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Abstract 

 

Ionic liquids are formally defined as liquids that consist entirely of ions, and which are liquid 

below 100 °C.  As these liquids are being proposed for use in a range of electrochemical devices 

and applications, understanding the electrochemical behaviour of these is increasingly 

important.  In this contribution, we describe the effects of parent amine molecules on 

electrocatalysis in the protic ionic liquids diethylmethylammonium trifluoromethanesulfonate 

and diethylmethylammonium heptafluorobutanoate.  We first show that diethylmethylamine 

can adsorb onto Pt electrodes during electrocatalytic reduction of trifluoromethanesulfonic acid 

in diethylmethylammonium trifluoromethanesulfonate.  In contrast, diethylmethylamine 

promotes the oxidation of formic acid in this ionic liquid, by deprotonating the acid to the active 

formate species.  Therefore, the neutral base can either inhibit or enhance electrocatalysis in 

the liquid, depending on the reaction under consideration.  We also show that the mechanism 

of formic-acid oxidation in diethylmethylammonium heptafluorobutanoate differs significantly 

from that observed when using diethylmethylammonium trifluoromethanesulfonate.  This 

phenomenon is attributed to adsorption of poisoning spectator species onto the electrode 

surface, demonstrating that changes to the structure of ionic-liquid anions can have drastic 

effects on the electrochemistry of these liquids. 

 

Keywords:  ionic liquid; ultramicroelectrode; scanning electrochemical microscopy; hydrogen 

evolution reaction; underpotential-deposited hydrogen; formic acid  
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1. Introduction 

 

Ionic liquids are formally defined as materials that are composed entirely of ions and which 

are liquid below 100 °C [1].  Due to their inherent conductivities and thermal and 

electrochemical stabilities, ionic liquids are being used in an increasing number of 

electrochemical applications, including fundamental studies of the electrical double layer [2], 

investigations into mass and charge transport [3-4], electrochemical sensing [5], batteries [6], 

supercapacitors [7], and fuel cells [8].  While a large number of ionic liquids can potentially be 

synthesised, they can be broadly divided into two classes.  Protic ionic liquids (PILs) are those 

formed by proton transfer from Brønsted acids to Brønsted bases, and aprotic ionic liquids are 

those formed by transferring any group other than a proton to the parent base [9].   

Despite the fact that ionic liquids are defined as species that only contain ions, they can 

often behave as though they contain neutral species, exhibiting higher-than-expected vapour 

pressures and relatively-low conductivities.  These phenomena are usually attributed to the 

presence of long-lived ion pairs or clusters, and neutral molecules, in the liquids [10-12].  Such 

effects are particularly common in PILs, which depending on the degree of proton transfer 

during synthesis, can comprise an equilibrium mixture of the salt, the parent base, and the 

parent acid:  

 

 
 
HA + B D [BH]+ + [A]−             (1) 

 

Non-stoichiometric PILs containing residual parent species can also form during the 

exothermic neutralisation reaction by loss of the most volatile component from the reaction 

mixture, unless very careful consideration is given to the reaction conditions [12-13].  

acid base 

salt 
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Residual neutral molecules can have a significant effect on the electrochemical properties 

of ionic liquids.  For example, water (a common contaminant in ionic liquids) can narrow their 

potential windows, reduce their viscosities, and increase the rate of mass transport to electrodes 

[14-16].  It was recently demonstrated that the electrochemical properties of non-stoichiometric 

PILs containing residual parent acids can differ significantly from those of the pure liquids.  

Electrochemical reduction of the residual acid in PILs at negative potentials yields H2, and the 

potential at which O2 is reduced depends on the acid content of the liquids [13].  However, to 

the best of our knowledge, no work has focussed on understanding the effects of parent bases 

on the electrochemical properties of PILs.  Brønsted bases are often added in excess during 

synthesis of PILs [17], so it is important that any electrochemical effects due to residual bases 

in PILs are understood and can be identified.   

In this contribution, we describe the use of proton reduction and formic acid (HCOOH) 

oxidation as model electrocatalytic reactions to probe the electrochemical behaviour of the 

PILs diethylmethylammonium trifluoromethanesulfonate, [dema][TfO], and 

diethylmethylammonium heptafluorobutanoate, [dema][HfB] (Scheme 1).  We show that the 

parent amine diethylmethylamine (dema) adsorbs onto Pt ultramicroelectrodes (UMEs) during 

reduction of trifluoromethanesulfonic acid (TfOH) in [dema][TfO], poisoning electrocatalytic 

sites on the Pt surface.  Conversely, HCOOH oxidation at Pt in [dema][TfO] is accelerated by 

addition of dema, due to the formation of the active species HCOO−.  In [dema][HfB], on the 

other hand, sluggish HCOOH oxidation is observed and the mechanism of HCOO- oxidation 

differs from that in [dema][TfO], an effect that is attributed to adsorption of [HfB]- ions onto 

the electrode surface.  Therefore, our results show that parent amines, if present in ammonium-

based PILs, can inhibit or enhance electrocatalytic reactions, depending on the reaction under 

study, while completely different behaviour can result from changing the structure of the PIL 

anions. 
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2. Experimental Section 

 

2.1.  Reagents and Apparatus 

 

Electrochemical measurements were performed using a Model CH910 scanning 

electrochemical microscope and Model CH700 potentiostat (CH Instruments, Austin, TX).  

General chemicals were from Alfa Aesar or Sigma-Aldrich.  H2 (99.995 %), Ar (99.998 %), 

and N2 (99.998 %) were from BOC gases (Nottingham, UK).  Pt wire (0.5-mm diameter, 

99.997%, and 0.025 mm diameter, 99.95%) and Pd wire (0.1 mm diameter, 99.99%) were from 

Alfa Aesar.   

 

2.2 Synthesis of Ionic Liquids 

 

[dema][HfB] and [dema][TfO] were prepared by adding aqueous 1.0 M heptafluorobutyric acid 

(HfBH) and 1.0 M (aq.) TfOH, respectively, to neat dema to a molar ratio of 1:1.05.  The excess 

base was then removed under vacuum (2 × 10−2 mbar) at 70 °C over 48 hrs [13].  Non-

stoichiometric [dema][TfO] containing 0.16 M excess TfOH (as measured using the method 

described in Reference [13]) was synthesised by addition of neat TfOH to dema.  This PIL was 

also dried at 2 × 10−2 mbar and 70 °C for 48 hours.  Residual water contents of all PILs were 

< 200 ppm. 

 

2.3 Fabrication of Electrodes 

 

25-µm and 50-µm diameter Pt UMEs were prepared by heat-sealing Pt microwires in 

borosilicate glass, exposing a Pt disk by grinding and polishing the glass, and making electrical 
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connections using Cu contact wires [18].  25-µm diameter SECM tips were made using the 

same procedure, but the electrodes were sharpened until the ratio of the radius of the glass 

sheath to that of the Pt disk (the so-called RG value) was 3.  0.5-mm diameter Pt wires were 

used as counter electrodes.  Pd/H reference electrodes, as introduced for use in PILs by Angell 

[17], were used in all electrochemical measurements, and were prepared by first annealing 0.1-

mm diameter Pd wires in a butane flame.  All potential are reported vs. Pd/H.  The wires were 

then immersed in distilled water, and H2 was bubbled over their surfaces for at least 30 min.  

The wires were then rinsed with deionised water, and dried under a flow of N2.  Electrochemical 

experiments were carried out at room temperature. 

 

3. Results and Discussion 

 

3.1  Effects of Diethylmethylamine on Proton Reduction at Pt in [dema][TfO] 

 

We have recently shown that it is possible to quantify the concentration of precursor acids in 

PILs and to synthesise PILs that are effectively free of excess acid [13].  We begin by showing 

that even if a PIL contain excess acid, the parent base can persist and have an electrochemical 

effect in the PIL.  Figure 1A shows the low-potential (low-E) region of cyclic voltammograms 

(CVs) of [dema][TfO] containing 0.16 M TfOH, recorded using a Pt UME.  The cathodic 

process at E < 0.0 V is reduction of TfOH to H2 (Equation 2) and, in the range 0.0 V < E < 0.3 

V, adsorption and desorption of underpotential-deposited hydrogen, Hupd, occurs [19].  Hupd 

adsorption/desorption has only recently been observed in aprotic ionic liquids and PILs [20-

22], and in the case of [dema][TfO] containing excess TfOH, occurs by reduction of TfOH 

(Equation 3).  Note that in this potential region, only capacitive current flows at Pt in the pure 
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PIL [13].  Figure 1A shows that, as the upper potential limit of the voltammetric sweep 

increased, the charge under with the Hupd region increased (arrows). 

 

Pt + 2TfOH + 2e− ® Pt + H2 + 2TfO−        (2) 

 

Pt + TfOH + e− D PtH + TfO−         (3) 

 

Figure 1B shows the Hupd-desorption charge (q) at each upper voltammetric potential 

limit, normalised by the Hupd-desorption charge recorded during voltammetry using the same 

Pt UME in aqueous 0.5 M H2SO4.  The Hupd-desorption charge in aqueous 0.5 M H2SO4 was 

used as the normalisation factor, as a full monolayer of Hupd forms on Pt in this electrolyte, 

providing a measure the electrochemically-active (or real) surface area of Pt [23].  In all cases, 

the Hupd-desorption charge was significantly smaller in the PIL (<25 %) than in the aqueous 

electrolyte, and increased by more than a factor of 5 as the upper-potential limit increased from 

1.2 V to 2.0 V.  These observations indicate that some adsorbed species was blocking access 

of TfOH to active sites on the Pt surface (that is, significantly fewer Pt sites were available to 

form Hupd in the PIL), and that the poisoning species was removed at positive potentials.  

To explore the poisoning of the Pt surface further, we used SECM, a technique that 

involves positioning a UME (which in SECM is called the tip) close to the surface of a second 

electrode (called the substrate).  In the feedback mode of operation of SECM, steady-state 

electrolysis of a redox species occurs at the SECM tip, generating a steady-state tip current, iT.  

If the tip is moved close to an insulating substrate, mass transport of the analyte to the tip is 

hindered, and the so-called ‘feedback approach curve’ shows a decrease in iT as the tip-

substrate distance, d, decreases.  Conversely, if the electrolysed species can be regenerated at 

a conducting substrate, positive feedback occurs, and iT increases as d decreases [24]. 
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The black lines in Figure 2 show six consecutive SECM feedback approach curves 

recorded using an SECM tip immersed in [dema][TfO] containing 0.16 M TfOH, as the tip 

approached a Pt substrate.  IT is the tip current normalised by the steady-state tip current at 

(effectively) infinite distance from the substrate (that is, IT = iT/iT,∞), and L is tip-substrate 

distance normalised by the radius of the SECM tip (that is, L = d/a, where a is the radius of the 

SECM tip).  In each case, the SECM tip was held at −0.7 V to drive the HER (Equation 2), and 

the Pt substrate was held at 0.4 V to drive oxidation of H2, which yields protons that combine 

with the PIL anions to reform the parent TfOH (inset of Figure 2A) [17].  As L decreased, IT 

increased due to positive feedback between the tip and the substrate.  However, upon recording 

successive feedback approach curves (dashed and dotted lines), the curves shifted downwards, 

resulting in successive decreases in the maximum IT at small L values.  A control experiment 

was carried out by immersing a freshly-cleaned SECM tip in the PIL for 20 minutes (the same 

amount of time required to record all of the black curves), and then recording a feedback 

approach curve.  Clearly, while a small decrease in the maximum IT resulted when the tip and 

substrate were simply immersed in the PIL, the effects of recording consecutive feedback 

approach curves under potential control were much more significant.  

To examine poisoning of the Pt surface further, SECM-tip CVs were recorded when 

the tip was held at various distances from an insulating substrate and the hydrogen evolution 

reaction (HER) was driven at the tip (Figure 3A).  In each case the potential scan began at -0.8 

V and the positive-potential limit was 1.5 V.  When the tip was held at d = 60 µm, the steady-

state HER current was about 30 nA and was slightly smaller during the positive sweep than 

during the negative sweep.  As d decreased, the steady-state HER currents decreased 

significantly, as expected for hindered diffusion of TfOH to the tip surface.  However, the 

steady-state current was significantly higher during the negative sweep than during the initial, 

positive sweep.  When the tip was held at d = 25 µm (L = 2) and d = 15 µm (L = 1.2), the HER 
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currents during the negative sweeps were about 23 nA and 12 nA, respectively.  These currents 

are about 75% and 40% of the steady-state current at d = 60 µm (L = 4.8), which is expected 

when hindered diffusion of TfOH to the tip occurs (that is, when pure negative feedback occurs) 

[25].  However, the significantly smaller tip currents that flowed during the positive sweeps 

when the tip was held close to the substrate indicates that trapping of the poisoning species in 

the tip-substrate gap causes significant poisoning of the electrode.  However, this poisoning 

can be mitigated by executing the positive-potential excursion.   

Finally, the SECM tip was held at d = 25 µm and successive CVs were recorded as the 

upper potential limit was increased from −0.5 V to 0.2 V, while keeping the initial potential at 

−0.8 V (Figure 3B).  When the positive-potential limit was −0.5 V, the HER current was about 

3 nA, and it overlapped in the positive and negative sweeps.  As the upper potential increased, 

the HER current during the positive sweep remained at about 3 nA, but the HER current during 

the negative sweep increased (as indicated by the arrows in the figure).  When the upper-

potential limit increased to about −0.2 V, the negative sweeps started to show a peak-shaped 

current response during the negative sweep, which increased in magnitude as the positive-

potential limit increased. The reason for the increasing current during the negative sweep is the 

rate of the HER started to increase due to the successive cleaning of the electrode, but this was 

countered by poisoning of the electrode, yielding the peak.  Notably, when the most positive 

upper potential limit (0.2 V) was used, a marked increase in the HER activity of the Pt electrode 

occurred, and a steady-state HER current of about 23 nA flowed.   

We consider now the identity of the poisoning species that persists in [dema][TfO] and 

poisons the Pt surface during Hupd adsorption and the HER.  That Hupd adsorption was hindered 

in the liquid (Figure 1) indicates that the poisoning species was in the as-synthesised PIL.   

However, the HER was exacerbated by holding the electrode at negative potentials (Figures 2 

and 3).  The major species in the PIL were [dema]+ cations, [TfO]− anions, TfOH, H2 generated 
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at negative potentials, and possibly some dema that persists in the PIL at its equilibrium 

concentration. First, it is unlikely that the adsorbed species was [TfO]−, as one would expect 

[TfO]− to become more strongly adsorbed at more positive potentials.  It has also been shown 

that [TfO]− does not adsorb onto Pt surfaces from aqueous solution [26].  The exacerbation of 

the poisoning when the electrode was held at negative potentials to drive the HER indicates 

that the poisoning species was not [dema]+, which existed at a high concentration prior to 

electrolysis.  H2 appears to be readily oxidised at Pt in this PIL [8], meaning that it is also 

unlikely that H2 is responsible for the effect.   

The final species that may be responsible for poisoning of the electrode is dema.  

Consideration of Equations 2 and 1 indicates that consumption of TfOH at the electrode surface 

to generate [TfO]- anions would cause a shift in the equilibrium generating dema, meaning that 

the parent base is likely responsible for the effect (the greatest poisoning effects are observed 

when TfOH is consumed).  Note that it is not possible to test this hypothesis by simply adding 

excess dema to the PIL and examining its effect on Hupd deposition.  The reason for this is that 

adding dema has the effect of neutralising the TfOH probe, making it difficult to observe Hupd 

deposition. In addition, changing the concentration of TfOH also affects the onset potential of 

the HER, making comparisons of the Hupd region difficult. Instead, as we have shown here, 

Hupd adsorption/desorption and the HER can be used as probe reactions into the effects of the 

dema that persists at equilibrium.  That dema is responsible for the electrode poisoning is 

supported by the data in Figure 1A.  At 0.2 V, complete Hupd desorption occurs, liberating 

protons from the electrode.  These protons can then react with adsorbed dema to form [dema]+, 

which does not hinder the HER.  

 

3.2  Role of Diethylmethylamine during Oxidation of Formic Acid in [dema][TfO] 
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In this section, we show that dema has a very different effect on electrocatalysis of HCOOH 

oxidation than on TfOH reduction in PILs.  However, before describing HCOOH 

electrooxidation in PILs, we briefly describe HCOOH oxidation in aqueous acidic media, to 

act as a reference for our discussion of HCOOH electrochemistry in PILs.  Figure 4 shows CVs 

of 0.5 M H2SO4 in the presence (dashed line) and absence (solid line) of 0.5 M HCOOH using 

a Pt electrode. In blank H2SO4, typical Hupd adsorption/desorption and oxide 

adsorption/desorption features are visible between 0.0-0.3 V and 0.8-1.2 V, respectively.  In 

the presence of HCOOH, oxidation of HCOOH resulted in peaks at about 0.3 V and 0.9 V in 

the forward sweep, and a second oxidation wave appeared at about 0.5 V during the negative 

sweep.  This response is consistent with the accepted dual-pathway mechanism of HCOOH 

oxidation in aqueous electrolytes, in which direct HCOOH oxidation to CO2 is accompanied 

by a pathway involving an adsorbed CO (COads) intermediate.  The COads intermediate is 

oxidised near 0.9 V, coinciding with the formation of oxide groups on the surface of the Pt 

[27].  During the reverse (negative) sweep, the Pt-oxide layer is reduced, leaving a surface free 

from both oxides and COads, and resulting in the large oxidation peak centred at about 0.5 V 

[28].  

Figure 5 shows CVs of [dema][TfO] recorded using the same Pt electrode as used to 

record the CVs shown in Figure 4.  In the absence of HCOOH (solid line), a low background 

current flowed.  Some Pt oxides form positive of about 1.0 V in this liquid due to oxidation of 

trace water in the PIL [21,29].  The CV recorded in the PIL containing HCOOH (dashed line), 

is similar to that recorded when using the aqueous electrolyte.  An oxidation current flowed at 

E >0.0 V, due to direct oxidation of HCOOH at the Pt surface.  As the potential increased above 

about 1.0 V, the oxidation current increased significantly, coinciding with the formation of 

oxides on the Pt surface.  During the negative sweep, the anodic current decreased as E 

decreased below 1.0 V, and a large peak that centred about E = 0.4 V appeared as surface 
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adsorbates were removed from the surface.  Oxidation of HCOOH in [dema][TfO] then appears 

to follow similar behaviour to the oxidation in aqueous electrolytes; direct HCOOH oxidation 

occurs at low potentials and indirect oxidation occurs at high potentials, before the surface is 

cleaned of poisoning COads-type species during the negative sweep and HCOOH oxidation 

resumes. 

There has been considerable discussion in the literature on nature of the active species 

during HCOOH oxidation in aqueous media.  Since its spectroscopic identification by Osawa 

[30], the involvement of an adsorbed formate, HCOOads, species during HCOOH oxidation has 

been the subject of some debate [31-32].  Recent data showing a clear increase in the rate of 

HCOOH oxidation as the pH of the electrolyte increases supports the involvement of HCOO− 

as an active species [32-35].  The mechanism of HCOOH oxidation in [dema][TfO] was 

examined by adding increasing amounts of dema to the HCOOH-containing PIL and recording 

CVs after each addition (Figure 6).  In each case the reverse peak is shown to highlight the 

HCOOH-oxidation peak on the Pt surface after removal of the posisoning COads species, as 

done by Joo and co-workers [32].  The peak current for HCOOH oxidation increased as the 

concentration of dema in the electrolyte was successively increased from 0.0 M (black line) to 

0.3 M (red line), 0.5 M (green line), and 0.8 M (blue line).  0.1 M TfOH was then added to the 

PIL and the pink line in Figure 6 shows the resulting response.  Upon acidification of the PIL, 

the HCOOH-oxidation current decreased again, as the effects of the added base were 

neutralised.  Therefore, it appears that the added dema (pKa in aqueous media = 10) 

deprotonated HCOOH (pKa in aqueous media = 3.75), yielding HCOO- which was the active 

species.  Note that the use of aqueous pKa values as an indicator of the driving force for proton 

transfer in ionic media has been used previously, particularly as a qualitative estimate of 

ionicity in PILs [36].  However, it has been shown that the effective pKas of amines in ionic 

liquids are sensitive to the structure of the amines, complicating their use [37].  There have 



 13 

been some recent efforts towards determining pKa scales in ionic liquids [38-39].  The data 

here suggest that the electrooxidation of HCOOH could be used as an electrochemical method 

to determine relative pKas in ionic liquids and this is being pursued in our laboratories. 

 

3.2  Oxidation of Formic Acid in [dema][HfB] 

 

Figure 7 shows CVs of [dema][HfB] in the absence (dashed line) and presence (solid line) of 

0.5 M HCOOH.  It is clear from these data that oxidation of HCOOH in [dema][HfB] is 

different to that observed in [dema][TfO].  An HCOOH-oxidation current did flow at E > 0.0 

V due to direct oxidation of HCOOH at the Pt surface (see inset of Figure 7 for a magnified 

view of the low-E region).  However, the magnitude of the direct HCOOH-oxidation current 

is smaller than observed using [dema][TfO].  A larger HCOOH-oxidation current began to flow 

at about 0.9 V, coinciding with the onset of oxidation of the Pt surface, suggesting that some 

HCOOH oxidation proceeded via a COads-type intermediate.  However, unlike in [dema][TfO] 

and aqueous media, no significant HCOOH-oxidation peak appeared during the negative 

sweep. We ascribe this change in mechanism of HCOOH oxidation to adsorption of spectator 

ions, which block active sites for HCOOH adsorption, onto the Pt surface in [dema][HfB].  As 

[dema]+ is present in both liquids, it appears that [HfB]− ions hindered HCOOH oxidation. 

The effects of added base on HCOOH oxidation in [dema][HfB] were determined by 

adding dema and then TfOH to the PIL.  Figure 8 shows a linear-sweep voltammogram of 

[dema][HfB] containing 0.5 M HCOOH (solid line).  This response is compared with that 

recorded after adding 60 mM HfBH (dotted line), and 120 mM dema (dashed line) to the PIL.  

As observed when using [dema][TfO], addition of acid hindered HCOOH-oxidation via the 

direct route, and addition of excess dema increased the anodic current at low potentials, 

meaning that HCOOH oxidation at low potentials in [dema][HfB] probably also proceeds via 
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HCOO−.  This similarity notwithstanding, comparison of HCOOH electrooxidation in 

[dema][TfO] and [dema][HfB] reveals that changes to the anion structure can result in 

significant changes to their electrochemical behaviour.    

 

4. Conclusions 

 

We have shown here that it is possible to observe the electrochemical effects of parent amines 

in protic ionic liquids using electrocatalytic reactions as probes.  On one hand, the amine 

diethylmethylamine suppresses Hupd adsorption/desorption onto Pt from the [dema][TfO] by 

co-adsorbing onto the Pt surface.  However, adsorption is not irreversible, and the poison can 

be partially removed by sweeping the electrode to highly-positive potentials.  On the other 

hand, diethylmethylamine enhances HCOOH oxidation, by deprotonating HCOOH, 

demonstrating that HCOOH oxidation proceeds via a formate intermediate in the PIL.  These 

observations illustrate the contrasting roles that the amine can play during electrocatalysis in 

PILs.  In addition, we showed that anion adsorption appears to hinder oxidation of HCOOH in 

[dema][HfB].  Therefore, when using protic ionic liquids for electrochemical applications, one 

should always consider the effects of any unreacted parent reagents in the liquid.  In addition, 

strong adsorption of ions onto electrode surfaces from PILs can affect the electrochemical 

behaviour of these liquids and one should also consider such phenomena when using these 

liquids as electrolytes.   
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Figure Legends 

 

Figure 1. (A) Cyclic voltammograms of [dema][TfO] containing 0.16 M TfOH recorded using 

a 25-µm diameter Pt UME.  Potentials were swept at 50 mV s−1 between −0.3 V and 

increasingly-positive upper potential limit (from 1.2 to 2.2 V) and the currents increased as the 

positive limit increased.  (B) Graph of the Hupd-desorption charge, q, as a function of the upper 

potential limit during cyclic voltammetry. Charges are divided by the Hupd-desorption charge 

recorded using the same electrode in 0.5 M H2SO4. 

 

Figure 2.  (A) Consecutive SECM approach curves recorded using a 25-µm diameter Pt SECM 

tip polarised at −0.8 V, as it approached a 2-mm diameter Pt-disk substrate held at 0.4 V at an 

approach speed of 1 µm s−1.  The electrolyte was [dema][TfO] containing 0.16 M TfOH.  The 

maximum IT value decreased during successive experiments.  The blue curve was recorded 

using a cleaned SECM tip that had been immersed in the liquid for 20 minutes.  The inset is a 

schematic showing positive feedback of the redox species to the SECM tip.  

 

Figure 3.   (A) Negative-feedback mode SECM tip cyclic voltammograms recorded using the 

experimental setup described in Figure 2, but while the SECM tip was stationary.  The tip 

potential was cycled between −0.8 V (initial potential) and 1.5 V at 50 mV s−1, while the tip 

was held at various distances from an insulating (PTFE) substrate.  (B) Successive negative-
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feedback mode SECM tip cyclic voltammograms recorded at 50 mV s−1 at a tip-insulating 

substrate distance of 25 µm.  The negative-potential limit was −0.8 V and the initial potential 

increased from −0.5 V, to −0.4 V, −0.3 V, −0.2 V, −0.1 V, 0.0 V, 0.1 V, and 0.2 V, leading to 

higher HER currents (as shown by the arrows).   

 

Figure 4.  Cyclic voltammograms of Ar-saturated 0.5 M H2SO4, recorded using a 50-µm 

diameter Pt UME at 50 mV s−1.  The applied potential was swept between −0.05 V (initial 

potential) and 1.4 V.  The solid line shows voltammogram recorded in the absence of HCOOH, 

and the dashed line shows that recorded after addition of 0.5 M HCOOH.  

 

Figure 5. Cyclic voltammograms of Ar-saturated [dema][TfO], recorded using a 50-µm 

diameter Pt UME at 50 mV s−1.  The potential was swept between 0.0 V (initial potential) and 

1.6 V.  The solid lines show voltammogram recorded in the absence of HCOOH, and the dashed 

lines show that recorded after addition of 0.5 M HCOOH.   

 

Figure 6.  Linear sweep voltammograms of Ar-saturated [dema][TfO] containing 0.5 M 

HCOOH, recorded using a 50-µm diameter Pt UME at 50 mV s−1 by sweeping the potential 

from 1.8 V to 0.0 V.  Voltammograms were recorded after in [dema][TfO] containing (black 

line) 0.5 M HCOOH, (red line) 0.5 M HCOOH + 0.2 M dema, (green line) 0.5 M HCOOH + 

0.5 M dema, (blue line) 0.5 M HCOOH + 0.8 M dema, and (pink line) 0.5 M HCOOH + 0.1 

M TfOH. 

 

Figure 7. Cyclic voltammograms of Ar-saturated [dema][HfB], recorded using a 50-µm 

diameter Pt UME at 50 mV s−1.  The potential was swept between −0.3 V (initial potential) and 

1.4 V.  The solid lines show voltammogram recorded in the absence of HCOOH, and the dashed 
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lines show that recorded after addition of 0.5 M HCOOH.  The inset shows a magnified view 

of the voltammogras in the low-potential region. 

 

Figure 8. Linear sweep voltammograms of Ar-saturated [dema][HfB] containing 0.5 M 

HCOOH, recorded using a 50-µm diameter Pt UME at 50 mV s−1.  The solid line shows the 

voltammogram recorded in as-synthesised [dema][HfB], and the dotted and dashed lines show 

those recorded in the presence of 60 mM excess HfBH, and 120 mM dema, respectively. 
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