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Abstract—In recent years, a considerable effort has been made
to minimise the size of DC-link capacitors in single-phase active-
front-ends (SP-AFE), to reduce cost and to increase power
density. As a result of the lower energy storage, a high-bandwidth
outer DC voltage control loop is required to respond to fast load
changes. Linearised modelling is usually performed according
to the power-balance method and the control is designed using
LTI techniques. This is done assuming negligible voltage ripple
at twice the grid frequency, and the model is considered valid
up to the grid frequency. However, its precise validity limits
are usually unknown and the control design becomes empirical
when approaching these boundaries. To overcome this drawback,
Linear Time Periodic (LTP) theory can be exploited, defining the
range of validity of the LTI model and providing precise stability
boundaries for the DC-link voltage loop. The main result is that
LTP models more accurately describe the system behaviour and
provide superior results compared to the LTI ones. Theoretical
analysis, simulations and extensive experimental tests on a 10
kW converter are presented to validate the claims.

Index Terms—Linear Time Periodic Systems, Harmonic State
Space Model, Stability Analysis, Power Converters, Active-Front-
Ends

I. INTRODUCTION

HE use of electrolytic capacitors as energy buffers is the

most common approach to stabilize the DC-link voltage
in single-phase converters. A large capacitor has a dual well-
known positive effect: it reduces the steady-state voltage ripple
and minimises voltage overshoots and undershoots caused
by load changes. The large amount of stored energy can
compensate the variations in the power absorbed by the load,
guaranteeing small voltage over-undershoots even with a slow
voltage control loop. However, a large electrolytic capacitor
has also major disadvantages: low power density and reduced
reliability due to the short lifetime expectancy caused by
temperature degradation. Furthermore, regular maintenance is
required to prevent ageing effects. Thus, its replacement with
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the more reliable film capacitor, despite the smaller capaci-
tance, has been the object of several research contributions
over the years [1], [2].

The use of smaller DC-link capacitance overcomes the lim-
itations of electrolytic capacitors, but also their advantages are
lost. In fact, a smaller capacitor leads to larger voltage ripple
and, due to the smaller amount of energy that it can store,
it cannot counteract voltage over-undershoots caused by load
changes. These two problems are usually addressed separately:
the higher ripple is generally handled by implementing more
sophisticated voltage controllers, whereas the over-undershoot
is generally dealt with using faster voltage controllers [3]-[9].

Typical systems where DC-link capacitor reduction is highly
beneficial are the SP-AFEs, representing the simplest and most
popular grid-connected converter where a non-linear control
loop is required, i.e. the outer DC voltage loop. The design
of the DC voltage control loop is typically based on the
assumption that the loop will have a bandwidth set to a
fraction of the grid frequency, so that sufficient decoupling of
the second harmonic DC voltage ripple from the AC current
can be achieved, thus reducing distortion of the AC current
reference [10]. As a consequence, an average model based on
power balance, valid for the low frequencies of interest, can
be used to overcome the fundamental issue of having a non-
linear control loop involving AC quantities. On the other hand,
little attention has been given in the literature to the analytical
modelling of the impact of a given design bandwidth on the
actual eigenvalues of the closed-loop system. This is because
when a large DC-link capacitor is used, a fast voltage control
loop is not required. However, the reduction of the capacitor
size demands a high-bandwidth voltage loop, in order to keep
voltage over-undershoots within the system specifications. In
this scenario, the application of standard techniques might lead
to a poorly damped or unstable control solution because the
design target falls beyond the remit of the power-based model
[11].

In this paper it will be shown that conventional LTI design
and stability analysis tools do not provide correct results in
the described application. A more powerful approach, based
on the Linear Time Periodic (LTP) approach, will be exploited
in order to determine the frequency range of validity of the
LTI models and assess the stability boundaries of the overall
system. The analysis confirms the common understanding that



for low bandwidth of the voltage controller the dominant
closed-loop poles of the system calculated with both LTI and
LTP approaches are consistent. The additional contribution
of the paper is to show how for higher bandwidths the
actual eigenvalues can be calculated correctly only with the
LTP model, and the LTI model is no longer valid. This
leads to a set of guidelines for the design of fast DC-link
voltage controllers for the system under study, highlighting
the limits of LTI design methods and providing a prediction
of the actual system eigenvalues when the LTI-based design
is performed close to or beyond its validity boundaries. This
has been done on the assumption that the designer typically
prefers to use established control design techniques rather
than exploring completely different methods based on other
theories. Additional comparisons between LTI and LTP models
are reported in [12].

Note that the proposed analysis is developed here for a
simple single-phase active-front-end topology where power
density and/or reliability are increased simply by replacing the
DC-link capacitor with a smaller one. The rationale for this
choice is that those systems are the most common ones, and
their relatively low complexity enables an easier introduction
of LTP models. However, similar considerations hold for
the family of topologies where the DC capacitor is reduced
using dedicated ripple ports, as reported by several recent
contributions such as [13]-[16], or for the topologies where
the input current is distorted [17].

The basic principles of the LTP analysis are given in [18],
[19]. A generic AC system like the SP-AFE under study can
be equivalently represented by an average model that is Non-
Linear and Time Periodic (NLTP), where in steady-state all
the state-space variables are time periodic, with period given
by the fundamental AC frequency. When linearisation of the
NLTP model is performed around its steady-state trajectory,
an LTP system is obtained, which is the key to the design
and stability analysis method exploited in this paper. From
the LTP model, the Harmonic State Space (HSS) model is
derived. The purpose of such a model is generally twofold.
First it permits the replacement of a non-linear circuit with its
HSS model. Such a model requires less computation time in
the simulation process, yet harmonic interaction and couplings
are still properly taken into account. Examples of HSS model
derivations are given in [20] for a controlled TCR and in
[21] for a grid-connected converter. A general approach to
derive HSS models is proposed in [22] for linear and switching
subsystems.

Second, once the HSS model has been derived, stability
analysis can be performed: in [23] stability analysis is carried
out on a locomotive single-phase grid-connected converter; in
[24] and [25] a single-phase grid-connected converter with
DC-link capacitor is considered, while in [26] the analysis of
a grid-connected converter with PLL is reported.

Note that a comprehensive inclusion of all the high fre-
quency dynamics of the converter into the model is beyond
the scope of this work, which is instead focused on the impact
of non-linearity of the DC voltage control loop on stability.
This normally affects stability in the low-frequency range, i.e.
below the bandwidth of the inner current controller.

There are also other approaches presented in literature, like
the Dynamic-Phasor method [27], exploited for the stability
analysis of a system comprising a source and a load single-
phase converter, or [28], where a three-phase Voltage Source
Inverter is analysed both in dg and af frames. However, in
both cases there is no outer DC-link control, and currents and
voltages in these systems have only a dominant component
at the grid frequency, which allows the application of these
methods. In the system analysed in this paper, not only the
dominant component, but also the DC and second harmonic
are naturally taken into account by the LTP analysis. This is
arguably one of the advantages of exploiting the LTP approach,
since one can consider any number of harmonics in an intuitive
way. Nevertheless, in the literature some efforts to enhance the
above methods in order to overcome the dominant-component
limitation can be found [29], and a detailed comparison with
the LTP approach is an interesting and new research direction.

The main contributions of the paper can be summarised as
follows:

(1) the limit of validity of LTI model in SP-AFE systems
has been, for the first time, rigorously determined and
a precise description of the system above this limit has
been presented;

(2) the use of LTP model (refer to Fig. 5-6-7) for enhanced
analysis, and also the possibility to improve the system
performance above the limit of validity of the LTI model
(for example, using a different pole placement and check-
ing the actual location of the closed-loop eigenvalues) has
been discussed;

(3) a guidance through all the necessary steps and practical
considerations required to extend this analysis method
to any application based on power converters has been
presented.

The paper is organized as follows: Section II provides a
description of the active-front-end system and the derivation
of the average model; in Section III a brief review of the main
features of LTP theory is reported; in Section IV the steady-
state solutions are evaluated and these are used in Section V to
calculate the LTP system, on which the eigenvalue analysis is
applied; in Section VI, analytical, simulation and experimental
results are presented for a 10 kW prototype, showing how
the LTP model can predict the closed loop eigenvalues of the
system where the LTI modelling and design approach lose
validity.

II. SINGLE-PHASE ACTIVE-FRONT-END - NON LINEAR
AVERAGE MODEL

The SP-AFE is shown in Fig. 1. A nested control approach,
with an outer DC voltage loop and a fast inner current control
loop, has been selected for simplicity. A unity-power-factor
mode of operation is considered, with direct measurement
of the grid voltage, v, = V,sin(w,t). A notch filter, N(s),
is implemented in the voltage control loop at twice the grid
frequency, 2wy, in order to attenuate the substantial second-
order DC-link voltage ripple appearing with reduced DC
capacitance. The DC voltage controller is typically designed
according to the linearised model (2), which is valid only



for frequencies below that of the grid. However, a precise
validity limit is usually unknown. When a small DC-link
capacitor is used and fast DC-link voltage control is required,
the design bandwidth of the controller must be increased,
thus going beyond the limit of validity of (2) and leading
to an uncertain result. Thus, the LTP theory will be applied
in order to provide a precise answer to the aforementioned
problems. The range of validity of the LTI model (2) will
be evaluated. Moreover, when the design bandwidth of the
voltage controller is increased beyond the validity boundaries
of the LTI approach, a correct stability assessment will be
possible only by exploiting the LTP approach. In the system
under analysis, the current PI control is designed based on the
linearised open-loop transfer function:

1
(sLg+ Ry)’
where L, is the grid inductance and R, is its parasitic
resistance, in order to guarantee that the LTI closed-loop
transfer function Hy(s) = PI;(s)Gr(s)/(1 + PI;(s)G1(s))
has a bandwidth of 1 kHz and a 70° phase margin. This
control is then kept constant during all the simulations and
the experiments. In contrast, the voltage PI control design is
based on the linearised open-loop transfer function that can be
easily derived from the power balance approach [10]:

- ‘/_172Rdc
o QVref(Q + SRdCCdC) ’

with V, being the peak grid voltage, V... s the reference for the
DC-link voltage, Ry, the resistive load and Cy. the DC-link
capacitor. A set of closed-loop design bandwidths is chosen,
reported in Table II, and for each of them the voltage PI gains
are calculated according to (2), considering a constant design
phase margin of 70°. The reference to ‘design bandwidth’
rather than simply ‘bandwidth’ is due to the fact that the
designed one and the actual one will match only when the
LTI model is within its validity boundaries. By exploiting the
LTP theory, the following analyses can be performed:

o The calculation of the maximum design bandwidth, B,,,
for which the actual eigenvalues of the voltage loop are
consistent with those calculated using the LTI model, thus
providing the range of validity of (2).

o The actual stability boundary of the system, i.e. the max-
imum value of design bandwidth B]'*", not necessarily
within the range of validity of the LTI approach, below
which the actual system is stable and above which it is
unstable.

Gi(s) = (D

Gv(s)

2

For simplicity, the control is initially designed in the
continuous-time domain, and all the LTP analysis is applied
to the continuous system. For the experimental validation, the
controllers are discretized with sampling time 7T’ for the digital
implementation. The effect of the computational delay, T, as
well as the delay introduced by the zero-order hold (ZOH) of
the PWM, approximated by 0.5 T, are taken into account in
order to provide an accurate continuous model of the system
for LTP analysis. It will be shown that the system instability
arises at relatively low frequencies, thus the discretization
method does not substantially affect the subsequent analysis.
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Fig. 1. Schematic and control of the single-phase active-front-end.

These delays are included in the analysis using their equivalent
continuous-time transfer functions [30]:

H(s) = e T [1 — e *T*] /(sTy). (3)

The complex exponential is replaced with a first-order Padé
approximation of the form

e 5T = (’I’LlS + no)/(dls + do) 4)
Substituting (4) in (3) gives the transfer function
H(s) = (y15+70)/(s* + 015 + 09), (5)

which relates the output of the current controller to the duty
cycle. The notch filter transfer function is:

N(s) = kn + (p15s +1p0)/(s* + @15 + o), 6)

which is tuned to attenuate the DC-link voltage ripple at 2wy.
The system parameters are summarised in Table I.

TABLE 1. System parameters

Voltage grid peak Vy = 115V/2 Vv Grid frequency fg =50 Hz
Frequency PWM fpwm =10 kHz Reference Vyer =300V
Ly =087 mH Ry, =020 C4c =580 uF Rg. =120 Q
Current PI :ﬁ” :152'282 Voltage PI ]ZI:: 2 Z?:((gj))
Sampling freq. fs =2 fpwm Sampling time Ty =50 us
Coeff. ~v1 (5) 1 = -40000 Coeff. v (5) Yo = 1.6e+09
Coeff. o1 (5) o1 = 80000 Coeff. oo (5) oo = 1.6e+09
Coeft. po (6) po=0 Coeff. p1 (6) p1 = -31.4159
Coeft. qo (6) qo = 3.9e+05 Coeff. g1 (6) q1 = 314159
Coeff. k,, (6) kn =1

The switching system is replaced by its continuous-time
average equivalent model and the stability analysis is per-
formed on the latter. As shown later, the instability arises at
frequencies far below that of the switching, so for the purposes
of this work using the average model provides accurate results.

The average model of the system is described by the state-
space model (7) (where the time dependency of the variables is
omitted for brevity), which is an eighth-order NLTP system,
with all the states being Tj-periodic and the non-linearities
being given by the products x;x;. The states 1, xo describe
the dynamics of the notch filter; x3 is the state associated



TABLE II. Voltage PI controller parameters for each DC voltage
design bandwidth

B, =10 Hz kpy = 0.0007 | k;, = 0.0406
B, =20 Hz kp, = 0.0014 | k;, = 0.1181
B, =30 Hz kpy = 0.0022 ki = 0.2323
B, =40 Hz kpo = 0.0031 ki, = 0.3833
B,, =50 Hz kpo = 0.0038 ki, = 0.5710
B, =55 Hz kpy = 0.0042 ki, = 0.6786
B, = 60 Hz kpy = 0.0046 kiy = 0.7955
B, =70 Hz kpy = 0.0054 | ks = 1.0567
B,, =75 Hz kpo = 0.0058 ki, = 1.2011
B, =715 Hz | kpy, = 0.0060 | ki, = 1.2760
B, =80 Hz kpy = 0.0063 ki, = 1.3547
By, =90 Hz kpy = 0.0071 ki, = 1.6894
By =100 Hz | kp, = 0.0079 ki = 2.0609
B, = 120 Hz | kp, = 0.0095 ki, = 2.9142
B, =140 Hz | k,, = 0.0111 ki, = 3.9145
B, =160 Hz | kp, = 0.0127 | Ky, = 5.0618
B, =180 Hz | ky,, = 0.0143 ki, = 6.3561
B, =200 Hz | kp, = 0.0159 kiy = 7.7974
B, =220Hz | ku, = 0.0175 ki, = 9.3858
B, =240Hz | kp, =0.0191 | k;, = 11.1212
B, =260 Hz | ku, = 0.0207 | k;, = 13.0036

with the voltage PI control; z4 is associated with the current
PI control; x5 and x¢ represent the internal dynamics of the
computational delay, ZOH and PWM; x; represents the grid
current, i4; g the DC-link voltage, vg4., and the grid voltage
(input) is vy = V sin(wgyt):
d= VT;} [vg — kiiq — kpikivvgrs — kpikpopovgws,
- kpik'p’uplvng - kpikp’uknvg(‘/ref - 338) + k'pz-rﬂ

Ty =29, I2=—qox1 — q1&2+ Vier — s,
&3 = por1 + p122 + kn(Viey — x3),

Ty = kiq)vgxli + kpvpovgafl + kpvplvgx2 + kpvknvg(vref - xS)

—T7, I5=T6, Ig=—00T5— 01T+ d,

: -1
i7 =L, [vg — Rgx7 — %7578 — 71%67s] ,

ig = Cp) [Yowsw7 + N1@6w7 — Rgcll“s] . @)

III. BASIC THEORY FOR THE STABILITY ANALYSIS OF
LTP SYSTEMS

A comprehensive review of the basics of LTP theory is
reported in [31], [32], and only a brief summary is given
here, mainly to clarify the notation. Once the steady-state
operating conditions have been found from the NLTP system
(7), the stability may be determined by linearising the NLTP
system around the steady-state periodic operating trajectory
[33], [34], which gives an LTP system on which the stabil-
ity analysis is performed. Following this procedure, given a
steady-state input u, a steady-state solution of the system (7),
Z, is obtained either analytically, as described in section V
of this paper, or numerically (using f£solve in Matlab, for
example), depending on the complexity of the system. Then
linearisation is applied, which requires the addition of a small-
signal perturbation to the steady-state input, output and state-
space variables: f(t) = f(t) + f(t) ,with f = u,z,y. This
leads to the linearised model, which is an LTP system of the
form

A
y(t) = C@)x(t) + D(t)u(t). ®)

All the matrices A(t), B(t), C(t) and D(t) are T-periodic,
where T' is the period of the steady-state solution. Exploiting
the Exponentially Modulated Periodic (EMP) signal [18], [19]
as input to the LTP system, which is defined as

+oo
u(t) = eI Z Up el 9)

n—=—oo

where wr = 2w /T, it follows that also the state-space
variables and the output are EMP signals, thus making it
possible to define the transfer function operator. To this end,
the Toeplitz transformation is introduced and will be used
throughout the rest of this work. To define the Toeplitz
transformation, consider a T-periodic matrix F'(¢) (i.e. one
whose coefficients are all T-periodic functions). Then the
Toeplitz transformation is given by

Fy, F, F.,

TIFW))=F= |- B F F. -, (10

n R Iy

which is a doubly infinite block-Toeplitz matrix with matrices
F; that are the Fourier matrix coefficients of the T-periodic
matrix F(¢). This transformation is applied to all the matrices
and vectors in (8). By suitable manipulations [31], the Har-
monic State-Space Model (HSSM) of the LTP system can be
derived as

sX = (A—N)X + BU,
Y =CX +DU, (11

with ' = diag(...,N_p,...,N_1,No,N1,...,Np,...),
N,, being a diagonal square matrix of the same dimension
as A, with diagonal coefficients equal to jnwr. The system
(11) is time-invariant. Hence calculation may now proceed as
in the LTI case; in particular, the Harmonic Transfer Function
(HTF) of the LTP system is defined as follows:

V=GsU, G(s)=C[sIT—(A-N)""B+D. (12

Stability analysis can now be addressed through the evalua-
tion of the eigenvalue loci of the matrix A — A, In fact, if all
the eigenvalues have Re[);] < 0, where those with Re[A;] =0
have algebraic multiplicity equal to 1, then the system is stable,
otherwise the system is unstable.

A practical implementation of the LTP theory requires a
truncation order N, based on the number of harmonics taken
into account. For example, N = 2 means including DC-
component, first and second harmonics, with all the others
set to zero. Increasing the truncation order N leads to a more
precise evaluation of the system stability, but the dimension
of the Toeplitz form also increases. Also the dimension of
the matrix A — A increases with N, with a higher number of
associated eigenvalues. To clarify this, an LTP system of order
m is considered as example where a truncation order N is
applied. The number of eigenvalues associated with the matrix
A—N is (2N +1) x m. However, not all these eigenvalues are
relevant for stability. Only m of them, which will be referred to



as significant eigenvalues, are necessary to assess the stability
of the system. The other 2N x m eigenvalues are copies of
the significant ones, but shifted by jnwr, n = +1,..., £N.
Fig. 2 shows an example of a typical plot of eigenvalue loci
for a LTP system of order m = 4 and truncation order N = 2.
The stars depict the significant eigenvalues, while with circles
represent their translated copies.

Im
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Fig. 2. Generic eigenvalue loci of an LTP system: stars - significant
eigenvalues; circles - translated copies

One final aspect is the choice of the truncation order. The
theoretical analysis is based on infinite harmonic series and
a sufficiently high value for the truncation order, N*, must
be chosen so that the location of the significant eigenvalues
is robust. Above N = N7¥, the position of the significant
eigenvalues should not change, but below N = N7, the
eigenvalues move from their correct position and an incorrect
plot of their loci is obtained. This implies that, to obtain
accurate results, the truncation order must be chosen with
N > N¥*. The quantification of N* is discussed in section
VL

IV. STEADY-STATE SOLUTION

In order to perform a stability analysis based on the LTP
model, first the steady-state trajectories of the NLTP system
(7) must be calculated. Only the calculation of the steady-state
variables involved in the LTP model (18) is considered, which
are Ts, Zg, T7 and Tg. From the power-balance approach, the
steady-state voltage on the DC-link capacitor is given by

Vre f
2wngcRdC
i.e. it is the sum of a DC component, Zgg, and a second-order
harmonic, Zgy, which is the ripple at 2f,. The amplitude of
this ripple depends on the value of the DC-link capacitor, and
clearly does not depend on the actual gains of the controller.
The inductor current is given by

- 2V2
ig =T7 = ref
‘/_(]Rdc
Finally, the internal dynamics of the unit computational delay,
ZOH and PWM blocks are represented by the state-space

model BZ] ) [?’0 t 1] [iZ]*H i

Defining A, = [0 1;—0¢9 — 01], B, = [0; 1], the trans-
fer functions relating the input to each of the state-space

Vge = T8 = Vies — sin(2wgyt) = Tgo — g2, (13)

sin(wgt). (14)

15)

variables are Hj(s) = [1 Ol[sI—AU]7130 and Hg(s) =
[0 1)[sI — A,]"" B,, with d = vy/V,c; being the approxi-
mated input. Thus the last two steady-state solutions are given
by
T5 = |Hs(jwg)| VyV,es sin(wet + /Hs(juw,)),
Zg = |He(jwg)| Ver;} sin(wgt + /He(jwg))-

(16)
a7

V. LINEARISED MODEL (LTP)

Based on the steady-state solutions from the previous sec-
tion, the LTP model is derived following the linearisation
illustrated in section III, yielding a system of the form
z(t) = A(t)Z(t), with A(t) being a T,-periodic matrix, as
shown in (18). When the Fourier series expansion is applied
to A(t), the only Fourier coefficients different from zero are
Ap, A4y and Ao, since the steady-state solution contains
harmonic coefficients only up to the second harmonic. The
Toeplitz transformation is applied to the LTP system (18), and
from a study of the eigenvalue loci of A — A/, as in (11) and
(12), the actual eigenvalues of the system are determined. The
full derivation is not reported for the sake of brevity but all
the Toeplitz forms and the Harmonic State Space model can
be directly derived from the LTP state-space system below:

Ty = —qoT1 — q1T2 — Ig,

T3 = po¥1 + p1T2 — knls,

I = I3,

574 = kivvg-%?) + kp'upovg-;i;l + kpvplvgi? - kpvknvng - i‘7’

Ty = T , e

T6 = —00is — 01%6 — ki V) ;74

— kpikivvgVie B = kpikpopovg Vo o1

- kpikpvplvgvy;}f? + kpikpvkn“szvr;}j{i + kpivr;}i’ﬁ
I7 = L;1 [ — Ry&7 — 70T5Ts — YoZs(t)Ts — V1Zes

— MTsd),
i =Cp' [Y0Z5&7 + Y0Tr@s + N Tedr + V1Trde — fSR;cl]-

(18)

In the next section, the LTP model (18), in HSS form, will
be exploited to evaluate the validity of the basic LTI model for
DC voltage control design. It will be shown that the LTP model
provides high accuracy in the identification of the stability
boundaries of the system, and can therefore be used to identify
the limits of validity of the voltage control design based on
the LTI model.

VI. ANALYTICAL, SIMULATION AND EXPERIMENTAL
RESULTS

A. Eigenvalue Analysis

1) Validity boundaries of the LTI model: Based on (18)
and on Tables I and II, the theoretical evaluation of the actual
eigenvalues of the SP-AFE is performed based on the LTP
eigenvalue loci-plot of the matrix A — N. The first result
concerns the maximum value of the LTI ‘design bandwidth’
for which the system is stable, which is found to be B,, = 240
Hz. For this case, all the significant eigenvalues are in the left
half-plane, as shown in Fig. 3 (top). When the LTI ‘design
bandwidth’ is increased to B,, = 260 Hz, two complex-
conjugate significant eigenvalues are in the right half-plane,



as shown in Fig. 3 (bottom - indicated by arrows), leading to
instability.

Six vertical lines of eigenvalues form the LTP eigenvalue
loci-plot. An initial truncation order N = 30 has been
chosen, which guarantees an accurate eigenvalue plot. It can be
observed that not all the eigenvalues lie on these vertical lines.
The translated copies that are furthest from the significant
eigenvalues suffer from the effects of the truncation, thus they
must not be considered in the stability analysis as they do
not have physical meaning. We will refer to these as spurious
eigenvalues.
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Fig. 3. LTP eigenvalue loci plot with N = 30: (top), stable system
with B,, = 240 Hz, (bottom), unstable system with B,, = 260 Hz.

Remark 1: the values of B,, = 240 Hz and B,, = 260 Hz
are not actual bandwidths of the DC voltage control loop,
but are the ‘design bandwidths’ set for the calculation of
the voltage PI parameters using the LTI model under the
assumption that no validity limits exist. In other words, these
are the bandwidths that a designer would use for the PI design
with the LTI model while maintaining stability. It is worth
pointing out that the actual bandwidths and the actual stability
margins are in this case very different from what one would
expect from the LTI design. This is discussed in detail in the
following paragraphs.

Remark 2: to determine the minimum order N* for which it
is possible to evaluate correctly the position of the significant
eigenvalues, the following empirical procedure is performed.
The horizontal position of the vertical lines of eigenvalues is
first evaluated for N = 30. If the truncation order is further
increased, the position of the lines does not significantly
change, implying that N = 30 gives an accurate result. Then
the order N is successively decreased and the percentage
differences with respect to N = 30 are evaluated. It is found
that for N = 20 such a difference is equal to 1.2%, and it
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Fig. 4. Computational time for LTP eigenvalue loci calculation.

increases if NV is further decreased. Truncation is thus set to
N* = 20, considering 1.2% an acceptable error.

Remark 3: incrementing the truncation order does not
significantly affect the computation time, as can be seen from
Fig. 4. Thus truncation orders of several hundreds can be
chosen and the LTP eigenvalue loci are calculated in less than
5 seconds.
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Fig. 5. LTI and LTP eigenvalue loci-plot, only dominant poles and
eigenvalues are reported; black asterisks - LTI poles, red circles and
blue squares - LTP significant eigenvalues.

A detailed comparison of the LTP eigenvalue loci-plot -
providing good approximation of the actual eigenvalues - with
the one expected from a traditional LTI approach - highly
approximated - is now discussed. The latter is based on the
evaluation of the poles of the closed-loop linearised transfer
function W(s) = PIy (s, By)F(s)/(1 + PIy(s, By)F(s)),
with F(s) = N(s)H(s)Gy (s). This transfer function, F(s),
compared with the one used for the design of the voltage
controller, Gy (s), is slightly different because it includes the
notch and the digital computation delay transfer functions.
This will lead to a small difference between the design
bandwidth and phase margin and those calculated using W (s),
which is fully acceptable in order to keep the advantage of
implementing the voltage controller based on a simpler plant.
Furthermore, the current loop is much faster than the voltage
loop, allowing us to consider the grid current, 4,4, always equal
to the reference current, ¢,.¢. The eigenvalues that would be
expected from the approximated LTI model, W (s), and only
the significant eigenvalues of the LTP model (18) are reported
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in Fig. 5 for the set of control parameters recorded in Table
II, corresponding to different LTI design bandwidths. Only
dominant eigenvalues are reported, i.e. those that are closer to
the imaginary axis and have smaller natural frequency.

From this plot, it can be seen that for an LTI design
bandwidth B,, < 55 Hz, the LTI and LTP eigenvalue
loci-plots are consistent, whereas for B,, > 55 Hz the two
plots become different and the actual eigenvalues of the
system, those associated with the LTP model, move towards
the real axis as the LTI design bandwidth increases. This
analysis provides a range of validity for the LTI transfer
function Gy (s), calculated by applying the power balance

approach. In addition, Fig. 6 demonstrates that the actual
bandwidth of the system follows the LTI design bandwidth
up to 55 Hz, then a further increase in the design bandwidth
does not correspond to an increase of the real one. The LTI
design damping for the closed-loop system is 0.7, whereas
the LTP damping converges to unity for B,, > 75 Hz. The
small difference between the LTI damping calculated using
W(s) (which converges to 0.8 for high B,) and the LTI
design damping is because the control design is based on
Gy (s), while the closed-loop LTI poles are calculated based
on F(s).

Observation: Fig. 5 and Fig. 6 can be used not only for
analysis purposes, but also to design the voltage control
above the limit of validity of the LTI model. It is possible
to use a different pole-placement (for example LTP one) and
then check the actual eigenvalues of the closed-loop system,
thus its actual performance.

2) Stability boundaries of the DC voltage controller:
Now, taking into consideration Fig. 7, which shows zoom 1
from Fig. 5, and which represents the eigenvalues associated
with the notch filter, the stability boundary of the actual
system can be calculated. In general, increasing B,, will move
these eigenvalues towards the imaginary axis, thus making
the system less robust. It can be noticed that LTI and LTP
approaches lead to different conclusions. Based on the LTI
model, the system becomes unstable for B,, > 160 Hz,
whereas from the LTP analysis the threshold is B,, > 240 Hz,
as also reported in Fig. 3. From simulation and experimental
results it is found that the LTP threshold is correct, confirming
that this approach provides more accurate results compared to
traditional LTI methods.
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Fig. 8. Small-signal time-domain analysis diagram.

B. Simulation Results

In order to provide a first validation of the eigenvalue loci
plot of Fig. 5, a time-domain analysis based on small-signal
injection is performed, as reported in Fig. 8. The small signal
is provided by a 10 V step added to the reference voltage, V.y,
and the small-signal output from the average model, as well
as the outputs from the LTI and LTP models, are compared.
In Fig. 9 these signals are recorded for a design bandwidth
B,, = 10 Hz of the voltage controller. As expected, a good
match is achieved, meaning that both LTI and LTP models
accurately describe the small-signal behaviour of the system.
In Fig. 10 the LTI design bandwidth is increased to B,, = 100
Hz and the difference between LTP and LTI systems is more
substantial. However, the LTP response is still very accurate



compared to that of the system, demonstrating that for high-
bandwidth the LTP analysis provides more accurate results
than an LTI one, and also providing a further validation of
Fig. 5.

Bw =10 Hz

Voltage [V]
(4]
N"\_“.
/
/
/
/
7
/

5 T i T
0 0.1 0.2 0.3 0.4 05 0.6 0.7
Time [s]

Fig. 9. Small-signal time-domain simulation with B,, = 10 Hz; blue
- small-signal reference, black - system response, red - LTI response,
green - LTP response.
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Fig. 10. Small-signal time-domain simulation with B,, = 100 Hz;
blue - small-signal reference, black - system response, red - LTI
response, green - LTP response.

The analytical results presented so far can be used either
during the design process, in order to determine the limit
of validity of approximated linearised models, hence to be
able to obtain the maximum performance achievable by the
actual system, or as a post-design stability assessment tool. In
the first case, one can adjust the control parameters, in order
to move the LTP eigenvalues to obtain a better-performing
system, knowing that the LTP eigenvalues correspond to the
actual eigenvalues of the system. In the second case, post-
design stability assessment is recommended by using the LTP
eigenvalue loci-plot.

More detailed simulations have been implemented in Matlab
Simulink and Plecs, based on the switching model of the
converter and control algorithm implemented in C language
(including digital computational delay). A dead-time of 3.6 us
is also included. First the stability boundaries of the system
are evaluated. This is done by starting the system with the first
set of control parameters, as reported in Table II (B, = 10
Hz), then these parameters are updated to the next set, corre-
sponding to a higher LTI design bandwidth, until the stability
threshold value is found.
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Fig. 11. Simulation data - (a) currents: blue - iy, red - ircy; (b)
voltages: blue - vqc, red - V,.cy - stable system with B,, = 240 Hz.
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blue - vg4c, red - Viey; (a), (b), transition from a stable system with
B., = 240 Hz to an unstable system with B,, = 260 Hz (change at
t = 0s).

In Fig. 11 the time-domain simulation of the system is
reported for stable operation below the estimated threshold.
The grid-current distortion is due to uncompensated dead-
times. The voltage ripple at frequency 2f, is consistent with
the steady-state solution found in (13) and is around 12 V
peak-to-peak. Fig. 12 shows a time-domain simulation of
currents and voltages when the LTI design bandwidth of the
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voltage control passes from B,, = 240 Hz to B,, = 260 Hz,
at ¢ = 0. Since the unstable eigenvalues are very close to the
imaginary axis, see Fig. 3 and Fig. 7, the unstable dynamics
emerge very slowly. It can be seen that the current and voltage
waveforms start to oscillate significantly after ¢ = 5 s, and
after t = 7 s the control no longer regulates the DC-link
voltage. In Fig. 13 the simulation results of unstable operation
are reported, with (a), (b), being the first zoom, and (c), (d),

being the second zoom in Fig. 12.

A second set of simulations is performed in order to
assess the dynamic response of the system. A 50% load step
is applied, i.e. a change of load from the nominal value
Rg. = 120 Q to 60 € is made and the transient evolution
of the grid current and DC-link voltage is recorded. In Fig.
14 the step load response is reported for B,, = 10 Hz in
(a), (b), for B, = 50 Hz in (c), (d), and for B,, = 100
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Fig. 14. Simulation data for 50% load step transients - currents: blue - ¢4, red - ¢,.r; voltages: blue - v4c, red - vres; (), (b), system with
B., = 10 Hz; (¢), (d), system with B,, = 50 Hz; (e), (f), system with B,, = 100 Hz.



Fig. 16. 10 kW experimental setup.

Hz in (e), (f). In the voltage waveform are highlighted the
maximum peak and the settling time, the latter being defined
as the time required by the signal to reach 2% error compared
with the steady-state one. As it can be seen, increasing the
LTI design bandwidth from 10 Hz to 50 Hz reduces both the
voltage overshoots and the settling times. However, increasing
the LTI design bandwidth further to B,, = 100 Hz leads on the
one hand to smaller overshoots of the voltage waveform, but
on the other hand to longer transients, which is in accordance
with the analytical results.

C. Experimental Results

The experimental rig is a 10 kW 2-level IGBT inverter (con-
trolled as a SP-AFE in this particular application) switching
at fpwm = 10 kHz and with control algorithms and signal
conditioning implemented in a custom DSP/FPGA board, Fig.
16. A double-update PWM is implemented, thus with control
algorithm executed at twice the PWM frequency. No dead-
time ({pr = 3.6 us) compensation has been added to the
control, in order to keep it as simple as possible. This explains
the significant values of the current Total Harmonic Distortion
(THD), which however does not affect the validity of the LTP
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analysis, as it can be seen from the results below. The Power
Factor (PF) is close to unity in all the control configurations,
due to the fact that the current reference is generated by direct
measurement of the grid voltage. The grid voltage is provided
by a programmable AC source (Chroma).

The first set of experiments has been performed to validate
the stability boundary of the system. In Fig. 15 the current
and voltage waveforms are reported for both the stable and
unstable operation mode, confirming the analytically calcu-
lated stability threshold of B,, = 250 Hz. It can be seen that
the experimental case B,, = 240 Hz, Fig. 15(c), is slightly
more distorted compared with the simulated one, Fig. 13(c),
which is explained by the fact that the real system is more
affected by noise.

The second set of experiments aims to validate the dynamic
response of the system calculated analytically and confirmed
by simulations. Hence, the simulation results highlighted in
Fig. 14 are validated experimentally and reported in Fig. 17.
It is thus confirmed that for a design bandwidth B,, < 55 Hz
the system is well described by its LTI model, and the design
specifications are met by the actual system; however a further
increase of B,, makes this assumption no longer correct. This
can be observed by comparing the response of the system
to load change for the case B,, = 100 Hz, where the latter
exhibits a longer transient time and a smaller overshoot, in
accordance to the analytical results reported in Fig. 6, where
for an LTI design bandwidth of 100 Hz, the natural frequency
of the dominant LTP eigenvalues is around 40 Hz.

VII. CONCLUSIONS

In this paper, the stability assessment for a single-phase
active-front-end with fast DC voltage control loop is addressed
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Fig. 15. Experimental data [5 ms/div] - currents: pink - ¢4; voltages: green - vq.; (a), stable system with B,, = 10 Hz, (c), stable system
with B,, = 240 Hz; (b), unstable system with B,, = 260 Hz, zoom 1 of Fig. 12; (d), unstable system with B,, = 260 Hz, zoom 2 of Fig.

12.
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Fig. 17. Experimental data for 50% load step transients [50 ms/div] - currents: pink - %4; voltages: green - vq.; (a) By = 10 Hz step-up
load change, (b) B,, = 10 Hz step-down load change, (c) B.,, = 50 Hz step-up load change, (d) B,, = 50 Hz step-down load change, (e)
B, =100 Hz step-up load change, (f) B,, = 100 Hz step-down load change.

analytically exploiting LTP theory. It is shown that the conven-
tional LTI analysis is valid only within the remit of the power-
balance based approach. For this reason, the LTP approach is
used first to determine the validity limits of the LTI models,
and second to assess the actual stability of the overall system
when fast voltage controllers are implemented. This leads to
a mathematically more complex and detailed analysis. The
superior results obtained using the LTP techniques, compared
with those from the LTIs, are highlighted and validated by
analytical, simulation and experimental results.
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