```
Style polymorphism in Linum (Linaceae): a case of Mediterranean parallel
evolution?
Ruiz-Martín, J.1; Santos-Gally, R.1,2; Escudero, M1., Midgley, J.J.3; Pérez-Barrales, R1,4.;
Arroyo, J. }\mp@subsup{}{}{1
Addresses
1. Departamento de Biología Vegetal y Ecología, Universidad de Sevilla, Spain; 2. current
address: CONACYT-Departamento de Ecología Evolutiva, Instituto de Ecología, UNAM,
México; 3. Department of Biological Sciences, University of Cape Town, South Africa; 4.
current address: School of Biological Sciences, University of Portsmouth, UK.
Running title: convergence of heterostyly in Linum
Author for correspondence:
J. Arroyo
arroyo@us.es
tel +34954557058 fax +34954557059
```

Keywords: Cape Floristic Region, divergence time, heterostyly, life-history, phylogeny, pollination, polyploidy.

Abstract

- Heterostyly is a sex polymorphism which has challenged evolutionary biologists ever since Darwin. One of the lineages where heterostyly, and related stylar conditions, appears more frequently is the family Linaceae and its most diverse and widespread genus, Linum. Thus, this group is particularly suitable for testing competing hypotheses about ancestral and transitional stages on the evolutionary building up of heterostyly. - We generated a well-resolved phylogeny of Linum based on extensive sampling and plastid and nuclear DNA sequences, and used it to trace the evolution of character states of style polymorphism and its association with traits related to pollination and breeding systems, obtained from our samples and the literature. - Our results supported former phylogenetic hypotheses: the paraphyly of Linum and the non-monophyly of current taxonomic sections. Heterostyly was common in the genus, but appeared concentrated in the Mediterranean basin and, to a lesser extent, in the South African Cape. Ancestral character state reconstruction failed to determine a unique state as the most probable condition for style polymorphism in the genus. In contrast, approach herkogamy was resolved as ancestral state in some clades, in agreement with recent hypotheses on the evolution of heterostyly. Some traits putatively related with heterostyly, such as life-history and polyploidy, did show marginal or non significant phylogenetic correlation respectively. Although pollinator data are limited, the available evidence suggests that beeflies are associated with specific cases of heterostyly. - The consistent association between style polymorphism and heteromorphic incompatibility points out to ecological factors as drivers of the multiple evolution of style-polymorphism in Linum. Albeit based on limited evidence, we hypothesized that specialized pollinators and lack of mating opportunities drive evolution of style polymorphism and loss of the polymorphism, respectively.

Introduction

The great variation of flowers across lineages has inspired modern plant classification since Linneaus (1735), as well as the formulation of hypotheses about the causes of extreme angiosperm diversification, otherwise known as the Darwin's abominable mystery (Grant \& Grant 1965; Stebbins 1970, 1974; see Friedman 2009 and references therein for an historical account of Darwin's views). This floral variation also occurs within species and populations, can be continuous or discontinuous, and often appears associated with geographical variation, which has been important to bring insights on the biotic and abiotic causes of such variation (Herrera et al., 2006; Strauss \& Whittall 2006, Gómez et al. 2009). Discontinuous variation at the population level, that is, presence of discrete and modal phenotypes, has been interpreted in the context of population divergence through disruptive selection (Ortiz et al. 2015). However, discontinuous variation sometimes results from negative frequency dependent selection, as the fitness of one phenotype strongly depends on the abundance of alternative phenotypes. At equilibrium, it is expected to find all phenotypes at the same proportion in the population. Discontinuous variation is better understood when accompanied by gender differentiation. With negative frequency selection, the success of the uncommon gender is larger than the common gender, as mate availability for the latter is lower (McCauley \& Taylor 1997; Dufay et al. 2009). A similar situation can be achieved without gender differentiation (Pannell et al. 2005). Such is the case of reciprocal style polymorphisms, present in some hermaphroditic plants, where floral morphs display styles and stamens in a reciprocal position (Fig. 1), in a way that pollination and mating occurs more often between morphs rather than within morphs, maintaining the frequency of morphs at balance (Barrett 2002).

The most common style polymorphism is heterostyly (Barrett \& Shore 2008), for which flowers in populations present two (distyly) or three (tristyly) morphs. This polymorphism called the attention of evolutionists ever since Darwin (1877), and early geneticists, who soon discovered its apparently simple genetic basis (Bateson \& Gregory 1905). Yet, in those early times, it was recognized that most heterostylous species showed the so-called heteromorphic incompatibility system (only crosses between different morphs are compatible, whereas self-fertilization and within-morph cross-
fertilization is impeded, Darwin 1877, Dulberger 1992). During most of 20th century, heterostyly was used as model system to study the evolution of inbreeding avoidance. Specifically, most of the studies interpreted the evolutionary pathways of heterostyly following the proposals of Mather \& de Winton (1941), with important modifications by Baker (1966), ultimately leading to the quantitative model of Charlesworth \& Charlesworth (1979). In short, these models predict that reciprocal style polymorphism evolved after the appearance of the incompatibility system, with an ancestral state of non-herkogamous (homostylous) flowers showing high selfing rates and inbreeding depression. These models were challenged by that of Lloyd \& Webb (1992 a, b), who suggested that the main driving force for the establishment of the polymorphism was the promotion of compatible cross pollination and the decrease pollen discount (enhanced male fitness, as Darwin himself proposed in 1877). The latter model presumed (i) an independent evolution of sex organ reciprocity and an heteromorphic incompatibility system, and (ii) an ancestral condition of an outcrosser with approach herkogamous flowers (i.e., with the stigma protruding the anthers). This model strongly emphasized the ecological context of pollination: specialized pollinators select for and maintain the style morphs if they are able to place pollen grains on different parts of the body, and legitimately deliver pollen to the opposite stigmas, with minimal pollen loss.

The model of Lloyd \& Webb (1992 a, b) has progressively gained more support from both micro- and macroevolutionary studies. Microevolutionary analyses have mostly examined the relative rates of pollination and mating between and within morphs in populations (Lau \& Bosque 2003, reviewed in Costa 2017). In contrast, macroevolutionary models to study how the heterostylous floral syndrome evolved have been relatively scarce compared to population level studies. To this respect, macroevolutionary studies in some plant groups, such as Narcissus, Lithodora and related genera, Pontederiaceae, Exochaenium, Amsinckia, or Primula (Kohn et al. 1996; Schoen et al. 1997; Guggisberg et al. 2006; Pérez-Barrales et al. 2006; Ferrero et al. 2009; Kissling \& Barrett 2013; Santos-Gally et al. 2013) have provided strong support to Lloyd \& Webb's (1992 a, b) ideas. Given that heterostyly is well represented both among lineages of Angiosperms (28 families across many orders in both monocots and dicots; Barrett \& Shore 2008) and biomes, these studies offer good opportunities to explore the
ecological and biogeographical correlates of heterostyly in order to infer the conditions that favour this polymorphism to arise and be maintained. For example, heterostyly should be common in plants with specialised pollination, or should be disadvantageous where outcrossing is at risk, as expected when pollinators are scarce, or in highly disturbed environments (Piper et al. 1986). Likewise, it would be unlikely to find heterostyly associated with hybridization and polyploidy (both associated with selffertilization as by-product, Ramsey \& Schemske 1998), or with short-lived plants, particularly in annuals, as these typically present higher selfing rates and occur more frequently in disturbed places compared to perennial plants (Barrett 2002).

Heterostyly in Linaceae was first reported in the seminal works of Darwin (1864, 1877) and Hildebrand (1864). In particular, Darwin's experimental and observational work on Linum grandiflorum and L. perenne was influential in determining the function of the polymorphism. Later, it was suggested that other genera in the family could include distylous and tristylous species (Lloyd et al. 1990; Thompson et al. 1996). After Darwin's work, geneticists used species of Linum to study the inheritance of heterostyly, and showed that style polymorphism and heteromorphic incompatibility appear linked (Lewis 1943; Dulberger 1992; Lewis \& Jones 1992; Ushijima et al. 2012). Furthermore, the stability of heterostyly as a trait has been valuable for taxonomists, who used it as a binary character ("heterostylous" vs "homostylous") in identification keys and diagnoses (e.g., Ockendon \& Walters 1968; Ockendon 1971; Martínez-Labarga \& MuñozGarmendia 2015; Ruiz-Martín et al. 2015). Thus, taxonomic descriptions have been valuable to characterize species and conduct evolutionary reconstructions of the trait (McDill et al. 2009). However, Linum is a highly diverse genus with a wide geographic distribution, in which the diversity of stylar conditions is much greater than previously reported (Ruiz-Martín, unpublished data; Darwin 1877; Heitz 1980; Armbruster et al. 2006). Most of the taxonomic diversity appears in the Mediterranean and, surprisingly, the morphological variation on the types of polymorphism and other associated traits remains to be explored. Thus, Linum represents an excellent study system for testing macroevolutionary hypotheses and correlates with heterostyly.

The specific aims of our study were: (1) to generate an updated phylogeny of Linum, including lineages and infrageneric taxa recognized in taxonomic studies, (2) to
estimate divergence times in order to date events of evolutionary significance for the polymorphism, (3) to reconstruct ancestral states for stylar condition and other related traits, (4) to estimate the significance of correlated evolution between style polymorphism and those other traits across the phylogeny, and (5) to integrate all these results in a geographical and ecological context, in order to infer the conditions under which heterostyly most likely evolved. Ultimately, we wished to validate current evolutionary models of heterostyly.

Material and methods

Floral measurements and categorization

Previous work reported that style polymorphism in Linum concentrates mostly in the Mediterranean basin and South Africa (McDill et al. 2009). Thus, we concentrated our field sampling efforts in these regions (although other regions were also explored), and also extracted information from published sources. We collected up to 100 flowers from 50 populations from 50 taxa of Linum (Table S1), and preserved flowers in 70% ethanol for morphological measurement in the laboratory. Linum flowers have five styles and five stamens, reaching each of five similar heights (we conducted a pilot study to assess within flower variation in the position of anthers and stigmas, and found that variation within flower was nearly negligible, results not shown). Anther and stigma heights were measured as the distance from base of the ovary to the top of the organ. All measurements were taken from digital images of the lateral view of flowers with petals removed, using ImageJ (Rasband 2008). Images were previously taken using a stereomicroscope (Zeiss Stemi-2000) with attached digital camera (Zeiss Axiocam). Data for the remaining Linum species and outgroups were collected from the literature (see Table S1 in Suppl. Material).

We classified flowers of style polymorphic species as L-morph when the stigmas were positioned above the anther whorl, and S-morph when the stigmas were below the anther whorl. Style polymorphism includes two morphs (distyly and stigma height dimorphism) or three morphs (tristyly and stigma height trimorphism); and here we
refer to stigma height polymorphism as the discrete variation in stigma height but not in anther height, a condition related with heterostyly (Barrett et al. 2000). Species with populations with only one floral morph were named monomorphic and classified as follows: homostylous (no apparent separation between sexual organs), approach or reverse herkogamous (stigmas placed above or below the anther whorl respectively), and horizontal herkogamous (anther-stigma separation along the horizontal plane of the flower). This classification was based on extensive flower measurements and the frequency distribution of sex organ heights among population (Ruiz-Martín, unpublished data). It is important to highlight that most of taxonomic references classify style polymorphism as heterostylous (sometimes discriminating distyly from tristyly) or homostylous; the latter referring to any style monomorphic condition, regardless the relative position of anthers and stigmas (see description above). This distinction is critical for testing models of evolution of heterostyly in relation to the ancestral stylar condition (true non-herkogamous homostyly in Charlesworth \& Charlesworth 1979 vs. approach herkogamy in Lloyd \& Webb 1992a): Hence, the species that could not be sampled in the field were we characterised using the quantitative information provided in taxonomic descriptions (e.g. approach or reverse herkogamous when no overlap was reported between stamen and style length, otherwise homostylous).

We included other biological traits of species putatively related with style polymorphism, and gathered information from the literature on life-history, chromosome number, breeding system, pollinators, ancillary traits (polymorphism in size and form of pollen grains and/or stigma papillae) and genetic control of polymorphism (see Table S1 Suppl. Material, for references).

Given the lack of a comprehensive monograph for species identification on Linum, we followed the most recent and comprehensive taxonomic treatment for regions with high species diversity in the genus: Yusepchuk (1949), Davis (1967), Ockendon \& Walters (1968), Rogers (1981), Greuter et al. (1984), Yilmaz \& Kaynak (2008) and McDill et al. (2009).

Phylogeny and divergence times

Sampling. 103 samples from 93 species or subspecies of Linum were included as ingroup, representing the five taxonomic sections. Two or three samples from different localities were included for nine Linum species with taxonomical doubts to test for monophyly. In addition, samples from eight species representing closely related genera (Anisadenia, Cliococca, Hesperolinon, Hugonia, Radiola, Reinwardtia, Sclerolinon and Tirpitzia, McDill et al. 2009) were included to evaluate if Linum is a monophyletic genus. Three species from closely related families (Hypericum perforatum from Hypericaceae, Viola pubescens from Violaceae, and Humiria balsamifera from Humiriaceae) were also included as outgroup (Table S1).

Fifty-five leave samples from 48 species or subespecies of Linum were collected in field trips (vouchers stored at SEV herbarium; Table S1), whereas leaves from additional 18 taxa were obtained from herbaria collections (SEV, MA and E, Table S1). The DNA sequences from the remaining 29 species of Linum, eight of Linaceae and three from other families were directly downloaded from GenBank data base and previously published (see Table S1 for species and references). Two taxa were sampled in the field and obtained from herbaria.

DNA extraction, PCR and sequencing. Total genomic DNA was extracted using DNEasy Plant Minikit (QIAGEN Inc., BIO Laboratories Inc., Carlsbad, CA, USA). One nuclear DNA region, ITS (internal transcribed spacer), and three plastid DNA regions, NADH dehydrogenase subunit $\mathrm{F}(n d h F)$ gene, maturase $\mathrm{K}(m a t K)$ gene and trnL-F spacer were amplified, purified and sequenced. PCR amplification was performed following McDill et al. (2009), with minor modifications. Products were purified using ExoSAP-IT (USB, Cleveland, Ohio, USA). Sequencing reactions were performed using the ABI BigDye® Terminator v3.1 Cycle Sequencing Kit (Thermo Fisher Scientific Inc., Massachusetts, U.S.A.) in Macrogene Europe Laboratory (Amsterdam, The Netherlands).

Phylogenetic analyses. Sequences from the four DNA regions were aligned separately using MaffT 6.0 FFT-NS-I (Katoh \& Toh 2008) as implemented in Geneious Pro ${ }^{\text {TM }} 5.3$ (Kearse et al. 2012). The resulting alignments were manually revised. Putative homoplasic regions were detected and removed from the alignments using GBlock v0.91b (Castresana 2000). Incongruence between DNA regions was discarded and the four DNA regions were combined in a single matrix ($2,900 \mathrm{bp}$).

Bayesian inference analysis was performed using Markov chain Monte Carlo (MCMC) as implemented in MrBayes3.0b4 (Huelsenbeck \& Ronquist 2001). The bestfitted model of DNA evolution for each DNA region was selected from the analysis in ModelTest 3.06 (Posada \& Crandall 1998). GTR +G +I was selected for ndhF and matK regions and GTR +G for $\operatorname{trn} L-F$ and ITS regions. To avoid overparameterization, we combined the three plastid regions in a matrix and analyzed it together using GTR $+\mathrm{G}+\mathrm{I}$ model. Two independent analyses of four Metropolis-coupled Markov chains were run for 10 million generations. After a burn-in of 25%, the remaining trees $(15,000)$ were used to construct a majority-rule consensus tree using posterior probability values as a measure of clade support. Phylogenetic analyses were performed using CIPRES Science Gateway V. 3.3 portal (Miller et al. 2010).

Analyses of divergence times. The four DNA regions were combined in a single partition (using GTR $+\mathrm{G}+\mathrm{I}$ as DNA model of evolution). Analyses were conducted using three independent MCMC runs of 120 million generations each, using Yule process as tree model and relaxed clock log normal as clock model, as implemented in BEAST v1.4.8 (Drummond \& Rambaut 2007). Run convergence and burn-in were assessed in Tracer 1.6 (Rambaut \& Drummond 2007). Trees from the three independent runs were combined using LogCombiner 1.4.8 (10\% of burn-in). Maximum clade credibility trees were calculated with TreeAnnotator 2.3 .2 using a posterior probability limit of 0.95, maximum clade credibility tree and the mean heights options.

Two calibration points were used: 1) a secondary calibration base on the age of the stem node of Linaceae which is the Malpighiales crown node (Bell et al. 2010). Specifically, a normal distribution with a mean of 93.5 Ma ($95 \% \mathrm{CI} 88-97 \mathrm{Ma}$) was used as recommended for secondary calibrations. And, 2) a log-normal distribution with mean $=0$, standard deviation $=1.0$ and zero offset $=33.9$ for the crown node of genus Linum (which includes genera Cliococca, Hesperolinon, Radiola and Sclerolinon). This last calibration point accounts for the oldest Linum fossil. This is a pollen grain from Ebro River Basin (33.9-37.2 Ma, Late Eocene, Cavagnetto \& Anadón 1996). Analyses of times of divergence were performed using CIPRES Science Gateway V. 3.3 portal (Miller et al. 2010) and the cluster located in Andalusian Scientific Information Technology Center (CICA, Seville, Spain).

Ancestral state reconstruction. We used maximum likelihood approaches to reconstruct the ancestral states of the stylar polymorphism in Linum, implemented in R (R Core Team 2015). We performed the analyses on the BEAST Bayesian phylogenetic tree obtained from ITS and chloroplast DNA regions. This tree was pruned to remove tips when the information of character state was unavailable. Because we included more than one sample for eight species, we also pruned the additional samples for the same species in the case of monophyly. Outgroup species and Hugonia busseana (Linaceae) were also pruned. Character ancestral state was estimated for each internal node of the tree using the re-rooting method of Yang et al. (1995) provided as a function in the package "phytools" (Revell 2012), where conditional probabilities are calculated for the root node (which is the same as the marginal state reconstruction for that node) and consecutively moves the root to each node in the tree. First, just to compare results with former studies based on a simple binary codification (McDill et al. 2009), we reconstructed ancestral states to understand the evolution of monomorphic vs. polymorphic states. The former included any of the states without within-population differentiation in morphs, with or without herkogamy; the latter include any of the style polymorphisms found. Second, we considered for the analysis of ancestral state reconstruction only relevant states to the two competing hypotheses of the evolution of heterostyly (Charlesworth \& Charlesworth 1979; Lloyd \& Webb 1992a). Thus, we formed five state groups: 1) monomorphic homostyly (ancestral state proposed by Charlesworth \& Charlesworth 1979); 2) monomorphic approach herkogamy (ancestral state proposed by Lloyd \& Webb 1992a); 3) monomorphic reverse herkogamy, which is the alternative state to monomorphic approach herkogamy; 4) style polymorphism including conventional distyly, three-dimensional distyly, stigma-height dimorphism and trimorphism; and 5) monomorphic horizontal herkogamy. The latter is not considered in any of the models, but it was found in some species and we were interested in determining its evolutionary pathway. Finally, because the most common ancestor of Linum (genus Tirpitzia) presents two monomorphic and one heterostylous species (Suksathan \& Larsen 2006), we reconstructed ancestral states for Linum codifying the genus Tirpitzia first as monomorphic and second as heterostylous.

Phylogenetic correlations. To test the evolutionary correlations between stylar polymorphism and life history, and stylar polymorphism and polyploidy in Linum, we performed Pagel's (1994) binary character correlation test implemented in the package "phytools" (Revell 2012) in R (R Core Team 2015). We performed the analyses on the same tree used for ancestral reconstruction analysis. The tree was pruned to include species for which information on stylar morph (monomorphic vs. polymorphic), life history (perennial vs. annual), and polyploidy (diploid vs. polyploid) was available. The method applies a continuous-time Markov model of trait evolution that calculates the likelihood of discrete trait data under two models of evolution, one in which the traits are allowed to evolve independently of one another on the phylogenetic tree and one in which they evolve in a correlated fashion (dependent model). The independent and dependent models can be compared by means of a likelihood ratio test, calculated as $2(\log [$ likelihood (dependent model) $]-\log [$ likelihood (independent model)]). Significance of the difference in log likelihoods is based on a χ^{2} distribution with 4 degrees of freedom (4 parameters are estimated in the independent model and 8 are estimated in the dependent model). The parameters of the model of trait evolution are the values of the transition rates between the four possible character state combinations in a model of correlated evolution.

Results

Style polymorphism and other traits. Table S1 includes detailed information on traits from species. From field sampling or from bibliographic sources, we obtained information for 85 Linum species or subspecies, and 11 outgroup species. Our data includes 60% of species number (141) of Linum, as recorded at The Plant List (2013). Detailed quantitative data of flower measurements are still unpublished, and here we summarize the main results (see Table S1). Within Linum, 44 (47.3\%) species presented some kind of style polymorphism, 41 (44.1\%) were monomorphic, and eight (8.6\%) lacked sufficient information to ascertain the stylar condition. Style polymorphic species
were mostly distylous (two morphs), but we identified deviations from typical distyly in some species, which we describe here. Armbruster et al (2006) reported a new type of distyly in the western Mediterranean endemic L. suffruticosum, showing high reciprocity, in three dimensions: on the vertical axis of the flower (flowers are from either L- or S-morph), on the radial axes (flowers have either outer stamens and inner styles or vice-versa) and on the longitudinal axis of each sex organ (anthers and stigmas are twisted to inner or outer side of the flower, Fig. 1). Information provided by Darwin (1877) in L. grandiflorum indicates that the species displays stigma-height dimorphism, that is, styles are either long or short, but stamens are not perfectly in a reciprocal position to stigmas. In the literature, we also found that Heitz (1980) mentioned some populations of L. perenne as having similar stigma-height dimorphism as in L. grandiflorum. Finally, L. hirsutum represents an interesting case resembling trimorphism. In our survey, we observed two anther levels and three style lengths in three populations sampled, but our sample size was limited as to completely ascertain it (Ruiz-Martín, unpublished data). Given the paucity of these unconventional cases of polymorphism, all of them were pooled as style polymorphism for the analysis of ancestral state reconstruction and correlated evolution, and their particular position along the tree is discussed below.

Monomorphic species or subspecies of Linum were also variable: nonherkogamous homostyly was observed in 16 species, approach herkogamy in 19 species, reverse herkogamy in three species and horizontal herkogamy also in three species

We found information on breeding system in only 19 species. Twelve species were reported as self-incompatible and seven species as self-compatible; the former were all style polymorphic whereas the later were all monomorphic. All selfincompatible species presented a typical heteromorphic incompatibility system. We found data on ancillary traits (any heteromorphism on pollen size or colour, exine sculpturing, stigma width, stigmatic papillae) for eight taxa, all of them being distylous.

With regards life-form, 27\% Linum species in our sample were annual and 73\% perennial (Table S1). We found reports on chromosome numbers in 50 taxa, with 23 being style polymorphic and 27 monomorphic. Ten out the former and three out the
latter showed variation in the level of polyploidy (different counts of the whole chromosome set, Table S1). A particularly noteworthy case is that of L. suffruticosum, with a polyploid series from diploid to decaploid (Nicholls 1986; Ana Afonso, personal communication).

The current information on the pollination biology of Linum species is scarce. Beeflies from the genus Usia (Bombyliidae) seem important pollinators in some distylous species from the Mediterranean basin. Distylous L. pubescens was almost exclusively pollinated by U. bicolor in eastern Mediterranean (Johnson \& Dafni 1998; Gibbs 2014). Armbruster et al. (2006) observed that L suffruticosum was also almost exclusively pollinated by several Usia beeflies, whereas other flies and bees visited flowers but did not function as effective pollinators. Our own observations in additional populations of L. suffruticosum confirmed that Usia beeflies are the main pollinators, as well as in the distylous western Mediterranean L. tenue, and to a lesser extent L. viscosum, and L. narbonense (unpublished data). In contrast, monomorphic EuropeanMediterranean L. tenuifolium was visited by a wide array of pollinators, including mostly bees and to a lesser extent flies (but not beeflies) of different size (see Fig 1). Monomorphic L. bienne was reported to be visited by large Bombylius spp. beeflies (Boesi et al. 2009), which often hover over flowers to collect nectar, rather than crawl down to the bottom of the flower, as observed in smaller Usia (Johnson \& Dafni 1998; Armbruster et al. 2006). Its close relative, the monomorphic L. usitatissimum (cultivated flax), appeared visited mostly by bees (Ssymank et al. 2009). Finally, Kearns \& Inouye (1994) reported that North American monomorphic L. lewisii received visits by 25 species of nine families of flies and 19 species of four families of different orders, with very different body size, pollination efficiency, visit rate, and frequency across populations.

Phylogenetic reconstruction based on Bayesian inference. The analyses of the three plastid (rbcL, matK and trnL-F) and nuclear (ITS) regions recovered congruent topologies under Bayesian criteria (data not shown), thus a consensus tree is shown (Fig. S1). Inferred trees were partially congruent with taxonomical subgeneric classification of Linum (sections) as already shown by McDill et al. (2009). Whereas the
genus Linum was paraphyletic, as core Linum included the genera Cliococca, Hesperolinon, Screrolinom and Radiola, the family Linaceae was monophyletic. The topology recovered by MrBayes (Fig S1) showed two main clades, similar to what was found by McDill et al. (2009). The first clade, Clade A, was mainly formed by sects. Linum and Dasylinum, mainly from Eurasia. Specifically, a species from sect. Linum, L. stelleroides from China, is sister to two main clades, Clade A1, the one formed by most of the species from sect. Dasylinum and the second clade, Clade A2, formed by most of the species from sect. Linum (including also some species from sect. Dasylinum). The second main clade, clade B, was formed by the other genera included in core Linum and the remaining sections (Linopsis, Syllinum and Cathartolinum). Specifically, Radiola is sister to two main clades, Clade B1, the one formed by genera Cliococca, Hesperolinon and Scleronlinon and sect. Linopsis from North and South America and South Africa, and the second clade, Clade B2, formed by sects. Linopsis (excluding the species from America and South Africa), Syllinum and Cathartolinum, and with a distribution mainly in Europe, Mediterranean basin, and western Asia.

Times of diversification. The topology of the maximum credibility tree inferred from BEAST (Fig. 2) analyses was highly congruent with the majority rule consensus tree inferred from MrBayes. The divergence time for crown node of Linaceae was 61.35 (MYA) (95\% CI: 44.48-84.62) (Fig 2). The crown node of core Linum was dated back to 35.37 MYA (95\% CI: 33.95-43.31). The crown node of Clade A was dated back to 30.38 (95% CI: 23.65 - 38.59). The crown node of clade A1 was about 10.62 MYA (95\% CI: 5.62 - 17.42) and the crown node of clade A2 was about 21.89 MYA (95\% CI: 15.26-28.67). The crown node for clade B was dated back to 19.7 MYA (95\% CI: 11.48-29.49). Finally, the crown node of clade B1 was about 9.02 MYA (95\% CI: 5.58-29.49) and the crown node of clade B2 was about 14.67 MYA (95\% CI: 8.95-22.06).

Evolutionary pathways of style polymorphism and phylogenetic correlations. Binary reconstruction (monomorphism vs. polymorphism). There were no significant differences when Tirpitzia was coded as polymorphic or monomorphic.

Equivocal ancestral state reconstruction of the most common ancestor of Linum and core Linum (Clade A, Clade A1, Clade A2, Clade B and Clade B2, Fig. 3) precludes inference whether the evolution of heterostyly derived from monomorphic or polymorphic condition. However, within particular clades in the genus it is possible to infer some trends. In Clade A1, there is a transition from polymorphism to monomorphism, although this is not significant (see L. seljukorum). Within Clade A2, three clear and significant transitions from polymorphism to monomorphism were inferred (see L. leonii, L. pallescens and L. lewisii). The transitions from monomorphic to polymorphic state are also inferred in this clade (see L. grandiflorum and L. narbonense) but they were not significant. The most recent common ancestor of Clade B1 is clearly inferred as monomorphic with two significant transitions to polymorphism (see South African L. comptonii and L. heterostylum). Within Clade B2, transitions from polymorphism to monomorphism and from monomorphic to polymorphic states were not clear.

Five-state reconstruction. There were no significant differences when Tirpitzia was coded as polymorphic or monomorphic. Again, equivocal ancestral state reconstruction of the most common ancestor of Linum precludes sound inference (Fig. 4). The most recent common ancestor of core Linum, Clade A, Clade A1, Clade A2, Clade B and Clade $B 2$ is equally likely to have presented homostyly or polymorphic state. Within Clade A, clear and significant transitions from polymorphism to homostyly (see L. leonii and L. pallescens; also see L. seljukorum although it was not significant) and from polymorphism to approach herkogamy (see L. lewisii) were inferred. Also within Clade A, transitions from homostyly to polymorphic state (see L. grandiflorum and L. narbonense) and, to approach herkogamy (see L. hologynum) were inferred, although they were not significant. The most recent common ancestor of Clade B1 is approach herkogamy with four possible transitions inferred: to horizontal herkogamy (see He . micrantum and L. tenuifolium), to polymorphism (see L. comptonii and L. heterostylum), to reverse herkogamy (see L. littorale and L. prostratum) and to homostyly (see S. digynum). Reconstruction of shallower nodes of Clade B2 inferred clear and significant transitions from polymorphic state to reverse herkogamy (see L. nodiflorum), to horizontal herkogamy (see L. tenuifolium) and to homostyly (see L. corymbulosum- L.
trigynum clade; only marginally significant). Also within Clade B2 a transition from homostyly or from polymorphic state to approach herkogamy was inferred (see L. volkensii).

Trait correlations. There was marginal support for the correlation between presence of stylar polymorphism and perennial life-history of species. Our results indicated that a dependent model of evolution between life history and stylar polymorphism provided a marginally significant better fit to the data than an independent model (difference between likelihood-ratio $=9.136, p=0.057$). For the set of 50 species where we were able to obtain data on chromosome number, there was no significant correlation between presence of stylar polymorphism and polyploidy (difference between likelihood-ratio $=3.646, p=0.456$).

Discussion

Linaceae is a family that includes some of the largest morphological diversity of style polymorphisms, with homostyly and different types of herkogamy, stigma-height dimorphism and trimorphism, distyly, and tristyly, and Linum seems to display most of this diversity. This allows testing evolutionary models for those traits where specific transitions are predicted, as proposed by Charlesworth \& Charlesworth (1979) and Lloyd \& Webb (1992a). Particularly, Lloyd \& Webb's (1992a) model challenged the formerly prevalent ideas represented by Charlesworth \& Charlesworth (1979), and proposed an alternative ancestral condition (approach herkogamy, instead of homostyly) to heterostyly. Interestingly, Hugonia within Linaceae was one of the study cases that inspired the new model (Lloyd et al. 1990), which was later confirmed as tristylous (Thompson et al. 1996; Meeus et al. 2011). Although the variation in Linum inspired Darwin to interpret the adaptive significance of heterostyly (Darwin 1877), it is surprising that the variation of stylar conditions in the genus has rarely been explored (but see Armbruster et al. 2006 and McDill et al. 2009). In our study, we wished to validate current evolutionary models, for which we generated an updated phylogeny,
incorporated the wide variety of stylar conditions, and explored trait correlates to throw light on the plausibility of the alternative models. As discussed below, our results failed to ascertain clearly the ancestral condition in the genus, which precluded supporting any of the competing models, with the exception perhaps of the South African clade, which supported the Darwinian model of Lloyd \& Webb (1992a). The information that we gathered in addition to the stylar condition was limited, and precluded statistical analyses to incorporate the evolutionary significance of breeding systems, pollination biology and biogeography of species for this purpose. However, life-history and polyploidy provided plausible explanations for the presence of style polymorphism. Our main result is that, with the data available, both models could explain parts of the evolution of heterostyly in Linum.

Phylogeny, divergence times and geographic ranges. We confirmed taxonomic aspects that deserve further work (e.g., the inclusion of four Linaceae genera resulted in the paraphyly of Linum, and the non-monophyly of some sections, see McDill et al. 2009 and McDill \& Simpson 2011). Despite our sampling efforts almost duplicated sampling in previous systematic work (McDill et al. 2009) and included a larger proportion of Linum species, and that some of the DNA regions used were different, we obtained similar results to those previously reported by McDill et al. (2009) and McDill \& Simpson (2011), making the phylogeny reported here more plausible and valuable for testing evolutionary hypotheses.

In our study we found that, unlike species from other geographic regions, the South African species, which all belong to the sect. Linopsis, formed a well-supported monophyletic clade. In addition, the South African clade turned to be closely related to the American clades, rather than the Euroasiatic clades from the same section. This result has important implications for evolutionary interpretations because none of the surveyed American Linum species present stylar polymorphisms, while species in sect. Linopsis in Eurasia do. In our analyses, we were interested to estimate the sequence of divergence dates leading to clades present in the Mediterranean Basin and South Africa, the latter being the only region with style polymorphic Linum species outside the Mediterranean basin. Thus, it is remarkable that the South African clade separated from
its monomorphic sister American clade in the late Miocene, about 9 MYA. In contrast, its closest Mediterranean clade, which includes members of sect. Linopsis and sect. Syllinum (with mostly western and eastern Mediterranean species respectively), diverged much earlier (in middle Miocene, more than 14 MYA). Unlike the American clade, Mediterranean clades include many style polymorphic species. By the time the clades split, continents were already separated, particularly Africa and the Americas. Thus, episodes of long distance dispersal should be invoked or, alternatively, massive extinctions of connecting clades in Africa, which would not have left a living or fossil trace. These episodes are coincident with last Antarctic glaciation and sharp decrease in temperature in southern Africa (Linder 2005). Regardless the specific events, it is remarkable that the American clades did not include any style polymorphic lineage. A proper biogeographical analysis incorporating explicit palaeogeographic settings would be necessary to ascertain the most likely scenario.

Evolution of style polymorphism in Linum (models test). Previous work in Linum (McDill et al. 2009) provided a plausible reconstruction of pathways of heterostyly and "homostyly" (including all types of monomorphic conditions). Despite differences in sampling and molecular markers, our findings were similar to those previously reported (Fig. 3). Specifically, we were unable to determine the most likely ancestral stylar condition in the genus, which could be either style polymorphic and monomorphic (our terms). The variability of stylar conditions in Linaceae and in Linum (Ganders 1979; Lloyd et al. 1990; Thompson et al. 1996; Suksathan \& Larsen 2006; McDill \& Simpson 2011) combined with the inferred high transition rates among character states, and long-branches arising from the root of the phylogeny may explain this lack of resolution. An analysis at the family level would probably throw more light and allow better resolution of the ancestral condition. Despite lack of resolution at the basal stage, we detected several events of independent evolution of the polymorphism along the evolutionary history of Linum. Although some clades are integrated by mostly monomorphic or polymorphic species, any of these conditions appears secondarily lost, even in pairs of sister species. For example, loss of polymorphism was detected in L. seljukorum-L. pubescens, L. leoni-L. punctatum, L. lewisii-L pallescens, L. tenuifolum-L.
suffruticossm, L. corymbulosum-L. trigynum. In addition, polymorphic species evolved in most of monomorphic clades, as shown by the species pairs L. grandiflorum-L. decumbens, L. comptoni-L. pungens; L. heterostylum-L. esterhuysenae. Particularly dynamic in evolutionary grounds was clade B2 (Fig. 3), especially most of the Western Mediterranean subclade, including species from L. virgatum to L. setaceum. This clade includes L. suffruticosum s.l., (López-González 1979; Martínez-Labarga \& MuñozGarmendia 2015) with a special case of three-dimensional reciprocity (Armbruster et al. 2006), L. tenue, a polyphyletic species with substantial morphological variation in NW Africa (J. Arroyo and J. Ruiz-Martín, pers. observ.), as well as a recently named new distylous species, L. flos-carmini (Ruiz-Martín et al. 2015), different from its sister species, the homostylous L. setaceum. All this variation clearly reflects that further work is required in these taxa and geographic range.

Perhaps one of the most remarkable outcomes is the independent evolution of heterostyly in two South African species within a clade integrated by 14 species. In his taxonomic review, Rogers (1981) suggested that heterostyly appeared in South Africa independently from its occurrence in the Mediterranean basin and nearby regions, which was later supported by McDill et al. (2009), and here we confirmed. Although limited, our population sampling allowed us to confirm the presence of distyly in L. comptonii and L. heterostylum. Because the South African Linum clade is monophyletic and closely related to the monomorphic clade of American Linum species, the independent evolution of the polymorphism is thus fully supported. Unlike American species, all South African Linum species, except L. thurnbergi, are restricted to Mediterranean type climate of the Cape Floristic Region (Rogers 1981). Thus, the presence of style polymorphism restricted to Mediterranean climates (the Cape and the Mediterranean basin) points out to an apparent case of parallel evolution linked directly or indirectly to climate. In other Mediterranean climate regions of the world the number of Linum species is much lower.

The characterisation of monomorphism as homostyly and different types of herkogamy (Fig. 4) depicted a complex picture with regards the evolutionary reconstruction of pathways, but allowed us to explicitly test competing hypotheses of ancestral stylar state. Whereas the ancestral state at the genus level was unresolved, the
only clade within Linum with certainty in the ancestral condition was the South African clade. Here, the Lloyd \& Webb (1992a) model was fully supported, with approach herkogamy as ancestral condition. Interestingly, approach herkogamy is widespread in this clade. In contrast, approach herkogamy is uncommon in other clades (e.g. L. hologynum, L. lewisii, L. and volkensii) whereas homostyly appears frequently. This homostyly is secondary, derived from a polymorphic condition, and probably associated with shifts towards selfing to increase reproductive assurance (see for instance L. corymbulosum and L. trigynum, or L. leonii). Such shifts have been reported in other style polymorphic groups (Schoen et al. 1997; Guggisberg et al. 2006; Mast et al. 2006; PérezBarrales et al. 2006; Kissling \& Barrett 2013; Santos-Gally et al. 2013). More detailed information on the breeding system of the species would confirm this hypothesis.

Other stylar conditions are scarcer. Reverse herkogamy, a necessary phenotype in an intermediate step for the establishment of style polymorphism in any model, was detected in the Mediterranean L. nodiflorum and the two South American sister species L. littorale and L. prostratum. Surprisingly, reverse herkogamy appeared in these species as derived monomorphic condition. This transition has been reported in Exochaenium in the Gentianaceae (Kissling \& Barrett 2013), although it remains unclear the mechanisms that favours the selection of monomorphic reverse herkogamy. Horizontal monomorphic herkogamy was detected in two Linum species, L. kingii and L. tenuifolium, and in two closely related genera, Hesperolinum and Radiola, which are placed within Linum. This condition might result from selection to avoid selfpollination, as in the self-compatible L. tenuifolium (Nicholls 1986) (see Fig. 1). Finally, it was not possible to include an evolutionary reconstruction of stigma height dimorphism, as it is an unusual condition in Linum, only present in L. grandiflorum and perhaps L. perenne (Heitz 1980). This condition has been reported as an intermediate and unstable state towards heterostyly (Lloyd \& Webb 1992b, but see Barrett \& Harder 2005), which is consistent with its unclear ancestral/derived condition. This evolutionary lability has been reported for stigma-height dimorphism in some Boraginaceae (Ferrero et al. 2009).

Correlated evolution and trait associations. Few studies have attempted to investigate correlations between style polymorphisms and other traits in an explicit phylogenetic context, and these have focused on associations with other floral traits (e.g. corolla size and form: Santos-Gally et al. 2013; Kissling \& Barrett 2013). In our study, we were interested to investigate the association between style polymorphism and life history (annual vs perennial). This association is expected (Dulberger 1992) because pollination of style polymorphic plants is often specialized (Darwin 1877; Lloyd \& Webb 1992a; Lau \& Bosque 2003), and short-lived plants, especially annuals, are more sensitive to loss of these pollinators or pollinator uncertainty, and shifts to selfing are more likely to occur. Our results showed that style polymorphism occurs more frequently among perennial than annual species, although the association was only marginally significant. However, we only gathered data for a subset of species, and data on breeding systems from more species would be particularly valuable here. Despite the limitations, this result suggests that reproductive assurance is probably important in annual species, and most likely plays a role against maintaining style polymorphism.

An important trait associated with breeding system and thus with style polymorphism is polyploidy. The available evidence shows variation in the correlation between heterostyly and polyploidy, ranging from lack of association to heterostyly being frequent among diploids (Naiki 2012). Across families, a phylogenetic account of these studies suggests that this may stand only for Rubiaceae and Primulaceae (Naiki 2012). At least for Primula, it has been demonstrated that heterostyly is not present among allopolyploid taxa (Guggisberg et al. 2006), which has been also suggested for Turnera (Shore et al. 2006). This is in agreement with the mechanism of breakdown of heterostylous supergenes by recombination linked to hybridization (Lewis \& Jones 1992). Although hybridization between some Linum species has been reported, the species involved displayed similar chromosome numbers (Seetharam 1972; Muravenko et al. 2003; Yurkevich et al. 2013), which does not promote breakdown of heterostyly. We were unable to detect a significant correlation between polyploidy and heterostyly in our data set of 50 species of Linum. It could be possible that our data includes mostly polyploidy series of autopolyploids. This is well illustrated by the closely related L. tenuifolium and L. suffruticosum. Linum tenuifolium is monomorphic, self-compatible and
diploid across its wide range in Europe and western Asia (Nicholls 1986). In contrast, L. suffruticosum, with three-dimensional reciprocity (Fig. 1, Armbruster et al. 2006), displays a polyploid series from diploidy to decaploidy (Nicholls 1986; Ana Afonso, unpublished data) across its western Mediterranean range whilst maintaining the style polymorphism and heteromorphic incompatibility (Ruiz-Martín, unpublished). Despite the information on incompatibility systems in Linum is limited to only few species, all self-incompatible species display heteromorphic incompatibility, whereas selfcompatible species are monomorphic, with no intermediate cases being reported. Thus, the independent evolution of presence and type of self-incompatibility and style polymorphism proposed by Lloyd \& Webb (1992a) is not supported. Interestingly, in eight style-polymorphic ancillary traits (dimorphism on pollen grains and stigmas) seemed to be linked to specific floral morphs, reinforcing the cohesiveness of the heterostylous syndrome in Linum.

A possible role of pollinators in the evolution of style plymorphisms in Linum? One of the most insightful predictions made by Lloyd \& Webb (1992a) stated that pollinators are critical for the selection of style polymorphisms. Pollinators need to fit tightly with flowers and contact anthers and stigmas in specific body parts to legitimately transfer pollen between morphs. This involves precise shape of flowers and behaviour of pollinators. At present, the scarcity of pollinator data on Linum precludes explicitly testing this hypothesis across the genus. However, studies on the pollination ecology of some species offer interesting insights. Specifically, flower morphology in Linum is relatively consistent in shape across species (funnel-like corolla of limited variation in tube width and length, Fig. 1), thus pollinator behaviour becomes crucial. This has been studied in L. pubescens (eastern Mediterranean range, sect. Dasylinum, clade A1 in Fig. 4; Johnson \& Dafni 1998) and L. suffruticosum (western Mediterranean, sect. Linopsis, B2 in Fig. 4; Armbruster et al. 2006), both almost exclusively pollinated by Usia beeflies (Bombyliidae), with U. bicolor in L. pubescens and two species of different size in L. suffruticosum. In these two Linum species, the behaviour of Usia was similar and typical of these beeflies (Orueta 2002): they land on flowers and crawl to the bottom of the flower tube searching for nectar. Armbruster et al. (2006) described that the three
dimensional reciprocity in L. suffruticosum allows separation of the placement of pollen from L and S flowers on the ventral and dorsal parts of the Usia body respectively. Those authors interpreted that the combination of the Usia behaviour with the three dimensional reciprocity probably increased legitimate pollinations between stylemorphs (Fig. 1). Usia species seem to commonly visit other Mediterranean distylous Linum species (Du Merle \& Mazet 1978; and personal observations). Interestingly, Usia is a truly Mediterranean genus, with its highest species diversity in southern Iberian Peninsula, northwestern Africa, and Anatolia (Gibbs 2011; 2014), also with the highest diversity in Linum species. Whether heterostyly in Linum is restricted in the Northern Hemisphere to the Mediterranean basin due to its tight association with Usia flies, is a challenging hypothesis that deserves further insight.

The examples of specialized pollination by Usia provide some support to the Darwinian model of Lloyd \& Webb (1992a), particularly in L. suffruticosum. This species possess a heteromorphic incompatibility system, which prevents all illegitimate crosses bewteen- and within morphs (Nicholls 1986; Ruiz-Martín, unpublished data). Why then has the sophisticated three-dimensional reciprocal distyly, including reciprocal torsion of stamens and styles, evolved apart from increasing efficiency of between-morph pollination and thus avoiding pollen discounting? Torsion of sex organs was first observed by Darwin in L. grandiflorum (Darwin 1877), and latter reported in the monomorphic L. usitatissimum (Schewe et al. 2011). Unfortunately, we lack information on the pollination ecology of heterostylous Linum species in the Cape Floristic Region (CFR) of South Africa, which prevents us to make strong inferences about the causes of the independent evolution of heterostyly there. Although Usia is not present in the CFR, fly pollination in South Africa is common (Johnson 2010), and it would not be surprising that other Bombyliidae or other fly families behave similarly to Usia. Interestingly, the recent description of three-dimensional reciprocity in a group of tristylous CFR Oxalis species (Oxalidaceae) (Turketti et al. 2012), with similar arrangement of stamens and styles to that described in L. suffruticosum and similar flower morphology (i.e. funnellike corollas) confirms the suggestion of Armbruster et al. (2006) that perhaps this kind of polymorphism is not so unusual, and closer examinations of sexual whorl
arrangement and pollinator fit can help identifying new examples, providing additional support to the Darwinian view on the function and evolution of heterostyly.

Conclusions

Linum is a good model system for studying the evolution of heterostyly, both at macro and microevolutionary levels. Our data revealed that Linum includes a wide range of morphological variation related to the heterostylous floral syndrome. In contrast, genetic systems linked to heterostyly seems to be rather invariant, for which it could be assumed, as working hypothesis, that pollinators have moulded current floral morphological variation on sex organs. Phylogenetic relationships have been reasonably well resolved, allowing testing specific hypotheses about the evolutionary pathway that allow the acquisition of the style polymorphism. While our analyses precluded inferring the ancestral condition to style polymorphisms in the genus, some of its clades showed that approach herkogamy appears to be the most likely ancestral condition, as Lloyd \& Webb (1992a) proposed. Interestingly, species with similar floral trait assemblages in independent clades and in different areas of the Mediterranean basin and South Africa are found. This suggests that ecological adaptations, perhaps mediated by pollinators, rather than phylogenetic conservatism is probably the main driver for the evolution of the stylar polymorphism. Future research to underpin the function of pollinators in the promotion of disassortative pollen transfer in different conditions and regions is necessary to provide further support to the Darwinian pollinator hypothesis for the evolution of heterostyly.

Acknowledgements

This study forms part of a PhD project of JRM, who received a fellowship from MINECO (FPI: BES-2008-003946). This study was funded by MINECO grants (CGL2013-45037-P, CGL2010-11379-E, CGL2009-12565, CGL2006-13847-CO2-01). RSG was recipient of a postdoctoral contract from the Andalusian regional government (excellence grant P09-RNM-5280) and from the University of Seville. RPB had a postdoctoral contract of the "Juan de la Cierva" program, and ME had a postdoctoral contract of MINECO. Many
people helped in collecting or locating populations, particularly: J.J. Aldasoro, M. Benavent, Y. Bouchenak-Khelladi, A. de Castro, S. Gómez-González, J. A. Mejías, P. Peñalver, S. Moreno A. Pérez and Ross Turner. Blanca Arroyo, Yuval Sapir and Ross Turner provided some photographs for Fig. 1 and Jordi Bosch identified bees on Linum tenuifolium flowers. Ana Afonso, Silvia Castro and Joao Loureiro provided valuable information on Linum chromosome numbers. We thank Andalusian Scientific Information Technology Center (CICA, Seville, Spain) for providing computational resources.

References

Armbruster W.S., Pérez-Barrales R., Arroyo J., Edwards M.E., Vargas P. (2006) Threedimensional reciprocity of floral morphs in wild flax (Linum suffruticosum): a new twist on heterostyly. New Phytologist 171, 581-590.

Baker H.G. (1966) The evolution, functioning and breakdown of heteromorphic incompatibility systems. I. The Plumbaginaceae .Evolution 20, 349-368

Barrett S.C.H. (2002) The evolution of plant sexual diversity. Nature Reviews Genetics 3, 274-284.

Barrett S.C.H., Jesson L.K., Baker A.M. (2000) The evolution and function of stylar polymorphisms in flowering plants. Annals of Botany 85 (Supplement A): 253-265.

Barrett S.C.H., Harder L.D. (2005) The evolution of polymorphic sexual systems in daffodils (Narcissus). New Phytologist 165, 45-53.

Barrett S.C.H., Shore J.S. (2008). New insights on heterostyly: comparative biology, ecology and genetics. In: V.E. Franklin-Tong (Ed.) Self-incompatibility in flowering plants (pp. 3-32). Springer, Berlin Heidelberg.

Bateson W., Gregory R.P. (1905) On the inheritance of heterostylism in Primula. Proceedings of the Royal Society Series B 76, 581-586.

Bell C.D., Soltis D.E., Soltis P.S. (2010) The age and diversification of the angiosperms rerevisited. American Journal of Botany 97, 1296-1303

Boesi R., Polidori C., Andrietti F. (2009) Searching for the right target: oviposition and feeding behavior in Bombylius bee flies (Diptera: Bombyliidae). Zoological Studies 48, 141-150.

Castresana J. (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17, 540-552.

Cavagnetto C., Anadón P. (1996) Preliminary palynological data on floristic and climatic changes during the Middle Eocene-Early Oligocene of the eastern Ebro Basin, northeast Spain. Review of Paleobotany and Palynology 92, 281- 305.

Charlesworth B., Charlesworth D. (1979) The maintenance and breakdown of distyly. American Naturalist 114, 499-513.

Costa J. (2017) The function and adaptive significance of the floral polymorphism heterostyly. PhD Dissertation, University of Coimbra.

Darwin C. (1864) On the existence of two forms, and of their reciprocal sexual relation, in several species of the genus Linum. Journal of the Linnean Society, Botany 7, 69-83.

Darwin C. (1877). The different forms of flowers on plants of the same species. John Murray, London.

Davis P.H. (1967) Linum L. In: P.H. Davis (Ed.) Flora of Turkey and the East Aegean Islands.: Edinburgh University Press, Edinburgh, 2: 425-450

Drummond A.J., Rambaut A. (2007) BEAST: Bayesian evolutionary analysis by sampling trees. BMC Evolutionary Biology 7, 214

Dufay M., Cuguen J., Arnaud J. F., Touzet P. (2009) Sex ratio variation among gynodioecious populations of sea beet: can it be explained by negative frequencydependent selection? Evolution 63, 1483-1497.

Dulberger R. (1992) Floral polymorphisms and their functional significance in the heterostylous syndrome. In: Barrett S.C.H. (ed.) Evolution and function of heterostyly (pp. 41-84). Springer, Berlin Heidelberg.

Du Merle P., Mazet R. (1978) Données complémentaires sur la biologie de deux espècies du genre Usia Latreille [Dipt. Bombyliidae]. Bulletin de la Société Entomologique de France 83, 115-122

Ferrero V., Arroyo J., Vargas P., Thompson J.D., Navarro L. (2009). Evolutionary transitions of style polymorphisms in Lithodora (Boraginaceae). Perspectives in Plant Ecology, Evolution and Systematics 11, 111-125.

Friedman W.E. (2009) The meaning of Darwin's " abominable mystery ". American Journal of Botany 96, 5-21.

Ganders F.R. (1979) The biology of heterostyly. New Zealand Journal of Botany 17, 607635.

Gibbs D. (2011) A world revision of the bee fly tribe Usiinae (Diptera, Bombyliidae)Part 1: Usia subgenus Micrusia, U. versicolor (Fabricius)(= black-haired species) and Usia martini François. Zootaxa 2960, 1-77.

Gibbs D. (2014) A world revision of the bee fly tribe Usiini (Diptera, Bombyliidae) Part 2: Usia sensu stricto. Zootaxa 3799, 001-085.

Gómez J.M., Perfectti F., Bosch J., Camacho J.P.M. (2009) A geographic selection mosaic in a generalized plant-pollinator-herbivore system. Ecological Monographs 79, 245263.

Grant V., Grant K.A. (1965). Flower pollination in the Phlox family. Columbia University Press New York, NY, USA.

Greuter W., Burdet H.M., Long G. (Eds) (1984) Med-Checklist : a Critical Inventory of Vascular Plants of the Circum-Mediterranean Countries. Conservatoire et Jardin Botaniques de la Ville de Genève; Secrétariat Med-checklist, Botanischer Garten \& Botanisches Museum Berlin-Dahlem. (accessed at http://ww2.bgbm.org/mcl/home.asp at December 2016).

Guggisberg A., Mansion G., Kelso S., Conti E. (2006) Evolution of biogeographic patterns, ploidy levels, and breeding systems in a diploid-polyploid species complex of Primula. New Phytologist 171, 617-632.

Heitz B. (1980) La pollinisation des Lins heterostyles du groupe Linum perenne L. (Linaceae). Comptes Rendues de l'Académie des Sciences, Paris 290, 811-814.

Herrera C.M., Castellanos M.C., Medrano M. (2006) Geographical context of floral evolution: towards an improved research programme in floral diversification. In:

Harder L.D., Barrett S.C.H. (Eds.) Ecology and evolution of flowers. Oxford University,. Oxford, UK, pp. 278-294

Hildebrand F. (1864) Experimente uber Dimorphismus von Linum perenne und Primula sinensis. Botanische Zeitung 22, 1-5.

Huelsenbeck J.P., Ronquist F. (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17, 754-755.

Johnson S.D. (2010) The pollination niche and its role in the diversification and maintenance of the southern African flora. Philosophical Transactions of the Royal Society of London B: Biological Sciences 365, 499-516.

Johnson S.D., Dafni A. (1998) Response of bee-flies to the shape and pattern of model flowers: implications for floral evolution in a Mediterranean herb. Functional Ecology 12, 289-297.

Katoh K., Toh H. (2008) Recent developments in the MAFFT multiple sequence alignment program. Briefings in Bioinformatics 9, 286-298.

Kearns C.A., Inouye D.W. (1994) Fly pollination of Linum lewisii (Linaceae). American Journal of Botany 81, 1091-1095.

Kearse M., Moir R., Wilson A., Stones-Havas S., Cheung M., Sturrock S., Buxton S., Cooper A., Markowitz S., Duran C., Thierer T., Ashton B., Mentjies P., Drummond A. (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28, 1647-1649.

Kissling J., Barrett, S.C.H. (2013) Variation and evolution of herkogamy in Exochaenium (Gentianaceae): implications for the evolution of distyly. Annals of Botany 112, 95102.

Kohn J.R., Graham S.W., Morton B., Doyle J.J., Barrett, S.C.H. (1996) Reconstruction of the evolution of reproductive characters in Pontederiaceae using phylogenetic evidence from chloroplast DNA restriction-site variation. Evolution 50, 1454-1469.

Lau P., Bosque C. (2003) Pollen flow in the distylous Palicourea fendleri (Rubiaceae): an experimental test of the disassortative pollen flow hypothesis. Oecologia 135, 593600.

Lewis D (1943) The physiology of incompatibility in plants . 2. Linum grandiflorum. Annals of Botany 7, 115-122.

Lewis D., Jones D.A. (1992) The genetics of heterostyly. In: Barrett, S.C.H. (Ed.) Evolution and function of heterostyly. Springer, Berlin Heidelberg, pp. 129-150.

Linder H.P. (2005) Evolution of diversity: the Cape flora. Trends in Plant Science 10, 536541.

Linnaeus C. (1735) Systema naturæ sistens regna tria naturæ, in classes et ordines, genera et species redacta tabulisque æneis illustrata, editio sexta emendata et aucta Stockholmiæ, impensis Godofr. Kiesewetter publ.

Lloyd D.G., Webb C.J. (1992a) The evolution of heterostyly. In: Barrett S.C.H. (Ed.) Evolution and function of heterostyly. Springer, Berlin Heidelberg. pp. 151-178.

Lloyd D.G., Webb C. J. (1992b) The selection of heterostyly. In: Barrett S.C.H. (Ed.) Evolution and function of heterostyly. Springer, Berlin Heidelberg. pp. 179-207.

Lloyd D.G., Webb C.J., Dulberger R. (1990) Heterostyly in species of Narcissus (Amaryllidaceae) and Hugonia (Linaceae) and other disputed cases. Plant Systematics and Evolution 172, 215-227.

López González G. (1979) Algunas consideraciones sobre los linos del grupo Linum tenuifolium L. en España. Mémoires de la Société Botanique de Genève 1, 99-109.

Martínez-Labarga J.M., Muñoz-Garmendia (2015). In: Muñoz F., Navarro C., Quintanar A., Buira, A. (Eds.) Linum. Flora Iberica, vol. IX. CSIC, Madrid.

Mast A.R., Kelso S., Conti E. (2006) Are any primroses (Primula) primitively monomorphic? New Phytologist 171, 605-616.

Mather K., de Winton D. (1941) Adaptation and counter-adaptation of the breeding system in Primula . Annals of Botany 5, 297-311.

McCauley D.E., Taylor D.R. (1997) Local population structure and sex ratio: evolution in gynodioecious plants. The American Naturalist 150, 406-419.

McDill J., Repplinger M., Simpson B.B., Kadereit J.W. (2009) The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography,
and evolution of heterostyly. Systematic Botany 34, 386-405.
McDill J.R., Simpson B.B. (2011) Molecular phylogenetics of Linaceae with complete generic sampling and data from two plastid genes. Botanical Journal of the Linnean Society 165, 64-83.

Meeus S., Jacquemyn H., Honnay O., Pailler T. (2011). Self-incompatibility and pollen limitation in the rare tristylous endemic Hugonia serrata on La Réunion Island. Plant Systematics and Evolution 292, 143-151.

Miller M., Pfeiffer W., Schwartz T. (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE), 2010 (pp. 1-8). IEEE (Institute of Electrical and Electronics Engineers).

Muravenko O.V., Lemesh V.A., Samatadze T.E., Amosova A.V., Grushetskaya Z.E., Popov K.V., Semenova O.Y., Khotyuleva L.V., Zelenin, A.V. (2003) Genome comparisons with chromosomal and molecular markers for three closely related flax species and their hybrids. Russian Journal of Genetics 39, 414-421.

Naiki A. (2012) Heterostyly and the possibility of its breakdown by polyploidization. Plant Species Biology 27, 3-29.

Nicholls M.S. (1986) Variation and evolution in Linum tenuifolium (Linaceae). Plant Systematics and Evolution 153, 243-258.

Ockendon D.J. (1971) Taxonomy of the Linum perenne group in Europe. Watsonia 8, 205-235.

Ockendon D.J., Walters S.M. (1968) Linum. In: Tutin et al. (Eds.) Flora Europaea, vol. 2. Cambridge University Press, Cambridge.

Ortiz P.L. , R. Berjano, M. Talavera, L. Rodríguez-Zayas, M. Arista (2015) Flower colour polymorphism in Lysimachia arvensis: How is the red morph maintained in Mediterranean environments? Perspectives in Plant Ecology, Evolution and Systematics 17, 142-150

Orueta D. (2002) Thermal relationships between Calendula arvensis inflorescences and Usia aurata bombyliid flies. Ecology 83, 3073-3085.

Pagel, M. (1994) Detecting correlated evolution on phylogenies - a general-method for
the comparative analysis of discrete characters. Proceedings of the Royal Society of London Series B-Biological Sciences 255, 37-45.

Pannell J.R., Dorken M.E., Eppley, S.M. (2005) 'Haldane's Sieve’in a metapopulation: sifting through plant reproductive polymorphisms. Trends in Ecology \& Evolution 20, 374-379.

Pérez-Barrales R., Vargas P., Arroyo J. (2006) New evidence for the Darwinian hypothesis of heterostyly: breeding systems and pollinators in Narcissus sect. Apodanthi. New Phytologist 171, 553-567.

Piper J.G., Charlesworth B., Charlesworth D. (1986) Breeding system evolution in Primula vulgaris and the role of reproductive assurance. Heredity 56, 207-217.

Posada D., Crandall K.A. (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14, 817-818.

R Development Core Team (2015). R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org.

Rambaut A., Drummond A.J. (2007). Tracer - MCMC Trace Analysis Tool Version v1.4. Available from: http://beast.bio.ed.ac.uk/Tracer/

Ramsey J., Schemske D.W. (1998) Pathways, mechanisms, and rates of polyploid formation in flowering plants. Annual Review of Ecology and Systematics 29, 467-501.

Rasband W. S. (2008) ImageJ 1997-2007. US National Institutes of Health: Bethesda, Maryland, USA.

Revell L. J. (2012) Phytools: An R package for phylogenetic comparative biology (and other things). Methods in Ecology and Evolution 3, 217-223.

Rogers C.M. (1981) A revision of the genus Linum in southern Africa. Nordic Journal of Botany 1, 711-722.

Ruiz-Martín J., Jiménez-Mejías P., Martínez-Labarga J.M., Pérez-Barrales R. (2015) Linum flos-carmini (Linaceae), a new species from northern Morocco. Annales Botanici Fennici 52, 383-395.

Santos-Gally R., Gonzalez-Voyer A., Arroyo, J. (2013) Deconstructing heterostyly: the evolutionary role of incompatibility system, pollinators, and floral architecture. Evolution 67, 2072-2082.

Schewe L.C., Sawhney V.K., Davis A.R. (2011) Ontogeny of floral organs in flax (Linum usitatissimum; Linaceae). American Journal of Botany 98, 1077-1085.

Schoen D.J., Johnston M.O., L'Heureux A.M., Marsolais J.V. (1997) Evolutionary history of the mating system in Amsinckia (Boraginaceae). Evolution 51, 1090-1099.

Seetharam A. (1972) Interspecific hybridization in Linum. Euphytica 21, 489-495.
Shore J.S., Arbo M.M., Fernández A. (2006) Breeding system variation, genetics and evolution in the Turneraceae. New Phytologist 171, 539-551.

Ssymank A., Hamm A., Vischer-Leopold M. (2009). Caring for pollinators safeguarding agro-biodiversity and wild plant diversity. Federal Agency for Nature Conservation (BfN) \& Universität Bonn

Stebbins G.L. (1970) Adaptive radiation of reproductive characteristics in angiosperms. I. Pollination mechanisms. Annual Review of Ecology and Systematics 1, 307-326.

Stebbins G.L. (1974) Flowering plants: evolution above the species level. Belknap, Cambridge, MA. USA.

Strauss S.Y., Whittall J.B. (2006) Non-pollinator agents of selection on floral traits. In: Harder L.D., Barrett S.C.H. (Eds.) Ecology and evolution of flowers. Oxford University,. Oxford, UK, pp. 120-138.

Suksathan P., K. Larsen (2006) A new species of Tirpitzia (Linaceae) from Thailand . Thai Forest Bulletin 34, 201-205.

The Plant List (2013). Version 1. Published on the Internet; http://www.theplantlist.org/ (accessed 10th March 2017).

Thompson J.D., Pailler T., Strasberg D., Manicacci D. (1996). Tristyly in the endangered Mascarene Island endemic Hugonia serrata (Linaceae). American Journal of Botany 83, 1160-1167.

Turketti S.S., Esler K.J., Dreyer L.L. (2012) Three-dimensional reciprocity: A new form of tristyly in South African Oxalis (Oxalidaceae) species and its implications for reproduction. South African Journal of Botany 78, 195-202.

Ushijima K., Nakano R., Bando M., Shigezane Y., Ikeda K., Namba Y., Kume S., Kitabata T., Mori H., Kubo Y. (2012) Isolation of the floral morph-related genes in heterostylous flax (Linum grandiflorum): the genetic polymorphism and the transcriptional and post-transcriptional regulations of the S locus. The Plant Journal 69, 317-331.

Yang Z., Kumar S., Nei M. (1995) A new method of inference of ancestral nucleotide and amino acid sequences. Genetics 141, 1641-1650.

Yılmaz Ö., Kaynak G. (2008) The check-list and chorology of the Linum L.(Linaceae) taxa in the flora of Turkey. Journal of Biological and Environmental Sciences 2, 5-43.

Yurkevich O.Y., Naumenko-Svetlova A.A., Bolsheva N.L., Samatadze T.E., Rachinskaya O.A., Kudryavtseva A.V., Zelenina D.A., Volkow A.V., Zelenin A.V., Muravenko O.V. (2013) Investigation of genome polymorphism and seed coat anatomy of species of section Adenolinum from the genus Linum. Genetic Resources and Crop Evolution 60, 661-676

Yusepchuk S.V. (1949) Linaceae In: B.K. Shishkin (Ed) Flora of the USSR, vol. XIV. Akademii Nauk SSSR, Moscow, Leningrad.

Figure legends

Fig. 1. Floral variation and pollinators in Mediterranean Linum species: a) L. viscosum visited by an Halictidae bee, b) L. narbonense with Usia pubera beefly collecting nectar, c) and d) L. tenuifolium visited by Ceratina cucurbitina and Lasioglossum malachurum bees, respectively, e) three dimensional reciprocity in L. suffruticosum, f) Usia sp. collecting nectar in L. suffruticosum, g) conventional distyly in L. tenue. h) L. tenue with nectar collecting U. pusilla, i) L. comptonii visited by pollen collecting Amegilla in South Africa, and j) L. pubescens with Usia bicolor in Israel. Photographs by Blanca Arroyo (c, d), Ross Turner (i) and Yuval Sapir (j).

Fig. 2. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear (ITS) and plastid (trnL-F, matK and ndhF) DNA regions. Numbers above each branch indicate posterior probability support. Bars in each node indicate 95\% CI of the age of each node. Time scale on the horizontal axis is in millions of years.

Fig. 3. Maximum likelihood ancestral state reconstruction of stylar polymorphism in Linum. Two ancestral states (blue = monomorphic, red = polymorphic) are considered as the simplest way to understand the evolution of heterostyly (see Material and methods for details). Letters above branches are referenced in main text.

Fig. 4. Maximum likelihood ancestral state reconstruction of stylar polymorphism in Linum. Five relevant states to the two competing hypotheses of the evolution of heterostyly are considered (Charlesworth \& Charlesworth 1979, Lloyd \& Webb, 1992a; see Materials and Methods for details). Colours represent the different stylar conditions: blue = homostyly, red = style polymorphism, green = approach herkogamy, yellow = horizontal herkogamy, and orange = reverse herkogamy. Letters above branches are referenced in main text.

Fig. S1. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear (ITS) and plastid (trnL-F, matK and ndhF) DNA regions. Numbers above each branch indicate posterior probability support. Bars in each node indicate $95 \% \mathrm{CI}$ of the age of each node. Time scale on horizontal axis is in millions of years. Tip labels include species name, section and distribution.

Table S1. Sources of plant material and traits considered in the study. Taxa are arranged alphabetically by section and family. Sampled populations refer to GenBank accession numbers when obtained from published references, to samples supplied by herbaria (E: Royal Botanic Garden Edinburgh, MA: Royal Botanic Garden Madrid, SEV: University of Seville; codes for specimens are given). NA, not available.

Fig. 1. Floral variation and pollinators in Mediterranean Linum species: a) L. viscosum visited by an Halictidae bee, b) L. narbonense with Usia pubera beefly collecting nectar, c) and d) L. tenuifolium visited by Ceratina cucurbitina and Lasioglossum malachurum bees, respectively, e) three dimensional reciprocity in L . suffruticosum, f) Usia sp. collecting nectar in L. suffruticosum, g) conventional distyly in L. tenue. h) L. tenue with nectar collecting U. pusilla, i) L. comptonii visited by pollen collecting Amegilla in South Africa, and j) L. pubescens with Usia bicolor in Israel. Photographs by Blanca Arroyo (c, d), Ross Turner (i) and

Yuval Sapir (j).

Fig. 2. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear (ITS) and plastid (trnL-F, matK and ndhF) DNA regions. Numbers above each branch indicate posterior probability support. Bars in each node indicate 95% CI of the age of each node. Time scale on the horizontal axis is in millions of years.

Fig. 3. Maximum likelihood ancestral state reconstruction of stylar polymorphism in Linum. Two ancestral states (blue $=$ monomorphic, red $=$ polymorphic) are considered as the simplest way to understand the evolution of heterostyly (see Material and methods for details). Letters above branches are referenced in main text.

Fig. 4. Maximum likelihood ancestral state reconstruction of stylar polymorphism in Linum. Five relevant states to the two competing hypotheses of the evolution of heterostyly are considered (Charlesworth \& Charlesworth 1979, Lloyd \& Webb, 1992a; see Materials and Methods for details). Colours represent the different stylar conditions: blue = homostyly, red = style polymorphism, green = approach herkogamy, yellow = horizontal herkogamy, and orange = reverse herkogamy. Letters above branches are referenced in main text.

Fig. S1. Phylogenetic tree of Linaceae based on BEAST analysis of combined nuclear (ITS) and plastid (trnLF, matK and ndhF) DNA regions. Numbers above each branch indicate posterior probability support. Bars in each node indicate 95% CI of the age of each node. Time scale on horizontal axis is in millions of years. Tip labels include species name, section and distribution.

Table S1. Source of plant material and traits considered in the study. Taxa are arranged alphabetically by section and family. Sampled populations refer to GenBank accession numbers when obtained from published references, to samples supplied by herbaria (E: Royal Botanic Garden Edinburgh, MA: Royal Botanic Garden at Madrid, SEV: University of Seville; codes for specimens are given). NA, not available.

1. Taxon	2. Section or family	3. Distribution	4. Sampled populations	5. Coordinates	6. GenBank Accession no. ITS	7. GenBank Accession no. ndhF5-8	8. GenBank Accession no. trnL-F	9. GenBank Accession no. matk	10. Stylar condition (binary)	11. Stylar condition (five states)	12. Life- form	13. References for columns 10, 11, 12	14. Chromosome Number	15. References for column 14	16. Breeding system	17. References for column 16
Linum catharticum	Cathartolinum	N Medit.	Ref. 1	NA	FJ169533	FJ160796	FJ160880	HM544103	Monomorphic	Homostylous	Annual	2	$\mathrm{n}=8 / 2 \mathrm{n}=16$	26	--	--
L. densiflorum A	Dasylinum	Azerbaijan	This study E00450740	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--
L. densiflorum B	Dasylinum	Turkey	This study	$\begin{array}{\|l\|} \hline 400^{\circ} 06^{\prime} 57.8^{\prime \prime N} \\ 32{ }^{2} 36^{\prime} 17.8^{\prime \prime \mathrm{E}} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--
L. hirsutum	Dasylinum	Turkey	Ref. 1	NA	FJ169520	FJ160788	FJ160872	HM544106	Polymorphic	Polymorphic	Perennial	3	$\begin{aligned} & \hline \mathrm{n}=8 ; \\ & 2 \mathrm{n}=16 / \mathrm{n}=16 ; \\ & 2 \mathrm{n}=32 \\ & \hline \end{aligned}$	27, 28,29	SI	52
L. hypericifolium	Dasylinum	Turkey	Ref. 1	NA	FJ169519	FJ160789	FJ160873	HM544107	Polymorphic	Polymorphic	perennial	4	--	--	--	--
L. olympicum	Dasylinum	Turkey, Greece	This study E00450745	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	5	--	--	--	--
L. pubescens	Dasylinum	Syria	Ref. 1	NA	FJ169518	FJ160790	FJ160874	NA	Polymorphic	Polymorphic	Annual	6	$2 \mathrm{n}=18 ; 2 \mathrm{n}=16$	30,31	SI	53
L. seljukorum	Dasylinum	Turkey	This study E00450754	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual	3	$\mathrm{n}=8 ; 2 \mathrm{n}=16$	--	--	--
L. spathulatum	Dasylinum	Greece	This study	$\begin{array}{\|l\|} \hline 40^{\circ} 04.9^{\prime} \mathrm{N} \\ 22^{\circ} 22.7^{\prime} \mathrm{E} \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	5	$2 \mathrm{n}=16 / 2 \mathrm{n}=36$	32;28	--	--
L. unguiculatum	Dasylinum	Turkey	This study E00450741	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	3	--	-.	--	--
L. viscosum	Dasylinum	Spain	This study	NA	FJ169517	FJ160791	FJ160875	NA	Polymorphic	Polymorphic	Perennial	2	$\mathrm{n}=8 ; 2 \mathrm{n}=16$	27	--	--
L. acuticarpum	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 33^{\circ} 59 ' 55.6^{\prime \prime} \mathrm{S} \\ 20 \circ 26^{\prime} 33.7^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	$\mathrm{n}=15$	33	--	--
L. adustum	Linopsis	South Africa	This study		Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	-.	--	--
L. aethiopicum	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 340255^{\prime} 48.8 \mathrm{CS} \\ 20039^{\prime} 50.5^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. africanum	Linopsis	South Africa	This study		Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	$\begin{aligned} & \mathrm{n}=16 / 2 \mathrm{n}=30 ; \\ & 2 \mathrm{n}=29 \end{aligned}$	30,33	SC	54

L. brevistylum	Linopsis	South Africa	This study	$\begin{array}{\|l} 34^{\circ} 44^{\prime} 26.1^{\prime \prime} \mathrm{S} \\ 19^{\circ} 40^{\prime} 44.9^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. comptonii	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 320377^{\prime} 51.2^{\prime \prime} \mathrm{S} \\ 190099^{\prime} 05.8^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	7	$\mathrm{n}=15$	33	--	--
L. corymbiferum	Linopsis	Algeria	This study	$\begin{aligned} & 36^{\circ} 52^{\prime} 4.8^{\prime \prime N} \\ & 4^{\circ} 50^{\prime} 16.4^{\prime \prime} \mathrm{E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial, biennial	8	$\begin{aligned} & n=15 ; \\ & 2 n=18 / 2 n=30 \end{aligned}$	27, 28	--	--
L. corymbulosum	Linopsis	Greece	This study	$\begin{array}{\|l\|} \hline 38.00 ' 28.9 " \mathrm{~N} \\ \hline 22{ }^{\circ} 16^{\prime} 30.44^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual	4	$\mathrm{n}=9 ; 2 \mathrm{n}=18$	30	--	--
L. esterhuysenae	Linopsis	South Africa	This study	$\begin{aligned} & \hline 33^{\circ} 55^{\prime} 05.1^{\prime \prime S} \\ & 22^{\circ} 01^{\prime} 32.2^{\prime \prime} \mathrm{E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. flos-carmini	Linopsis	Morocco	This study		Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphism	Polymorphic	Annual	11	--	--	--	--
L. gallicum	Linopsis	Greece	This study	$\begin{array}{\|l\|} \hline 37059 ' 32.3^{\prime \prime N} \\ 22{ }^{2} 27 \text { '47.0"E } \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual	5	$\mathrm{n}=10 ; 2 \mathrm{n}=20$	27	--	--
L. gracile	Linopsis	South Africa	This study	$\begin{aligned} & \hline 33057 \text { '24.5"S } \\ & 23031^{\prime} 02.0^{\prime \prime} \mathrm{E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	$\mathrm{n}=15$	33	--	--
L. heterosty/um	Linopsis	South Africa	This study	$\begin{aligned} & 33_{0} 58^{\prime} 09.4 \mathrm{CS} \\ & 21113^{\prime} 06.0^{\prime \prime \mathrm{E}} \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	7	$\mathrm{n}=15$	33	--	--
L. kingii	Linopsis	C, S USA	Ref. 1	NA	FJ169555	FJ160780	FJ160864	NA	Monomorphic	Horizontal herkogamous	Perennial, biennial	9	$\mathrm{n}=13 ; 2 \mathrm{n}=26$	28	--	--
L. liburnicum	Linopsis	Greece	This study	$\begin{array}{\|l\|} \hline 38.044^{306.6 " N} \\ 222023^{\prime} 00.3^{\prime \prime} \mathrm{E} \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual	5	--	--	--	--
L. littorale	Linopsis	S America	Ref. 1	NA	FJ169543	FJ160781	F1160865	NA	Monomorphic	Reverse herkogamous	Perennial	10	$\begin{array}{\|l\|} \hline n=18 ; \\ 2 \mathrm{n}=36 / \mathrm{n}=36 ; \\ 2 \mathrm{n}=72 \\ \hline \end{array}$	28	--	--
L. macraei	Linopsis	S America	Ref. 1	NA	FJ169544	FJ160782	FJ160866	NA	Monomorphic	Approach herkogamous	Perennial	10	$\mathrm{n}=36 ; 2 \mathrm{n}=72$	28	--	--
L. maritimum	Linopsis	Spain, Italy	Ref. 1	NA	FJ169535	FJ160811	FJ160895	NA	Polymorphic	Polymorphic	Perennial	2	$\mathrm{n}=10 ; 2 \mathrm{n}=20$	28	SI	54
L. mumbyanum	Linopsis	Morocco, Algeria	This study	$\begin{array}{\|l\|} \hline 34^{\circ} 50^{\prime} 59.1^{\prime \prime N} \\ 1^{\circ} 21^{\prime} 24.4^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Biennial, perennial	8	$\mathrm{n}=10 ; 2 \mathrm{n}=20$	28	--	--
L. numidicum	Linopsis	Morocco, Algeria	This study	$\begin{array}{\|l\|} \hline 35 \text {-11'52.8"N } \\ 03058^{\prime} 50.2^{\prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	8	-.-	--	--	--
L. oligophylum	Linopsis	S America	Ref. 1	NA	FJ169546	FJ160783	FJ160867	HM544111	NA	NA	Perennial	10	$\mathrm{n}=18 ; 2 \mathrm{n}=36$	28	--	--
L. prostratum	Linopsis	S America	Ref. 1	NA	FJ169545	FJ160784	F1160868	NA	Monomorphic	Reverse herkogamous	Perennial, annual	10	$\mathrm{n}=18 ; 2 \mathrm{n}=36$	28	--	--
L. pungens	Linopsis	South Africa	This study	$\begin{aligned} & \hline 32^{\circ} 22^{\prime} 26.1^{\prime \prime S} \\ & 190^{\circ} 3^{\prime} 48.3^{\prime \prime E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. quadrifolium	Linopsis	South Africa	This study	$\begin{aligned} & \hline 33057^{\prime} 06.7^{\prime \prime S} \\ & \text { 18:27'05.7"E } \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. rupestre	Linopsis	C, S USA	Ref. 1	NA	FJ169553	FJ160785	FJ160869	HM544113	Monomorphic	Approach herkogamous	Perennial	79	$\mathrm{n}=18$	26	--	--
L. setaceum	Linopsis	Spain, Portugal, Morocco	This study	$\begin{aligned} & 36047 \text { 399.0"N } \\ & \text { 4959'24.4"W } \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual	2	$\mathrm{n}=9 ; 2 \mathrm{n}=18$	27,80	--	--
L. striatum	Linopsis	USA, Canada	Ref. 1	NA	FJ169554	FJ160786	F160870	NA	Monomorphic	Approach herkogamous	Perennial	12	$\mathrm{n}=18$	26	--	--
L. strictum	Linopsis	Cosmopolitan	Ref. 1	NA	FJ169530	FJ160806	FJ160890	NA	Monomorphic	Homostylous	Annual	2	$\begin{aligned} & \hline n=9 ; 2 n=18 / \\ & 2 n=32 \\ & \hline \end{aligned}$	27,30	--	--
L. subasperifolium	Linopsis	Morocco	This study	$\begin{array}{\|l\|} \hline 34^{\circ} 46^{\prime} 28^{\prime \prime} \mathrm{N} \\ 3^{\circ} 47^{\prime} 43^{\prime W} \mathrm{~W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual	8	--	--	--	
L. suffruticosum A	Linopsis	Spain	This study	$\begin{aligned} & \hline 36047 \text { '39"N } \\ & \text { 4059'24.4"W } \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	2	$\begin{aligned} & \mathrm{n}=18 ; \\ & \mathrm{n}=36 / 2 \mathrm{n}=72 \end{aligned}$	28,34	SI	$\begin{aligned} & \hline 55,56,57, \\ & 58 \\ & \hline \end{aligned}$

L. suffruticosum B	Linopsis	Italy	This study	$\begin{array}{\|l\|} 44^{\circ} 12^{\prime} 30 " \mathrm{~N} \\ 8^{\circ} 23^{\prime} 33^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	2	$\mathrm{n}=18$; $\mathrm{n}=36$	28	SI	$\begin{aligned} & \text { 55, 56, 57, } \\ & 58 \\ & \hline \end{aligned}$
L. tenue A	Linopsis	Morocco	This study	$\begin{array}{\|l\|} \hline 32000^{\prime} 58.2^{\prime \prime} \mathrm{N} \\ 06043^{\prime} 12.3^{\prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual	2	$\begin{aligned} & \begin{array}{l} n=10 ; \\ 2 n=20 / 2 n=30 \end{array} \end{aligned}$	28,35	SI	52
L. tenue B	Linopsis	Morocco	This study	$\begin{aligned} & \hline 30 \div 40^{\prime} 43 " \mathrm{~N} \\ & 099^{2} 9^{\prime} 15 \mathrm{~W} \mathrm{~W} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual	2	$\begin{array}{\|l\|} \hline n=10 ; \\ 2 n=20 / 2 n=31 \\ \hline \end{array}$	28,35	sı	52
L. tenue C	Linopsis	Algeria	This study	$\begin{array}{\|l\|} \hline 34^{\circ} 52^{\prime} 39.2^{\prime \prime N} \\ 1^{\circ} 14^{\prime} 38.7^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual	2	$\begin{aligned} & \mathrm{n}=10 ; \\ & 2 \mathrm{n}=20 / 2 \mathrm{n}=32 \end{aligned}$	28,35	SI	52
L. tenuifolium A	Linopsis	Spain	This study	$\begin{array}{\|l\|} \hline 42020^{\prime} 27.8^{\prime \prime} \mathrm{N} \\ 1043^{\prime} 08.55^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Horizontal herkogamous	Perennial	2	$\begin{array}{\|l\|} \hline n=9 ; 2 n=18 / \\ 2 n=16 \end{array}$	27,36	Sc	56,57,58
L. tenuifolium B	Linopsis	Turkey	This study	$\begin{array}{\|l\|} \hline 40038^{\prime} 01.0^{\prime \prime N} \\ 33036^{\prime} 32.1^{\prime \prime \mathrm{E}} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Horizontal herkogamous	Perennial	2	$\begin{aligned} & \mathrm{n}=9 ; 2 \mathrm{n}=18 / \\ & 2 \mathrm{n}=17 \\ & \hline \end{aligned}$	27, 36	SC	56,57, 58
L. thesioides	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 33^{\circ} 57^{\prime} 06.7^{\prime \prime} \mathrm{S} \\ 18^{\circ} 27^{\prime} 05.7^{\prime E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. thunbergii	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 28^{\circ} 41^{\prime} 09.9^{\prime} \mathrm{S} \\ 28^{\circ} 53^{\prime} 57.1^{1} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. trigynum	Linopsis	Cosmopolitan	Ref. 1	NA	FJ169536	FJ160810	FJ160894	NA	Monomorphic	Homostylous	Annual	3	$\mathrm{n}=10 ; 2 \mathrm{n}=20$	28	--	--
L. vernale	Linopsis	USA	Ref. 1	NA	FJ169552	FJ160812	FJ160896	NA	Monomorphic	Approach herkogamous	Annual	10	$\mathrm{n}=15$	26	--	--
L. villosum	Linopsis	South Africa	This study	$\begin{array}{\|l\|} \hline 33051^{\prime} 57.2^{\prime \prime} \mathrm{S} \\ 22048^{\prime} 04.4^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	7	--	--	--	--
L. virgatum	Linopsis	Algeria	This study	$\begin{array}{\|l\|l\|} \hline 34^{\circ} 47^{\prime} 16.4^{\prime N} \mathrm{~N} \\ 0^{\circ} 15^{\prime} 27.7 " \mathrm{~W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual, biennial	RuizMartín J. unpubl.	--	--	--	--
L. volkensii	Linopsis	Tanzania	Ref. 1	NA	FJ169531	FJ160813	FJ160897	HM544116	Monomorphic	Approach herkogamous	Perennial, annual	13	$\mathrm{n}=27$	81	--	--
L. alpinum	Linum	W Medit., C Europe	This study	$\begin{array}{\|l\|} \hline 42{ }^{2} 29^{\prime} 17.4^{\prime \prime N} \\ 13000^{\prime 2} 28.9^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	15	$\begin{aligned} & \mathrm{n}=9 ; 2 \mathrm{n}=18 / \\ & 2 \mathrm{n}=36 \\ & \hline \end{aligned}$	27, 38	--	--
L. aroanium A	Linum	Turkey, Greece	This study	$\begin{array}{\|l\|} \hline 380^{\circ} 00^{\prime} 37.9^{\prime \prime N} \\ 220^{\prime} 6^{\prime} 06.5^{\prime \prime \mathrm{E}} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	$2 \mathrm{n}=36$	5	--	--
L. aroanium B	Linum	Turkey, Greece	This study	$\begin{array}{\|l\|} \hline 40 \text { O06'57.8"N } \\ 32036 \text { '17.8"E } \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	2n=36	5	--	--
L. austriacum	Linum	Medit. Basin	Ref. 1	NA	FJ169522	FJ160799	FJ160883	NA	Polymorphic	Polymorphic	Perennial	8	$\begin{array}{\|l} \hline n=9 ; \\ 2 n=18 / 2 n=36 \\ \hline \end{array}$	27, 35	SI	2
L. austriacum subsp. gomaricum	Linum	Morocco	This study SEV156580 SEV156577	$\begin{aligned} & 35088^{\prime} \mathrm{N} \\ & 05008^{\prime} \mathrm{W} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	8	--	--	--	--
L. austriacum subsp. mauritanicum	Linum	Morocco	This study	$\begin{array}{\|l\|l\|} \hline 33^{\circ} 3^{\prime} 33.2^{\prime \prime} \mathrm{N} \\ 5^{\circ} 2^{\prime} 14.3^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	8	$\mathrm{n}=9$	83	--	--
L. bienne	Linum	Cosmopolitan	Ref. 1	NA	FJ169527	FJ160797	FJ160881	HM544102	Monomorphic	Homostylous	Annual, biennial	8	$\begin{array}{\|l\|} \hline n=15, \\ 18 / 2 n=30,32 \\ \hline \end{array}$	$\begin{aligned} & \hline 39,2,40, \\ & 41, \end{aligned}$	SC	54
L. bungei	Linum	Iran	$\begin{array}{\|l\|l\|} \hline \text { This study } \\ \text { E00450816 } \\ \hline \end{array}$	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	Ruiz- Martín J. unpubl.	--	--	-.	--
L. decumbens A	Linum	Italy	This study MA628332	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual, biennial	2	$\begin{aligned} & \hline n=15,18 ; \\ & 2 n=32 \\ & \hline \end{aligned}$	39, 42, 31	--	--
L. decumbens B	Linum	Italy	This study	$\begin{array}{\|l\|} \hline 37050 ' 42.0^{\prime \prime N} \\ 13025^{\prime} 58.9^{\prime \prime E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Annual, biennial	2	$\begin{array}{\|l} \hline n=15,18 ; \\ 2 n=32 \\ \hline \end{array}$	39, 42, 31	--	--
L. empetrifolium A	Linum	Turkey	This study	$\begin{array}{\|l\|} \hline 38024^{\prime} 09.5^{\prime N} \mathrm{~N} \\ 34001 ' 41.4^{\prime \mathrm{E}} \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--
$\begin{aligned} & \hline \text { L. empetrifolium } \\ & B \\ & \hline \end{aligned}$	Linum	Turkey	This study	$\begin{array}{\|l\|} \hline 40 \text { O2'19.1"N } \\ 40 \text { O29'08.2"E } \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--

L. grandiflorum	Linum	Algeria	Ref. 1	NA	FJ169525	FJ160798	FJ160882	NA	Polymorphic	Polymorphic	Annual	16	$\mathrm{n}=8 ; 2 \mathrm{n}=16$	27,43	SI	59, 60
L. hologynum	Linum	Greece	This study	$\begin{array}{\|l\|l\|} \hline 39950^{\prime} 46.7^{\prime \prime N} \\ 219122^{\prime} 31.0^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Approach herkogamous	Perennial	2	$\begin{aligned} & \mathrm{n}=9 ; \\ & 2 \mathrm{n}=18 / 2 \mathrm{n}=42 \\ & \hline \end{aligned}$	27,32	--	--
L. Ianuginosum	Linum	Tajikistan	This study	$\begin{aligned} & \hline 38 \div 38^{\prime} 06 \text { "N } \\ & 70 \div 42^{\prime} 36 \text { " } \mathrm{E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	4	--	--	--	--
L. leonii	Linum	Germany, France	This study	$\begin{array}{\|l} \hline 51029 ' 32 " \mathrm{~N} \\ \text { 09오'13"E } \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Perennial	2	$\begin{aligned} & \hline n=9 ; 2 n=18 ; \\ & 2 n=20 \\ & \hline \end{aligned}$	2,44	--	--
L. lewisii	Linum	$\begin{gathered} \hline \mathrm{W} \text { of } \mathrm{N} \\ \text { America } \end{gathered}$	Ref. 1	NA	FJ169523	FJ160800	FJ160884	NA	Monomorphic	Approach herkogamous	Perennial	2	$\mathrm{n}=9 ; 2 \mathrm{n}=18$	26,27	SC	61
L. marginale	Linum	Australia	Ref. 1	NA	FJ169528	FJ160804	FJ160888	NA	Monomorphic	Homostylous	Perennial, anual	14	$2 \mathrm{n}=80$	37	--	--
L. meletonis	Linum	Turkey	This study E00212261	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	RuizMartín J., unpublishe d	-	--	--	--
L. narbonense	Linum	Spain, Italy, France	This study	$\begin{array}{\|l\|l\|} \hline 39^{\circ} 06^{\prime} 16.8^{\prime \prime N} \\ 1^{\circ} 01^{\prime} 56.3^{\prime \prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	2	$\begin{array}{\|l\|} \hline n=7, n=9, \\ n=14 / 2 n=28, \\ 2 n=20,2 n=18 \\ \hline \end{array}$	$\begin{aligned} & 27,45,30, \\ & 35 \\ & \hline \end{aligned}$	SI	52
L. nervosum	Linum	Turkey	This study	$\begin{array}{\|l\|} \hline 380522^{\prime 20.1 " N} \\ 42031^{\prime} 24.9 \text { " } \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	$2 \mathrm{n}=30,2 \mathrm{n}=18$	82,46	--	--
L. obtusatum	Linum	Turkey	This study E00450930	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--
L. pallescens	Linum	Russia, China	Ref. 1	NA	FJ169521	FJ160801	FJ160885	NA	Monomorphic	Homostylous	Biennial, perennial	4	$2 \mathrm{n}=18$	2	--	--
L. perenne	Linum	Medit. Basin	Ref. 1	NA	FJ169524	FJ160802	FJ160886	NA	Polymorphic	Polymorphic	Perennial	2	$\begin{aligned} & \mathrm{n}=9 / 2 \mathrm{n}=18 ; \\ & 2 \mathrm{n}=36 \end{aligned}$	27,30	SI	2,60
L. punctatum A	Linum	Italy	This study MA646775	$\begin{aligned} & \hline 37051 \mathrm{~N} \\ & 14001 \mathrm{E} \\ & \hline \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	17	$\mathrm{n}=18$	27	--	--
L. punctatum B	Linum	Italy	This study	$\begin{array}{\|l\|} \hline 37051 ' 40.6^{\prime \prime} \mathrm{N} \\ 14000^{\prime} 45.5^{\prime \prime} \mathrm{E} \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	17	$\mathrm{n}=18$	27	--	--
L. pycnophyllum	Linum	Turkey	This study E00450918	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	5	$2 \mathrm{n}=18$	5	--	--
L. stelleroides	Linum	China, Japan	Ref. 1	NA	FJ169516	FJ160805	FJ160889	NA	Monomorphic	Homostylous	Annual, biennial	4	$\begin{aligned} & n=10 / 2 n=20 \\ & , 2 n=18 \end{aligned}$	39,47	--	--
L. tmoleum	Linum	Turkey	This study	$\begin{array}{\|l\|} \hline 40 \text { O30'45.2"N } \\ 38021^{\prime} 05.0^{\prime \prime \mathrm{E}} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual, biennial	3	-.	--	--	--
L. tommasinii	Linum	Italy	This study		Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	15	$\mathrm{n}=9 ; 2 \mathrm{n}=18$	27	-.	--
L. usitatissimum	Linum	Cosmopolitan	Ref. 1	NA	FJ169526	FJ160803	FJ160887	HM544115	Monomorphic	Homostylous	Annual	2	$\mathrm{n}=15 ; 2 \mathrm{n}=30$	27	SC	54
L. villarianum	Linum	Morocco	This study	$\begin{array}{\|l\|} \hline 35052^{\prime} 30.6^{\prime \prime} \mathrm{N} \\ 05024^{\prime} 14.44^{\prime} \mathrm{W} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Monomorphic	Homostylous	Perennial	18	---	--	--	--
L. virgultorum	Linum	Turkey	$\begin{array}{\|l\|} \hline \text { This study } \\ \text { E00289593 } \\ \hline \end{array}$	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Annual	2	--	--	--	--
L. album	Syllinum	India, Iran	Ref. 1	NA	FJ169547	FJ160792	FJ160876	NA	Polymorphic	Polymorphic	Perennial	19	2n=30; 2n=28	82,48	--	--
L. arboreum	Syllinum	Turkey, Greece	Ref. 1	NA	FJ169537	FJ160793	FJ160877	HM544100	Polymorphic	Polymorphic	Perennial	3	$2 \mathrm{n}=28$	27	--	--
L. aretioides	Syllinum	Turkey	$\begin{array}{\|l\|} \hline \text { This study } \\ \text { E00175938 } \\ \hline \end{array}$	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	20	--	--	--	--
L. campanulatum	Syllinum	Spain, France, Italy	This study	$\begin{aligned} & \hline 40^{\circ} 16^{\prime} 52^{\prime \prime N} \\ & 2^{\circ} 50^{\prime} 56^{\prime \prime} \mathrm{W} \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	15	$\mathrm{n}=14 ; 2 \mathrm{n}=28$	27	--	--
L. capitatum	Syllinum	Italy	This study MA698754	$\begin{array}{\|l\|} \hline 42 \circ 09^{\prime} \mathrm{N} \\ 14{ }^{\circ} 06^{\prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	2	$\begin{aligned} & \begin{array}{l} n=12, n=28 / \\ 2 n=28,2 n=34 \end{array} \end{aligned}$	27,30	--	--

L. cariense	Syllinum	Turkey	This study MA590884	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	3	--	--	--	--
L. elegans	Syllinum	Greece	This study	$\begin{array}{\|l\|l\|} \hline 37951 ' 03.7^{\prime \prime N} \\ 22 \text { O14'47.5"E } \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	2n=28, $2 \mathrm{n}=30$	49,73	--	--
L. flavum	Syllinum	NE Medit. Basin	Ref. 1	NA	FJ169538	FJ160794	FJ160878	HM544105	Polymorphic	Polymorphic	Perennial	4		27, 30, 39	SI	52
L. gyaricum	Syllinum	Greece	This study E00175803	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	21	$\mathrm{n}=30+1 \mathrm{~B}$	50	.-	--
L. mucronatum A	Syllinum	Turkey	This study	$\begin{aligned} & 38.044^{\prime 34.6 " N} \\ & 36044^{\prime} 05.1^{\prime \prime} \mathrm{E} \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	$\mathrm{n}=14$	48	SI	62
L. mucronatum B	Syllinum	Turkey	This study	$\begin{aligned} & 38011^{320.8} .^{\prime N} \\ & 366^{24} 43.9^{\prime \prime} \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	$\mathrm{n}=14$	48	--	--
L. nodiflorum	Syllinum	Turkey, Italy	Ref. 1	NA	FJ169539	FJ160795	FJ160879	NA	Monomorphic	Reverse herkogamous	Annual	3	$\begin{array}{\|l} \hline n=13 / 2 n=26, \\ 2 n=24 \\ \hline \end{array}$	30, 39, 40	SI	54
L. syriacum	Syllinum	Syria	This study E00450664	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	74	--	--	--	--
L. tauricum	Syllinum	Turkey	This study	$\begin{array}{\|l} \hline 40^{\circ} 52^{\prime} 3^{\prime \prime} \mathrm{N} \\ 26^{\circ} 46^{\prime} 133^{\prime \prime} \mathrm{E} \\ \hline \end{array}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	$2 \mathrm{n}=28$	40	--	--
L. triflorum	Syllinum	Turkey	This study	$\begin{aligned} & 38934^{3} 59.8 .^{\prime \prime \mathrm{N}} \\ & 422^{216} 10.7 \mathrm{E} \end{aligned}$	Forthcoming	Forthcoming	Forthcoming	Forthcoming	Polymorphic	Polymorphic	Perennial	3	--	--	--	--
L. velutinum	Syllinum	Iraq	This study E00175935	NA	Forthcoming	Forthcoming	Forthcoming	Forthcoming	NA	NA	Perennial	75	--	--	--	--
Anisadenia pubescens	Outgroup (Linaceae)	China	Ref. 1	NA	FJ169513	FJ160772	FJ160856	NA	Monomorphic	Homostylous	Perennial	76	--	--	--	--
Cliococca selaginoides	Outgroup (Linaceae)	S America	Ref. 1	NA	FJ169540	FJ160774	FJ160858	NA	Monomorphic	Homostylous	Perennial	22	$\mathrm{n}=18 ; 2 \mathrm{n}=36$	51	--	--
Hesperolinon micranthum	Outgroup (Linaceae)	W USA	Ref. 1	NA	FJ169542	F1160775	F1160859	NA	Monomorphic	Horizontal herkogamous	Annual	23	$\mathrm{n}=18 ; 2 \mathrm{n}=36$	28	--	--
Hugonia busseana	Outgroup (Linaceae)	Malawi	Ref. 1	NA	FJ169512	FJ160773	FJ160857	NA	Monomorphic	Homostylous	Perennial	13	--	--	--	--
Radiola linoides	Outgroup (Linaceae)	Cosmopolitan	Ref. 1	NA	FJ169534	FJ160815	FJ160899	NA	Monomorphic	Horizontal herkogamous	Annual	2	$2 \mathrm{n}=18$	51	--	--
Reinwardtia indica	Outgroup (Linaceae)	Afganistan, Pakistan	Ref. 1	NA	FJ169514	FJ160814	FJ160898	NA	Polymorphic	Polymorphic	Perennial	12	2n=20,22	51	--	--
Sclerolinon digynum	Outgroup (Linaceae)	USA	Ref. 1	NA	FJ169541	F1160787	F1160871	NA	Monomorphic	Homostylous	Annual	9	$\mathrm{n}=6 ; 2 \mathrm{n}=12$	28	--	--
Tirpitzia sinensis	Outgroup (Linaceae)	China	Ref. 1	NA	FJ169515	FJ160816	FJ160900	NA	Polymorphic	Polymorphic	Perennial	77	--	--	--	--
Humiria balsamifera	Outgroup (Humiriaceae)	Brasil	$\begin{array}{\|l} \hline \text { Ref. 70, 71, } \\ 72 \\ \hline \end{array}$	NA	NA	EU002231	AF350941	AY935932	Monomorphic	Homostylous	Perennial	78	--	--	--	--
Hypericum perforatum	Outgroup (Hypericaceae)	Medit. Basin	$\begin{array}{\|l\|} \hline \text { Ref. } 67,68, \\ 69 \\ \hline \end{array}$	NA	EU796888	NA	KC709009	AB698447	Monomorphic	Homostylous	Perennial	24	--	--	--	--
Viola pubescens	Outgroup (Violaceae)	USA, Canada	$\begin{array}{\|l\|} \hline \text { Ref. } 63,64, \\ 65,66 \\ \hline \end{array}$	NA	DQ006044	FJ670135	JF767162	JX661966	Monomorphic	Homostylous	Perennial	25	--	--	--	--

References:

1. McDill J., Repplinger M., Simpson B.B., Kadereit J.W. (2009) The phylogeny of Linum and Linaceae subfamily Linoideae, with implications for their systematics, biogeography, and evolution of heterostyly.

Systematic Botany 34, 386-405.
2. Ockendon D. J., Walters S.M. (1968). Linaceae. In: Tutin T.G., Heywood V.H., Burges N.A., Moore D.M., Valentine D.H., Walters S.M., Webb D. A. (Eds.) Flora Europaea vol. 2: Rosaceae to Umbelliferae.

Cambridge: University of Cambridge Press, Cambridge, pp. 589-603.
3. Davis, P. H. (1967). Linaceae. In: Davis P.H. (Eds.) Flora of Turkey and the Aegean Islands. Edinburgh University Press Edinburgh, pp. 425 - 450.
4. Yuzepchuk S. V. (1974). Linaceae. In.: Shishkin B.K., Bobrov E. G. (Eds.) Flora of the U.S.S.R. vol. 14. Botanical Institute of the Academy of Sciences of the USSR, Leningrad. Translated by the Israel Program for Scientific Translations, Jerusalem, pp. 67-112.
5. Strid A. (1986). Mountain flora of Greece. Cambridge University Press, Cambridge.
6. Wolfe L.M. (2001). Associations among multiple floral polymorphisms in Linum pubescens (Linaceae), a heterostylous plant. International Journal of Plant Sciences $\mathbf{1 6 2 ,} 335-342$.
7. Rogers C.M. (1981) A revision of the genus Linum in southern Africa. Nordic Journal of Botany 1, 711-722.
8. Fennane M., Ibn-Tattou M. (2007). Flore pratique du Maroc. Vol. 2. Angiospermae (Leguminosae-Lentibulariaceae). Institut Scientifique, Université Mohammed V de Rabat
9. Rogers C. M. (1968) Yellow-flowered species of Linum in Central America and western North America. Brittonia 20, 107-135
10. Mildner R.A., Rogers C.M. (1978) Revision of the native South American species of Linum (Linaceae). Phytologia 39, 343-390
11. Ruiz-Martín J., Jiménez-Mejías P., Martínez-Labarga J.M., Pérez-Barrales R. (2015) Linum flos-carmini (Linaceae), a new species from northern Morocco. Annales Botanici Fennici 52, 383-395.
12. Small, J. K. (1907) North American Flora. The New York Botanical Garden vol. 25 p. 87
13. Robson N.K.B. (1963) Linaceae. Flora Zambesiaca Vol. 2 part. 1.
14. Bentham G., Mueller F. (1863). Flora australiensis: A description of the plants of the Australian territory, Vol. 1. L. Reeve and Co., London.
15. Pignatti S. (1982) Flora d'Italia, vol I-III. Edagricole, Bologna.
16. Quezel P. \& Santa S. (1963) Nouvelle flore de l'Algerie: et des regions desertiques meridionales. CNRS, Paris.
17. Giardina G., Raimondo F. M., Spadaro V. (2007) A catalogue of plants growing in Sicily. Bocconea 20, 198-199
18. Valdés B., Rejdali M, Achhal el Kadmiri A., Jury J.L., Montserrat J.M. (Eds.) (2002) Catalogue des plantes vasculaires du nord du Maroc, incluant des cles d'identification. Checklist of vascular plants of N Morocco with identification keys, 2 vols. Consejo Superior de Investigacions Científicas Madrid.
19. Mohagheghzadeh A., Hemmati S., Alfermann A.W. (2006) Quantification of aryltetralin lignans in Linum album organs and in vitro cultures. Iranian Journal of Pharmaceutical Sciences 2, 47-56
20. Güvensen A., Seçmen Ö., Şenol S.G. (2013) Heterostyly in Linum aretioides. Turkish Journal of Botany 37, 122-129
21. Christodoulaki, D. (1995) A new subspecies of Linum gyaricum (Linaceae) from Greece. Nordic Journal of Botany 15, 145-147.
22. Rogers C. M., Mildner, R. (1971) The reevaluation of the genus Cliococca (Linaceae) of South America. Rhodora 73, 560-565.
23. Abrams, L. (1951) Illustrated Flora of the Pacific States Washington, Oregon and California: Vol. 3. Stanford University Press. Stanford, CA.
24. Linnaeus C. (1753) Species Plantarum, Vol. 2. Stockholm.
25. Culley T. M., Wolfe A. D. (2001) Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as indicated by allozyme and ISSR molecular markers. Heredity $86,545-556$.
25. Culley T. M., Wolfe A. D. (2001) Population genetic structure of the cleistogamous plant species Viola pubescens Aiton (Violaceae), as ind
26. Harris B.D. (1968) Chromosome numbers and evolution in North American species of Linum. American Journal of Botany 55, 1197-1204.
27. Ray C. (1944). Cytological studies on the flax genus (Linum). American Journal of Botany 31, 241-248.
28. Rogers C.M., Mildner R., Harris, B.D. (1972) Some additional chromosome numbers in the Linaceae. Brittonia 24, 313-316.
29. Pogan E., Jankun A., Turasla-Szybowska K. (1987) Further studies in chromosome numbers of Polish angiosperms. Part XX. Acta Biologica Cracoviensia, Ser. Bot. 29, 1-17.
30. Chennaveeraiah M.S., Joshi K. K. (1983) Karyotypes in cultivated and wild species of Linum. Cytologia 48, 833-841.
31. Mohamed M.K. (1997) Chromosome counts in some flowering plants from Egypt. Egyptian Journal of Botany 37, 129-156.
32. Petrova A.V. (1972) In: Löve (Ed.), IOPB chromosome number reports XXXV. Taxon 21, 161-166.
33. Rogers C.M. (1983) Chromosome numbers in some South African species of Linum L. (Linaceae). Journal of South African Botany 49, 181-184.
34. Elena-Rosselló J.A., Zapatero M.A.G., Andrés F. N (1987) Números cromosomáticos de plantas occidentales, 411-419. Anales del Jardín Botánico de Madrid 43, 417-424.
35. Seetharam A. (1972) Interspecific hybridization in Linum. Euphytica 21, 489-495.
36. Baksay L. (1956) Cytotaxonomical studies in the Flora of Hungary. - Ann. Hist. Mus. Nat. Hung., n.s. 7, 321-334.
37. Jhala A.J., Hall L.M., Hall J. C. (2008) Potential hybridization of flax with weedy and wild relatives: an avenue for movement of engineered genes?. Crop science 48, $825-840$.
38. Van Loon J., Kieft B. (1980) In: Love (Ed.), IOPB chromosome number reports LXVIII. Taxon 29, 538-542
39. Fu Y.B., Allaby R.G. (2010) Phylogenetic network of Linum species as revealed by non-coding chloroplast DNA sequences. Genetic Resources and Crop Evolution 57, 667-677.
40. Mugnier C. (1981) In: Love (Ed.), IOPB chromosome number reports LXXIII. Taxon 30, 829-861.
41. González-Zapatero M. A., Elena-Roselló J. A., Andrés F. N. (1988) Números cromosómicos para la flora Española. Lagascalia 15, 112-119.
42. Chichiricco G., Tammaro F. (1980) Numeri cromosomici per la flora italiana: 742-751. Informatore Botanico Italiano 12, 161-165.
43. Muravenko O.V., Amosova A.V., Samatadze T.E., Semenova O.Y., Nosova I.V., Popov K.V., Zelenin A.V. (2004) Chromosome localization of 5 S and $45 S$ ribosomal DNA in the genomes of Linum L. species of the section Linum (Syn. Protolinum and Adenolinum). Russian Journal of Genetics 40, 193-196.
44. Gregor T., Hand R. (2006) Chromosomenzahlen von Farn-und Samenpflanzen aus Deutschland 2. Kochia 1, 135-140.
45. Ruiz de Clavijo E. (1993) Números cromosómicos para la flora española, 664-690. Lagascalia 17, 161-172.
46. Magulaev A.V. (1984) Cytotaxonomic study in some flowering plants of the North Caucasus. Bot. Zhurn. SSSR 69, 511-517
47. Sokolovskaia A.P., Probatova N.S. (1985) Chromosome numbers in the vascular plants from the Maritime Territory, Kamchatka Region, Amur Valley and Sakhalin. Botanicheskii zhurnal 70, $997-999$ 48. Ghaffari S.M. (1987) Chromosome counts of some angiosperms from Iran: 2. Iranian Journal of Botany 3, 183-188
49. Franzen R., Gustavsson L.A. (1983) Chromosome numbers in flowering plants from the high mountains of Sterea Ellas, Greece. Willdenowia 13, 101-106.
50. Phitos D. (1988) Chromosome numbers in some species of the Greek flora. Bot. Chronika 8, 45-50.
51. Dressler S., Repplinger M., Bayer C. (2014) Linaceae. In Flowering Plants. Eudicots. Springer Berlin Heidelberg, pp. 237-246.
52. Murray B.G. (1986) Floral biology and self-incompatibility in Linum. Botanical Gazette 147, 327-333.
53. Dulberger R. (1967) Pollination systems in plants of Israel: heterostyly. PhD thesis, Hebrew University, Jerusalem.
54. Dulberger R. (1974) Structural dimorphism of stigmatic papillae in distylous Linum species. American Journal of Botany 61, 238-243.
55. Rogers C.M. (1979) Distyly and pollen dimorphism in Linum suffruticosum (Linaceae). Plant Systematics and Evolution 131, 127-132.
56. Nicholls M.S. (1985) A systematic study of the Linum tenuifolium group (Linaceae). Botanical Journal of the Linnean Society 91, 473-490
57. Nicholls M.S. (1985) Pollen flow, population composition, and the adaptive significance of distyly in Linum tenuifolium L. (Linaceae). Biological Journal of the Linnean Society 25, $235-242$.
58. Nicholls M.S. (1985) The evolutionary breakdown of distyly in Linum tenuifolium (Linaceae). Plant Systematics and Evolution 150, 291-301
59. Lewis D. (1943) The physiology of incompatibility in plants: II. Linum grandiflorum. Annals of Botany 7, 115-122
60. Darwin C. (1877) The different forms of flowers on plants of the same species. John Murray, London.
61. Kearns C.A., Inouye D.W. (1994) Fly pollination of Linum lewisii (Linaceae). American Journal of Botany 81, 1091-1095.
62. Dulberger R. (1973) Distyly in Linum pubescens and L. mucronatum. Botanical Journal of the Linnean Society 66, 117-126.
63. Kress W.J., Wurdack K.J., Zimmer E.A., Weigt L.A., Janzen D.H. (2005) Use of DNA barcodes to identify flowering plants. Proceedings of the National Academy of Sciences of the United States of America $\mathbf{1 0 2}$ 8369-8374.
64. Wurdack K., Davis C. (2009) Malpighiales phylogenetics: gaining ground on one of the most recalcitrant clades in the angiosperm tree of life. American Journal of Botany 96, 1551-1570
65. Marcussen T., Jakobsen K.S., Danihelka J., Ballard H.E., Blaxland K., Brysting A.K., Oxelman B. (2012) Inferring species networks from gene trees in high-polyploid North American and Hawaiian violets (Viola, Violaceae). Systematic Biology 61, 107-26.
66. Xi Z., Ruhfel B.R., Schaefer H., Amorim A.M., Sugumaran M., Wurdack K.J., Endress P.K., Matthews M.L., Stevens P.F., Mathews S., Davis C.C. (2012) Phylogenomics and a posteriori data partitioning resolve the Cretaceous angiosperm radiation Malpighiales. Proceedings of the National Academy of Sciences of the United States of America 109, 17519-7524.
67. Kersten T., Knoess W. (2008) Development and validation of molecular biological methods for identification of medicinal plants in herbal substances, herbal preparations and finished product. (Unpublished). 68. Sánchez Meseguer A., Aldasoro J.J., Sanmartín I. (2013) Bayesian inference of phylogeny, morphology and range evolution reveals a complex evolutionary history in St. John's wort (Hypericum). Molecular Phylogenetics and Evolution 67, 379-403
69. Koi S., Kita Y., Hirayama Y., Rutishauser R., Huber K.A., Kato M. (2012) Molecular phylogenetic analysis of Podostemaceae: implications for taxonomy of major groups. Botanical Journal of the Linnean Society 169, 461-492.
70. Hengchang W., Moore M.J., Soltis P.S., Bell C.D., Brockington S.F., Alexandre R., Davis C.C., Latvis M., Manchester S.R., Soltis D.E., Crane P. (2009) Rosid radiation and the rapid rise of angiosperm-dominated forests. Proceedings of the National Academy of Sciences of the United States of America 106, 3853-858.
71. Davis C.C., Anderson W.R, Donoghue M.J. (2001) Phylogeny of Malpighiaceae: Evidence from Chloroplast NdhF and TrnL-F Nucleotide Sequences. American Journal of Botany $88,1830-846$.
72. Zhang L.B, Simmons M.P. (2006) Phylogeny and delimitation of the Celastrales inferred from nuclear and plastid genes. Systematic Botany 31, 122-37.
73. Papanicolau K. (1984) Reports p.130-131. - Löve, A. (Ed.): IOBP Chromosome number reports LXXVII. - Taxon 33, 126-134
74. Post G.E. (1896) Flora of Syria, Palestine, and Sinai. Syrian Protestant college, Beirut.
75. Planchon J.E. (1847-48) Sur la famille des Linées. The London Journal of Botany 6 (1847) \& vol 7 (1848),
76. Huang C.J., Huang B.X., Xu L.R. (1998) Linum L. In: Flora Reipublicae Popularis Sinicae 43. Science Press, Beijing, pp 98-106.
77. Hallier H. (1921) Beiträge zur Kenntnis der Linaceae (DC. 1819) Dumort Beihefte zum Botanischen Centralblatt Abt. II. 39, 1-178
78. Narayana L.L., Rao D. (1978) Systematic position of Humiriaceae, Linaceae and Erythroxylaceae in the light of their comparative floral morphology and embryology - a discussion. Journal of the Indian Botanical Society 57, 258-266.
79. Stafford M.J. (2011). Linaceae. Flora Mesoamericana 3, 1-7.
80. Rogers C.M. (1980). In: Löve (Ed.), Chromosome number reports LXVII. Taxon 29, 347-367.
81. Rogers C.M. (1982) The systematics of Linum sect. Linopsis (Linaceae). Plant Systematics and Evolution 140, 225.
82. Gill S. (1987). Linseed. Indian Council of Agricultural Research Krishi Anusandhan Bhavan Pusa, New Delhi.
83. Devesa J.A., Talavera S., Galiano E.F. (1984) In A. Löve (Ed.). Chromosome Number Reports LXXXII. Taxon, 33, 126-134.

