: Diffusion Time =1, Diffusion Time Step 
size = 0.1, = 8, D = HDCS, and the diffusion scheme = 
Optimized Derivative Kernels Scheme.  The corneal nerves are 
then detected by applying a Canny edge detector [50]. This first 
applies a Gaussian filter to the image to reduce noise and then 
calculates the gradient magnitude and direction at each pixel of 
the smoothed image. A non-maximum suppression algorithm is 
then applied using the gradient magnitude and direction and the 
local maxima of the gradient magnitude is detected as an edge 
pixel using a hysteresis threshold algorithm. The motivation 
behind the optimization of the Canny edge detector was to 
achieve the following desirable properties: minimizing the 
probability of multiple responses to a single edge; minimizing the 
probability of missed edge; minimizing the distance between the 
detected edge pixels and the actual edge. All these criteria play a 
significant role in addressing the issues of detecting and 
localizing the corneal nerves correctly. Further refinement is 
required to preserve the accurate thickness of the detected nerves, 
to remove some noisy background pixels, and to connect 
discontinuities in nerves in the segmented image. A 
morphological dilation operation is applied firstly using two line 
shaped structural elements, with lengths of 3 and angles of 90º 
and 0º, respectively. Secondly, a morphological erosion operation 
is applied twice using structure element of one pixel size, to 
refine the shapes of the detected nerves. This is followed by a 

connected objects in the refined image where only objects that 
have a total area of more than 150 pixels are retained. See Fig.5 
(e). Then a nerve connection procedure is applied to connect the 
discontinuous nerves. The gaps in nerve structures and branches 
appear in segmented nerves as a result of low visibility of parts of 
the nerves or noise introduced into the corneal images, for 
example. In the present study, a new technique has been 
proposed to link the discontinuous nerves correctly, which is 
summarized as follows: 

1. Take the skeleton form of the final segmented image and 
determine the end points of each nerve segment in the 
segmented image. 

2. Determine a possible maximum gap size between the 
endpoint of each disconnected nerve and neighbouring nerve. 
Then a binary circular region of radius = (maximum gap 
size)/2 is placed at the endpoint of each nerve segment. If the 
endpoints of two nerve segments are close to each other, a 
straight line will be drawn connecting these two segments 
within the area covered by the circular structure elements, as 
shown in Fig.7 (b).  

3. Finally, by thinning the resultant image, the overlapped 
circular structure elements at the endpoints of each segment 
will leave behind a line of pixels linking the two endpoints of 
the nerve. While, the isolated endpoints are restored to their 
original structure, as shown in Fig.7 (c). 
This step has a significant effect on calculating the tortuosity 

of 
measurements of nerve length, and hence the calculated 
tortuosity of the nerve. The values of the parameters used in the 
system were selected empirically after a number of experiments 
were carried out using corneal sub-basal images with different 
levels of noise and illumination. 

 
 
 
 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

3.5 Morphometric Parameters Quantification Stage  

The morphometric parameters quantification stage extracts a 
set of features from the automatically traced corneal sub-basal 
nerves in an easy and objective way. These clinical features are 
measured and extracted automatically so the proposed system can 
serve as a clinically helpful diagnostic tool for the early detection 
and follow up of DPN from CCM images. In this paper, the set of 

health which are investigated are nerve thickness, length, density 
and tortuosity. Additional features, such as nerve perimeter, area, 
and image intensity were also calculated for internal use.  
 
3.5.1 Nerve Length  

The nerve length in (mm) is calculated for each nerve 
segment by taking the skeleton form of the nerve and then 
finding the branch points in order to break up the length of 
nerve segment (S) into (b) branches as follows: 

      

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Finally, the nerve length is calculated by summing the 

distance between consecutive pixels in the nerve segment, 
as follows: 

 

where N in pixels is the number of constituent pixels which is 
obtained from the nerve skeleton segment and ( ) are the 
pixels coordinate in the nerve segment. 

3.5.2 Nerve Density  

The corneal nerve density in pixels/mm2 is computed by 
dividing the sum of the nerve pixels by the image area as follows: 

 

 

 

Figure 6. The main implemented approaches in the edge detection stage. 

Figure 5. Corneal nerve segmentation system outputs: (a) Original corneal image, (b) Coherence filter output, (c) Gaussian filter output,      
(d) Morphological operations stage output, (e) Segmented image from the edge detection stage, (f) Automatically traced corneal sub-basal 

nerves, (g) Manually traced corneal sub-basal nerves. 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5.3 Tortuosity Coefficient  

The Tortuosity Coefficient (TC) is used to gain information 
about the average curvature changes of the nerves. In this work, 
we calculate the average TC of the whole image and for each 
corneal nerve as well. Firstly, we calculate the length of each 
nerve segment (S), as in (Section 3.5.1). Then, the TC index for 
nerve segment (S) is then calculated as follows:  

 

where  is the branch length and is calculated by 
Eq.15.  refers to the straight distance between the 
endpoints and is calculated as follows:  
 

 

 

where N is the number of constituent pixels obtained from 
the nerve skeleton branch and (x, y) are pixels coordinate 
in the nerve branch. Finally, the average tortuosity of the 
whole image is obtained by computing the average 
tortuosity scores derived from each nerve. 

3.5.4 Nerve Thickness 
 

The nerve thickness in ( ) is a measure of the average 
thickness of each corneal sub-basal nerve plexus, as shown in 
Fig.8. In this paper, a new algorithm for calculating the nerve 
thickness is proposed. The main steps of the proposed algorithm 
after labeling each nerve are as follows: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The distance transform is applied to the binary segmented 
image to calculate the Euclidean distance between each pixel 
in a nerve to the closest background pixel. In other words, for 
each nerve pixel, the distance from that particular pixel to the 
closest boundary pixel of the nerve is calculated. 

2. Regarding distance values produced by the distance transform 
as heights in a 2D surface, the highest nerve pixels will be 
located along a ridge in the middle of the nerve segment. The 
distance values, associated with the half-way line in between 
the nerve segment are collected with some tolerance due to 
floating point arithmetic.  

3. Finally, the average of all collected distances determines the 
half-width of the nerve segment. Hence, the full thickness can 
be calculated by multiplying the result obtained by 2.  

4. Experimental Results 

The performance of the corneal sub-basal nerve segmentation 
system was evaluated initially on the first database containing 
498 images where 238 images were taken from 8 healthy control 
subjects and the rest were taken from 12 diabetic patients with 
associated ground-truth as indicated previously in (Section 3.1). 
The evaluation is based on the calculation of the four quantitative 
performance measures: Structural SIMilarity Index (SSIM) [51], 
Probabilistic Rand Index (PRI) [52], Variation of Information 
(VoI) [53], and Global Consistency Error (GCE) [54].These 
metrics are widely used in the literature for evaluating the 
performance of segmentation systems and are defined as follows: 

 
 

Figure 7. circled in red, (b) The binary circular structure 
element (white circles) drawn at the endpoints, and (c) Output image with connected nerves. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

1. The Structural SIMilarity Index is an image quality 
assessment algorithm which measures the structural similarity 
index between the segmented image and a ground-truth 
image. The measurement compares three components: 
luminance, contrast and structure between the segmented 
image (X) and the ground-truth image (Y) within local 
window as follows: 
 

 

Here, ( and ) and (  and ) are the mean intensities 
and the standard deviations of x and y, respectively.  is a 
covariance measure for x and y. C1=(k1L)2, C2=(k2L)2 are small 
constants used to maintain stability when either or 

is very close to zero; L represents the dynamic range  
of the pixel values (255 for 8-bit grayscale images) and k1, k2 < 1. 
In this paper, k1 and k2 are set to the default values 0.04 and L is 
set at 100. The local measurements of   and  are found 
within a local (8×8) square window, which moves pixel by pixel 
over the whole image and at each step the local measurements 
and SSIM are computed within the local window. In this work, 
the overall quality measure of the entire image is obtained by 
calculating the mean of SSIM as follows: 

 

where and are the image contents at the i-th local window, 
M is the number of local windows in the image and the MSSIM 
value ranges between 0 and 1; a higher value indicates greater 
similarity. Moreover, the SSIM index map can be obtained to 
provide a measurement of the local image quality over space, 
where a brighter SSIM index map indicates a better quality of 
segmentation, as shown in Fig.9 (c). 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
2. The Probabilistic Rand Index calculates the number of the 

fraction of pairs of pixels between the segmented and the 
ground-truth images whose labels are harmonious, through 
averaging across a set of ground truth images to account for 
scale variation in human perception. The PRI value ranges 
between 0 and 1, and a higher value indicates greater 
similarity. 

3. The Variation of Information metric is a nonnegative 
metric that measures the distance between automatic and 
manual segmentations in terms of the information difference 
between them. The VoI metric depends on entropy and 
mutual information to calculate the distance between two 
clustering. The VoI between segmented image (S) and the 
ground-truth image (S') is given by Eq.20, where a lower VoI 
value points to greater similarity. 

      Here  ranges between 0 and , H and I represent the 
entropy and the mutual information, respectively. In this 
work, the mutual information of  and  can be 
calculated as follows: 

 

where is the joint probability distribution function 
of  and  , and  and  are the marginal 
probability distribution functions of  and , 
respectively. 

4. The Global Consistency Error measures the extent to which 
the segmented image can be viewed as a refinement of the 
ground-truth image. Segmentations are considered to be 
consistent, if the segment is a set of pixels and a pixel is in an 
area of refinement, if the segment (S) is a valid subset of 
segment (S'). In this case, the local error is equal to zero; 
otherwise, if there is no relationship between the two 
segments, the two segments overlap in an inconsistent 
manner. The local refinement error between two segments is 
calculated as follows: 

Figure 8. The thickness algorithm output: (a) Labeling of corneal nerves 1, 2 and 3 in green, blue and red, respectively, (b) Image map for 
the corneal nerves with their average thickness values indicated. 



 

 

 

 

 

 

 

 

 

 

 
 

 

where \ denotes set difference, S1 and S2 are two segments. 

For a given pixel (pi), consider the segments that contain pi in 
S1 and S2. These sets of pixels are represented by 

, respectively. The value of 
is zero when  is a refinement of  but not vice versa. 

The GCE between segmented image (S) and the ground-truth 
image (S') is given by Eq.23, and ranges between 0 and 1, a 
lower value being better. 
 

 

 
The results obtained from the control subjects and the patient 

subjects are shown in Fig.10 and Fig.11, respectively. In these 
two figures, the overall average of each one of the four 
quantitative metrics is calculated for each subject in the dataset. 
The results obtained have demonstrated the robustness and 
effectiveness of the proposed nerve segmentation system, and the 
potentiality of using it as a fully automatic nerve tracing system 
to measure the morphological parameters for clinical diagnostic 
purposes, as a result of the high similarity rate obtained between 
the segmented images and the reference images. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
In addition, the results obtained have demonstrated the ability of 
the proposed system to detect and trace the corneal nerves, 
effectively in real-time, with an execution time of about 7 
seconds per image using a PC with Windows 8.1 operating 
system, a 1.80 GHz Core i5-3337U CPU and 6 GB of RAM. The 
system code was written in MATLAB R2010a. At each stage of 
the proposed system, parameter values were selected after 
intensive experiments on a number of corneal sub-basal images 
with various degrees of degradation and illumination. 

The overall performance of the proposed system was 
compared theoretically with other established automatic nerve 
detection systems [55,29], due to the unavailability of the 
datasets used in these works. These systems are mainly based on 
using the single-scale and multi-scale dual-models to detect the 
nerve fibers. As shown in Fig.12, the output of the nerve 
detection system in [55] can result into a number of 
discontinuous nerve fibers that can significantly affect the 
calculation of the clinical features and this issue was tackled 
efficiently by the proposed system here as described in (Section 
3.4). While, efficient performance has been demonstrated in [29] 
a training phase is required to train the adopted classifiers, which 
are used to classify the pixel to the fiber or non-fiber classes. 
However, promising results are provided by the proposed system 
for real-time requirements without any need for a training phase.

 

 

 

 

 

 

 

Figure 9. (a) A segmented image, (b) The binary form of ground-truth image, (c) The SSIM index map. 
 

Figure 10. Descriptive statistics of the segmentation system performance of the Control group of the first database, where 
a higher value of SSIM and PRI is better and a lower value of VoI and GCE is better. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. Descriptive statistics of the segmentation system performance of the patient group of the first database, where 

a higher value of SSIM and PRI is better and a lower value of VoI and GCE is better.  

Figure 12. The output of the single scale dual-model detector: The images in the top row are the original images, while 

the bottom row is their response [29]. 



As mentioned before, the dataset was divided into four 
groups according to the severity of DPN. Therefore, clinical 
features, such as the average nerve tortuosity, the standard 
deviation of nerve tortuosity, the average nerve thickness, length 
and density are computed for each subject in the database after 
deriving the average for the whole image. This is followed by 
computing the overall average for each group, as summarized in 
Table (1). The extracted clinical features, obtained with the 
proposed system, are shown in Fig.13.   

There is a systematic decrease in nerve length and density 
and increase in nerve thickness and tortuosity associated with an 
increase in the severity of DPN, as shown in Table (1). However, 
the overall average nerve tortuosity did not give a useful 
estimation of the image tortuosity. This is because some images 
were classified by the ophthalmic clinicians as highly tortuous, 
because they contained just one or two nerves with several 
branches. Therefore, the average image tortuosity is low for these 
images, even though some images for each subject had relatively 
larger average values. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

By applying an empirical threshold to these averages, the 
image that provides an average tortuosity higher than the pre-
defined threshold is counted. The average of the counted image is 
then combined with the overall average tortuosity for each 
subject by applying this procedure, we found that the overall 
average tortuosity provides meaningful information relating to 
the DPN severity, as shown in Fig.14 (a) and solves the problem 
mentioned above. The most important clinical features are 
presented graphically in Fig.14. In this paper, the clinical features 
obtained by the proposed automatic system, except for nerve 
thickness were also compared against the ground truth manually 
traced by an experienced ophthalmologist. The main goal of this 
evaluation was to demonstrate the usefulness of the computed 
clinical features in differentiating control subjects from patients 
with diabetes and further differentiating diabetic patients in 
relations to the severity of neuropathy. The automated analysis of 
the proposed system presents equivalent results to the manual 
analysis, but the former is clearly quicker, more reliable and 
therefore clinically applicable. In this study, the execution time of 
the prototype was 13 seconds, starting from inputting the image 
until all the clinical features of each corneal nerve are obtained.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 13. A readable text file format showing clinical features extracted from the first database. 

Table 1. Summary of the descriptive clinical features of automatically traced nerves extracted from the first 
database. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
To further evaluate and test the reliability and efficiency of 

the proposed system in extracting useful clinical features (e.g. 
nerve tortuosity, nerve thickness, nerve length and nerve density) 
and their relationship to DPN in a database of a total of 919 
images taken from 172 individuals. The individuals were 
classified into controls, no neuropathy and neuropathy (See 
Section 3.1). The extracted clinical features using the proposed 
automated system are shown in Fig. 15. There was an increase in 
the average nerve tortuosity and thickness and decreases in the 
average nerve length and density with increasing severity of 
DPN.  

 

5. Conclusions and Future Work     

In this paper, a fully automatic, efficient real-time corneal 
sub-basal nerve segmentation and morphological parameter 
quantification system is proposed. Anisotropic diffusion and 
Gaussian filters were used to enhance the visibility of the nerve 
and to reduce the noise in the corneal image that can be caused 
by the acquisition process. In addition, an efficient technique is 
proposed to connect the discontinuous nerves. The results 
obtained have demonstrated the reliability and efficiency of the 
proposed segmentation system and the potential to use it as a 
real-time and a fully automatic nerve tracing system in patients 
with DPN as an early diagnostic and for follow-up. In the second 
stage, a number of useful clinical features, such as nerve length, 
density, thickness, and tortuosity as well as nerve perimeter, area 
and the image intensity were calculated. In this part, a new 
algorithm has been proposed to calculate the average nerve 
thickness. Our results have demonstrated the effects of DPN on 
the corneal sub-basal nerves, in terms of increased average nerve  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

tortuosity and thickness coupled with decreased average nerve 
length and density. For example, from Table (1) one can see that 
the average nerve tortuosity and thickness have increased from 
6.70 and 2.83 respectively, for the control group to 51.76 and 
2.88 in the moderate group. On the other hand, the average nerve 
length and density have decreased from 60.92 and 0.0262 
respectively for the control group to 57.08 and 0.0158 for the 
moderate group. 

The results derived in this study are dependent on the 
successful connection of endpoints with neighbouring endpoints 
or branching nerves. As a future enhancement we would like to 
deploy larger circular regions to search for neighbouring 
endpoints/nerve regions and use decision making support (e.g. 
minimum Euclidean Distance) to tackle situations where more 
than one endpoint are being detected inside the circular region. In 
the present study the extracted clinical parameters were 
compared individually in all subjects to establish the efficiency 
of the imaging modules developed in this paper. However, 
successful diagnosis requires building general profiles for every 
subject by combining their available clinical information. Hence, 
a future research direction should include developing an 
automated machine learning-based system for diagnosing and 
differentiating control subjects from diabetic patients with and 
without neuropathy. To do so, we will need to build a learning 
module from the databases used in this research and feed them 
with the 4 additional parameters extracted from every subject 
(average nerve tortuosity, average nerve thickness, average nerve 
length, and average nerve density) to create a more 
comprehensive morphological phenotype in every subject, which 
we anticipate could lead to a more reliable diagnosis and 
stratification of severity of DPN. 

Figure 14. Representative box-plots with (median, inter-quartile range, outliers, and extreme cases of each parameter) illustrating the extracted clinical 
features from the first database: (a) Average Nerve Tortuosity, (b) Average Nerve thickness, and (c) Average Nerve Length, (d) Average Nerve Density. 
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