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h i g h l i g h t s

• The stochastic Camassa–Holm (SCH) equation is derived variationally.
• Peakon solutions and isospectrality conditions are found for the SCH equation.
• Wave breaking also survives introducing stochasticity into the SCH equation.
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a b s t r a c t

We show that wave breaking occurs with positive probability for the Stochastic Camassa–Holm (SCH)
equation. This means that temporal stochasticity in the diffeomorphic flowmap for SCH does not prevent
the wave breaking process which leads to the formation of peakon solutions. We conjecture that the
time-asymptotic solutions of SCHwill consist of emergentwave trains of peakonsmoving along stochastic
space–time paths.
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1. The deterministic Camassa–Holm (CH) equation

The deterministic CH equation, derived in [1], is a nonlinear
shallow water wave equation for a fluid velocity solution whose
profile u(x, t) and its gradient both decay to zero at spatial infinity,
|x| → ∞, on the real line R. Namely,

ut − uxxt + 3uux = 2uxuxx + uuxxx , (1.1)

where subscripts t (resp. x) denote partial derivatives in time (resp.
space). This nonlinear, nonlocal, completely integrable PDEmay be
written in Hamiltonian form for a momentum densitym := u− uxx
undergoing coadjoint motion, as [1]

mt = {m, h(m)} = − (∂xm + m∂x)
δh
δm

, (1.2)

which is generated by the Lie–Poisson bracket

{f , h}(m) = −

∫
δf
δm

(
∂xm + m∂x

) δh
δm

dx (1.3)

and Hamiltonian function

h(m) =
1
2

∫
R
mK ∗ mdx =

1
2

∫
R
u2

+ u2
x dx
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=
1
2

∥u∥2
H1 = const. (1.4)

Here, K ∗ m :=
∫
K (x, y)m(y, t)dy denotes convolution of the

momentum density m with Green’s function of the Helmholtz
operator L = 1 − ∂2x , so that

δh
δm

= K ∗ m = u with K (x − y) =
1
2
exp(−|x − y|) . (1.5)

Alternatively, the CH equation (1.1) may be written in advective
form as

ut + uux = − ∂x

(
K ∗

(
u2

+
1
2
u2
x

))
= − ∂x

∫
R

1
2
exp(−|x − y|)

(
u2(y, t) +

1
2
u2
y(y, t)

)
dy . (1.6)

The deterministic CH equation admits signature solutions rep-
resenting a wave train of peaked solitons, called peakons, given by

u(x, t) =
1
2

M∑
a=1

pa(t)e−|x−qa(t)| = K ∗ m , (1.7)

which emerge from smooth confined initial conditions for the
velocity profile. Such a sum is an exact solution of the CH equa-
tion (1.1) provided the time-dependent parameters {pa} and {qa},
a = 1, . . . ,M , satisfy certain canonical Hamiltonian equations,
to be discussed later. In fact, the peakon velocity wave train in
(1.7) is the asymptotic solution of the CH equation for any spatially
confined C1 initial condition, u(x, 0).

https://doi.org/10.1016/j.physd.2018.02.004
0167-2789/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

https://doi.org/10.1016/j.physd.2018.02.004
http://www.elsevier.com/locate/physd
http://www.elsevier.com/locate/physd
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physd.2018.02.004&domain=pdf
http://creativecommons.org/licenses/by/4.0/
mailto:d.crisan@ic.ac.uk
mailto:d.holm@ic.ac.uk
https://doi.org/10.1016/j.physd.2018.02.004
http://creativecommons.org/licenses/by/4.0/


D. Crisan, D.D. Holm / Physica D 376–377 (2018) 138–143 139

Fig. 1.1. Under the evolution of the CH equation (1.1), an ordered wave train of peakons emerges from a smooth localized initial condition (a Gaussian). The speeds are
proportional to the heights of the peaks. The spatial profiles of the velocity at successive times are offset in the vertical to show the evolution. The peakon wave train
eventually wraps around the periodic domain, thereby allowing the faster peakonswhich emerge earlier to overtake slower peakons emerging later from behind in collisions
that conserve momentum and preserve the peakon shape but cause phase shifts in the positions of the peaks, as discussed in [1].

Remark 1. The peakon-train solutions of CH represent an emergent
phenomenon. A wave train of peakons emerges in solving the
initial-value problem for the CH equation (1.1) for any smooth
spatially confined initial condition. An example of the emergence
of a wave train of peakons from a Gaussian initial condition is
shown in Fig. 1.1.

Remark 2. By Eq. (1.5), the momentum density corresponding to
the peakon wave train (1.7) in velocity is given by a sum over delta
functions inmomentumdensity, representing the singular solution,

m(x, t) =

M∑
a=1

pa(t) δ(x − qa(t)) , (1.8)

in which the delta function δ(x − q) is defined by

f (q) =

∫
f (x)δ(x − q) dx , (1.9)

for an arbitrary smooth function f . Physically, the relationship
(1.8) represents the dynamical coalescence of the CH momentum
density into particle-like coherent structures (Young measures)
which undergo elastic collisions as a result of their nonlinear inter-
actions. Mathematically, the singular solutions of CH are captured
by recognizing that the singular solution ansatz (1.8) itself is an
equivariant momentum map from the canonical phase space of M
points embedded on the real line, to the dual of the vector fields on
the real line. Namely,

m : T ∗Emb(Z,R) → X(R)∗. (1.10)

This momentummap property explains, for example, why the sin-
gular solutions (1.8) form an invariant manifold for any value ofM
and why their dynamics form a canonical Hamiltonian system [2].

The complete integrability of the CH equation as a Hamiltonian
system follows from its isospectral problem.

Theorem 3 (Isospectral Problem for CH [1]). The CH equation in
(1.1) follows from the compatibility conditions for the following CH
isospectral eigenvalue problem and evolution equation for the real
eigenfunction ψ(x, t),

ψxx =

(
1
4

−
m
2λ

)
ψ , (1.11)

∂tψ = −(λ+ u)ψx +
1
2
uxψ , (1.12)

with real isospectral parameter, λ.

Proof. By direct calculation, equating cross derivatives ∂tψxx =

∂2x ∂tψ using Eqs. (1.11) and (1.12) implies the CH equation in (1.1),
provided dλ/dt = 0. □

Remark 4. The complete integrability of the CH equation as a
Hamiltonian system and its soliton paradigm explain the emer-
gence of peakons in the CH dynamics. Namely, their emergence
reveals the initial condition’s soliton (peakon) content.

1.1. Steepening lemma: the mechanism for peakon formation

In the followingwewill continueworking on the entire real line
R, although similar results are also available for a periodic domain
with only minimal effort. We use the notation ∥u∥2, ∥u∥1,2 and
∥u∥∞ to denote, respectively,

∥u∥2
2 :=

∫
∞

−∞

(
u2) dy , ∥u∥2

1,2 :=

∫
∞

−∞

(
u2

+
1
2
u2
y

)
dy , and

∥u∥∞ := sup
x∈R

∥u(x)∥.

Remark 5 (Local Well-Posedness of CH). As reviewed in [2], the
deterministic CH equation (1.1) is locallywell posed onR, for initial
conditions in Hs with s > 3/2. In particular, with such initial data,
CH solutions are C∞ in time and the Hamiltonian h(m) in (1.4) is
bounded for all time,

h := ∥u(·, t)∥1,2 < ∞.

In fact, CH solutions preserve the Hamiltonian in (1.4) given by the
∥u(·, t)∥1,2 norm

∥u(·, t)∥1,2 = h = constant, for all x ∈ R. (1.13)

By a standard Sobolev embedding theorem, (1.13) also implies the
useful relation that

M := sup
t∈[0,∞)

∥u(·, t)∥∞ < ∞. (1.14)
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The mechanism for the emergent formation of the peakons
seen in Fig. 1.1 may also be understood as a variant of classical
formations of weak solutions in fluid dynamics by showing that
initial conditions exist for which the solution of the CH equation
(1.1) can develop a vertical slope in its velocity u(t, x), in finite
time. The mechanism turns out to be associated with inflection
points of negative slope, such as take place on the leading edge
of a rightward-propagating, spatially-confined velocity profile. In
particular,

Lemma 6 (Steepening Lemma [1]). Suppose the initial profile of
velocity u(x, 0) has an inflection point at x = x to the right of its
maximum, and otherwise it decays to zero in each direction and that
∥u(·, 0)∥1,2 < ∞. Moreover we assume that ux(x̄, 0) < −

√
2M,

where M is the constant defined in (1.14). Then, the negative slope at
the inflection point will become vertical in finite time.

Proof. Consider the evolution of the slope at the inflection point
t ↦→ x(t) that starts at time 0 from an inflection point x = x of
u(x, 0) to the right of its maximum so that

s0 := ux(x(0), 0) < ∞.

Define st := ux(x(t), t), t ≥ 0. From the spatial derivative of the
advective form of the CH equation (1.6) one obtains

∂x(ut + uux) = −∂2x K ∗ (u2
+

1
2
u2
x ) = u2

+
1
2
u2
x − K ∗ (u2

+
1
2
u2
x ),

which leads to

∂tux = −uuxx + u2
−

1
2
u2
x − K ∗ (u2

+
1
2
u2
x ).

This, in turn, yields an equation for the evolution of t ↦→ st . Namely,
by using uxx(x(t), t) = 0 and (1.14) one finds

ds
dt

= −
1
2
s2 + u2(x(t), t) −

1
2

∫
∞

−∞

e−|x(t)−y|
(
u2

+
1
2
u2
y

)
dy

≤ −
1
2
s2 + M . (1.15)

Let s̃ be the solution of the equation

ds̃
dt

= −
1
2
s̃2 + M, s̃0 = s0 . (1.16)

Observe that
d
dt

((st − s̃t )e
1
2
∫ t
0 (sp+s̃p)dp) ≤ 0, s0 − s̃0 = 0,

therefore, st ≤ s̃t for all t > 0 (as long as both are well defined).
However, for s0 := ux(x(0), 0) < −

√
2M , Eq. (1.16) admits the

(unique) explicit solution

s̄ =
√
2M coth

(
σ +

t
2

√
2M
)
, σ = coth−1

(
s0

√
2M

)
< 0.

Since limt ↦→−2σ/
√
2M s̄t = −∞ it follows that there exists a time

τ ≤ −2σ/
√
2M by which the slope st = ux(x(t), t) becomes

negative and vertical, i.e. limt ↦→τ s̄t = −∞. □

Remark 7. Suppose the initial condition is anti-symmetric, so the
inflection point at u = 0 is fixed and dx/dt = 0, due to the
symmetry (u, x) → (−u,−x) admitted by Eq. (1.1). In this case, the
total momentum vanishes, i.e. M = 0, and no matter how small
|s(0)| (with s(0) < 0), the verticality s → −∞ develops at x in
finite time.

Remark 8. The Steepening Lemma of [1] proves that in one
dimension any initial velocity distribution whose spatial profile
has an inflection point with negative slope (for example, any an-
tisymmetric smooth initial distribution of velocity on the real line)

will develop a vertical slope in finite time. Note that the peakon
solution (1.7) has no inflection points, so it is not subject to the
steepening lemma.

The Steepening Lemma underlies the mechanism for forming
these singular solutions, which are continuous but have discon-
tinuous spatial derivatives. Indeed, the numerical simulations in
Fig. 1.1 show that the presence of an inflection point of neg-
ative slope in any confined initial velocity distribution triggers
the steepening lemma as the mechanism for the formation of
the peakons. Namely, according to Fig. 1.1, the initial (positive)
velocity profile ‘‘leans’’ to the right and steepens, then produces
a peakon that is taller than the initial profile, so it propagates
away to the right, since the peakon moves at a speed equal to
its height. This process leaves a profile behind with an inflection
point of negative slope; so it repeats, thereby producing a wave
train of peakons with the tallest and fastest ones moving right-
ward in order of height. In fact, Fig. 1.1 shows that this recur-
rent process produces only peakon solutions, as in (1.7). This is
a result of the isospectral property of CH as a completely inte-
grable Hamiltonian system [1]. Namely, the eigenvalues of the
initial profile u(x, 0) for the associated CH isospectral problem
are equal to the asymptotic speeds of the peakons in the wave
train (1.7).

The peakon solutions lie in H1 and have finite energy. We
conclude that solutions with initial conditions in Hs with s > 3/2
go to infinity in the Hs norm in finite time, but they remain in
H1 and presumably continue to exist in a weak sense for all time
in H1.

2. Advective form of the Stochastic Camassa–Holm (SCH)
equation

Following [3], we derive the SCH equation by introducing the
stochastic Hamiltonian function,

h̃(m) =
1
2

∫
R
m(x, t)K ∗ m(x, t) dx dt

+

∫
R
m(x, t)

N∑
i=1

ξ i(x) ◦ dW i
t dx . (2.1)

The second term generates spatially correlated random displace-
ments, by pairing the momentum density with the Stratonovich
noise in (2.1) via a set of time-independent prescribed functions
ξ i(x), i = 1, 2, . . . ,N , representing the spatial correlations. Thus,
the resulting SCH equation is given by

0 = dm + (∂xm + m∂x)
δ̃h(m)
δm

= dm + (∂xm + m∂x)v , (2.2)

where m := u − uxx and the stochastic vector field v, defined by

v(x, t) := u(x, t) dt +

N∑
i=1

ξ i(x) ◦ dW i
t , (2.3)

represents random spatially correlated shifts in the velocity
[3–6]. Thus, the noise introduced in (2.2) and (2.3) represents
an additional stochastic perturbation in the momentum transport
velocity.

2.1. Peakon solutions and isospectrality for the SCH equation

Theorem 9. The SCH equation (2.2) with the stochastic vector field
v in (2.3) admits the singular momentum solution for CH in (1.9) for
peakon wave trains.
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Proof. Substituting the singular momentum relation (1.9) into the
stochastic Hamiltonian h̃(m) in (2.1) and performing the integrals
yield the Hamiltonian for the stochastic peakon trajectories as

h̃(q, p) :=
1
4

M∑
a,b=1

pa(t)pb(t)e−|qa(t)−qb(t)|

+

M∑
a,b=1

pa(t)
N∑
i=1

ξ i(qa(t)) ◦ dW i
t .

The canonical Hamiltonian equations for the stochastic peakon
trajectories and momenta are thus given by

dqa =
∂ h̃
∂pa

=
1
2

M∑
b=1

pb(t)e−|qa(t)−qb(t)| dt +

N∑
i=1

ξ i(qa(t)) ◦ dW i
t

= u(qa(t)) dt +

N∑
i=1

ξ i(qa(t)) ◦ dW i
t = v(qa(t)) ,

and

dpa = −
∂ h̃
∂qa

= − pa(t)
∂u
∂qa

dt − pa(t)
N∑
i=1

∂ξ i

∂qa
◦ dW i

t

= − pa(t)
∂v(qa(t))
∂qa

.

Substituting these stochastic canonical Hamiltonian equations for
qa(t) and pa(t) into the singular momentum solution for CH in (1.9)
recovers the SCH equation (2.2) and the stochastic vector field v
in (2.3). □

Thus, the SCH equation (2.2) admits peakon wave train solu-
tions whose peaks in velocity follow the stochastic trajectories
given by the stochastic vector field v in (2.3) and satisfy stochas-
tic canonical Hamiltonian equations. The corresponding canonical
Hamiltonian equations in the absence of noise describe the trajec-
tories andmomenta of CHwave trains. For numerical studies of the
interactions of stochastic peakon solutions, see [5,6].

Remarkably, a certain amount of the isospectral structure for
the deterministic CH equation is preserved by the addition of
the stochastic transport perturbation we have introduced in (2.2)
and (2.3).

Theorem 10 (Isospectral Problem for SCH). The SCH equation in
(2.2) follows from the compatibility condition for the deterministic
CH isospectral eigenvalue problem (1.11), and a stochastic evolution
equation for the real eigenfunction ψ ,

ψxx =

(
1
4

−
m
2λ

)
ψ , (2.4)

dψ = −(λ+ v)ψx +
1
2
vxψ , (2.5)

with v : = u dt +

N∑
i=1

ξ i(x) ◦ dW i
t , (2.6)

and real isospectral parameter, λ, provided dλ = 0 and ξ i(x) =

C i
+ Aiex + Bie−x, for constants Ai, Bi and C i.

Proof. By direct calculation, equating cross derivatives dψxx =

∂2x dψ using Eqs. (2.4) and (2.5) implies, when dλ = 0, that

dm + (∂xm + m∂x)v + λ
(
mx − (vx − vxxx)

)
= 0.

Consequently, the compatibility condition for Eqs. (2.4) and (2.5)
implies the SCH equation in (2.2), provided dλ = 0 and ξ ix(x) −

ξ ixxx(x) = 0. The latter means that ξ i(x) is either constant, or
exponential. □

Remark 11. Theorem 10 means that the SCH equation (2.2) with
stochastic vector field v (2.3) with ξ ix(x)− ξ

i
xxx(x) = 0 has the same

countably infinite set of conservation laws as for the deterministic
CH equation (1.1). However, the SCH Hamiltonian h̃(m) in (2.1)
is not conserved by the SCH equation (2.2), because it depends
explicitly on time. Consequently, for those choices of ξ i(x), the SCH
equation is equivalent to consistency of the linear equations (2.4)
and (2.5). Therefore, SCH is solvable by the isospectral method
for each realization of the stochastic process in (2.6). However, it
remains to be seenwhether SCH is integrable as a Hamiltonian sys-
tem. See [7] for an example of an integrable stochastic deformation
of the CH equation.

The issue now and for the remainder of the paper is to find out
whether the wave breaking property which is the mechanism for
the creation of peakon wave trains in the deterministic case also
survives the introduction of stochasticity.

2.2. Wave breaking estimates for SCH

In the following we will assume the conditions under which
the stochastic integrals appearing in Eq. (2.2) for u as well as the
equation for ux are well defined and summable. In particular, we
assume that the vector fields ξi are smooth and bounded and that∑
i>0

((∥ξ i∥∞)2 + (∥ξ ix∥∞)2 + (∥ξ i∥2,1)2) < ∞.

Let Ai, ∂xAi, i ∈ Z+ be the following set of operators

Ai(u) = uxξ
i
− K ∗

(
uxξ

i
xx(x) + 2uξ ix(x)

)
, (2.7)

∂xAi(u) = uxxξ
i
+ uxξ

i
x − ∂xK ∗

(
uxξ

i
xx(x) + 2uξ ix(x)

)
, (2.8)

(∂xAi is obtained by formally differentiating Ai). In the followingwe
will assume that there is a local solution of Eq. (2.2) such that the
operators Ai, ∂xAi, i ∈ Z+ are well defined.

Remark 12. The analysis presented in [8] for the local existence
and uniqueness of the solution of stochastic Euler equation can
be a template for proving the existence of a local solution of
the stochastic partial differential equation (2.2). Essentially, one
needs to show that there is a global solution of a suitably chosen
truncated version of (2.2). This is done via a relative compactness
argument applied to a sequence of stochastic partial differential
equations with vanishing diffusion terms.

Let us deduce first the equation for the velocity slope, ux. We
have the following lemma:

Lemma 13 (Evolution of the Velocity Slope). Under the above condi-
tions, we have

dux = −
1
2

(
u2
x + 2uuxx − u2) dt − K ∗

(
u2

+
1
2
u2
x

)
dt

−

∑
i

Ai
x(u) ◦ dW i

t . (2.9)

Proof. Expanding out the SCH equation in terms of u and v gives

0 = dm + (∂xm + m∂x)v

= (1 − ∂2x )du + 2uvx + uxv − 2vxuxx − vuxxx

= (1 − ∂2x )(du + vux) + uxvxx + 2uvx

= (1 − ∂2x )(du + vux) + ∂x

(
u2

+
1
2
u2
x

)
dt

+

∑(
uxξ

i
xx(x) + 2uξ ix(x)

)
◦ dW i

t .
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Therefore, applying the smoothing operator K∗ := (1 − ∂2x )
−1,

given by the convolution with Green’s function K (x, y) in (1.5) for
the Helmholtz operator (1 − ∂2x ), to both sides of the previous
equation yields

du + uux dt = −ux

(∑
ξ i ◦ dW i

t

)
− ∂xK ∗

(
u2

+
1
2
u2
x

)
dt

+

∑
K ∗

(
uxξ

i
xx + 2uξ ix

)
◦ dW i

t

= −∂xK ∗

(
u2

+
1
2
u2
x

)
dt

−

∑
(uxξ

i
− K ∗

(
uxξ

i
xx(x) + 2uξ ix(x)

)
) ◦ dW i

t

= −∂xK ∗

(
u2

+
1
2
u2
x

)
dt −

∑
Ai(u) ◦ dW i

t , (2.10)

in which the derivative ∂x is understood to act on everything
standing to its right. Consequently, we have

dux = −
(
u2
x + uuxx

)
dt − ∂xxK ∗

(
u2

+
1
2
u2
x

)
dt

−

∑
Ai
x(u) ◦ dW i

t . (2.11)

Then, since

∂xxK ∗

(
u2

+
1
2
u2
x

)
= −

(
u2

+
1
2
u2
x

)
+ K ∗

(
u2

+
1
2
u2
x

)
,

we deduce (2.9). □

Remark 14. Observe that

∂xK ∗
(
uxξ

i
xx(x) + 2uξ ix(x)

)
= ∂xxK ∗ (uξ ixx(x)) − ∂xK ∗

(
uξ ixxx(x) + 2uξ ix(x)

)
= −uξ ixx(x) + K ∗ (uξ ixx(x)) − ∂xK ∗

(
uξ ixxx(x) + 2uξ ix(x)

)
. (2.12)

Hence, the last term in the expression of (2.8) can be controlled by
the supremum norm of u.

Just as in the deterministic case, we define next the process
t ↦→ νt as the inflection point of u to the right of its maximum
so that

uxx (νt , t) = 0, and st = ux (νt , t) < 0.

In what follows, we will assume, without proof, that the process
t ↦→ νt is a semi-martingale. The argument to show that validity
of this property is based on the implicit function theorem. Indeed
one can show that ν satisfies the equation

dνt = −
1

uxxx(νt , t)
(duxx)(νt , t),

provided the equation is well defined. That is, assume we have an
inflection point, not an inflection interval; which means that we
have assumed uxxx(νt , t) ̸= 0. Using the semimartingale property
of ν and the Itô-Wentzell formula (see, e.g., [9]), we deduce that

d (ux(νt , t)) = (dux) (νt , t)+ uxx (νt , t) ◦ dνt = (dux) (νt , t) .

Hence, by (2.9) and (2.12), we find that

dst = −

(
1
2
s2t − u2 (νt , t)

)
dt − K ∗

(
u2

+
1
2
u2
x

)
(νt) dt

−

∑
i

(
stξ iνt + Bi(u)|νt

)
◦ dW i

t , (2.13)

where the operators Bi are given by

Bi(u) = −uξ ixx(x) + K ∗ (uξ ixx(x)) − ∂xK ∗
(
uξ ixxx(x) + 2uξ ix(x)

)
,

i ∈ Z+.

We will henceforth consider the particular case when the vector
fields ξ i are spatially homogeneous, so that Bi(u) = 0. (This is also
the isospectral case, which we discussed in the previous section.)
In this case, just as in the deterministic case, we have

∥u(·, t)∥1,2 = ∥u(·, 0)∥1,2, for all x ∈ R. (2.14)

and, again, (2.14) implies that

M := sup
t∈[0,∞)

∥u(·, t)∥∞ < ∞. (2.15)

This bound arises because the stochastic term vanisheswhen com-
puting d ∥u(·, t)∥2

1,2. More precisely, the stochastic term is given by
the expression∑

(2uux + uxuxx) ξ i ◦ W i
t ,

whose spatial integral over the real line vanishes for constant ξ i,
for the class of solutions u(·, t) which vanish at infinity and whose
gradient also vanishes at infinity. Note that the constantM in (2.15)
is independent of the realization of the Brownian motions W i,
i ∈ Z+. By a standard Sobolev embedding theorem, (1.13) also
implies the useful relation that

M := sup
t∈[0,∞)

∥u(·, t)∥∞ < ∞. (2.16)

Proposition 15. As in the deterministic case, suppose the initial
profile of velocity u(x, 0) has an inflection point at x = x to the
right of its maximum, and it decays to zero in each direction; so
that ∥u(·, 0)∥1,2 < ∞. Consider the expectation of the slope at the
inflection point, s̄t = E [st ]. If ux(x̄, 0) is sufficiently small, then there
exists τ < ∞ such that limt ↦→τ s̄t = −∞.

Proof. By changing from Stratonovich to Itô integration, we obtain
from (2.13) that

dst = −

(
1
2
s2t − u2 (νt , t)

)
dt − K ∗

(
u2

+
1
2
u2
x

)
(νt) dt

−

∑
i

stξ idW i
t +

1
2

∑
i

st
(
ξ i
)2
dt (2.17)

and, by taking expectation, we deduce that
d
dt

E [st ] ≤ −
1
2

(
E
[
s2t
]
− E[st ]2

)
−

1
2

(
E[st ]2

)
+

∥ξ∥

2
E [st ] + M.

Consequently, for arbitrary ε ∈ [0, 1), we have

d
dt

s̄t ≤ −
1
2
(s̄t)2 +

∥ξ∥

2
s̄t + M ≤ −

1 − ε

2
(s̄t)2 +

(
M +

∥ξ∥2

2ε

)
from which we deduce that the magnitude |s̄t | blows up in finite
time, just as in the deterministic case. □

Note that Proposition 15 does not guarantee pathwise blow
up of the process for the magnitude of the negative slope at the
inflection point |st |, only the blowup of itsmean, |s̄t |. The following
theorem shows that, indeed the pathwise negative slope st blows
up in finite time with positive probability, albeit not with proba-
bility 1.

Theorem16 (Wave Breaking for the Stochastic Camassa–Holm Equa-
tion). Under the same assumptions as those introduced in Proposi-
tion 15, with positive probability, the negative slope at the inflection
point st = ux(νt , t) will become vertical in finite time.

Proof. We define a new Brownian motionW , as follows:

Wt =
−
∑

i ξ
iW i

t

∥ξ∥
, t > 0.
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Then the equation for st becomes

dst = −

(
1
2
s2t −

∥ξ∥2

2
st − u2 (νt , t)

)
dt

− K ∗

(
u2

+
1
2
u2
x

)
(νt) dt + ∥ξ∥ stdWt .

We introduce a BrownianmotionB such that the stochastic integral∫ t
0 spdWp can be represented as∫ t

0
spdWp = B∫ t

0 s2pdp
.

Then, as above, for arbitrary ε ∈ [0, 1/2)

st ≤ s0 +

∫ t

0

((
M +

∥ξ∥2

2ε

)
−
εs2p
2

)
dp

+

(
−

1 − 2ε
2

∫ t

0
s2pdp + ∥ξ∥ B∫ t

0 s2pdp

)
≤ s0 +

∫ t

0

(
M +

∥ξ∥2

2ε
−
εs2p
2

)
dp + X∫ t

0 s2pdp
,

where X is the Brownian motion with negative drift.1

X (t) = −
1 − 2ε

2
t + ∥ξ∥ Bt .

With positive probability (though not 1!), the process X remains
smaller than, say, −s0/2 > 0 for all t > 0 and therefore so does
the process t ↦→ X∫ t

0 s2pdp
which is just a time-change of X . It follows

that, with the same probability, we have that

st ≤
1
2
s0 +

∫ t

0

(
M +

∥ξ∥2

2ε
−
εs2p
2

)
dp.

From here, the argument in the deterministic case applies: Let ŝ be
the solution of the equation

dŝ
dt

= −
ε

2
ŝ2 + M̂, ŝ0 =

1
2
s0 , (2.18)

where M̂ = M +
∥ξ∥2

2ε . Then, st ≤ ŝt for all t > 0 (as long as

both are well defined). However, for s0 := ux(x(0), 0) < −

√
2M̂/ε,

Eq. (2.18) admits the (unique) explicit solution

ŝ =

√
2M̂/ε coth

(
σ +

εt
2

√
2M̂/ε

)
,

σ = coth−1

⎛⎝ s0√
2M̂/ε

⎞⎠ < 0,

which implies, as in the deterministic case, the existence of a finite
time by which the slope st = ux(x(t), t) becomes vertical. □

Remark 17. Using the properties of the Brownian motion with
negative drift, a lower bound for the probability that the initially
negative slope at the inflection point st = ux(νt , t) will become

1 Let X be a Brownian motion with negative drift, X(t) = σB(t) + µt , µ < 0,
limt ↦→∞X (t) = −∞. Let M = maxs≥0X (t) . Then P (M ≥ a) = exp

(
− a

( 2|µ|

σ2

))
and we conclude that M has an exponential distribution with mean 2|µ|

σ2 . To put
it differently, no matter where we start the Brownian motion with drift there is a
positive probability that it will reach any level, before it drifts off to−∞. Vice versa,
it never hits level awith positive probability, see e.g. [10].

vertical in finite time is given by 1 − exp
(
s0(1 − 2ε)/(4∥ξ∥2)

)
,

where s0 must satisfy the constraint s0 < −

√
2M̂/ε with M̂ =

M +
∥ξ∥2

2ε .

Remark 18. In a similar manner, one can show that st ≥ s̃t , t ≥ 0,
where

s̃t = −

(
1
2
s̃2t −

∥ξ∥2

2
s̃t + M

)
dt + ∥ξ∥ s̃tdWt , s̃0 = s0.

To show this, one proceeds as in the proof of the steepening lemma
by first justifying the inequality

d
dt

(
(st − s̃t )e

1
2
∫ t
0 (sp+s̃p)dp+

∥ξ∥2t
2 +∥ξ∥Wt

)
≥ 0, s0 − s̃0 = 0,

so that st ≥ s̃t for all t > 0 (as long as both are well defined).
In turn, s̃t , and therefore st , may achieve positive values with
positive probability. This could, in principle, lead to a violation
of the conditions under which an initially negative slope at an
inflection point may become vertical. Future work is planned by
the authors to further investigate the emergence of peakons, as
well as the local well-posedness of the stochastic CH equation.
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