
A DOMAIN-SPECIFIC LANGUAGE FOR THE HYBRIDIZATION
AND STATIC CONDENSATION OF FINITE ELEMENT METHODS∗

THOMAS H. GIBSON† , LAWRENCE MITCHELL‡ , DAVID A. HAM† , AND

COLIN J. COTTER†

Abstract. In this paper, we introduce a domain-specific language (DSL) for concisely expressing
localized linear algebra on finite element tensors, and its integration within a code-generation frame-
work. This DSL is general enough to facilitate the automatic generation of cell-local linear algebra
kernels necessary for the implementation of static condensation methods and local solvers for a vari-
ety of problems. We demonstrate its use for the static condensation of continuous Galerkin problems,
and systems arising from hybridizing a finite element discretization. Additionally, we demonstrate
how this DSL can be used to implement local post-processing techniques to achieve superconvergent
approximation to mixed problems. Finally, we show that these hybridization and static condensa-
tion procedures can act as effective preconditioners for mixed problems. We use the DSL in this
paper to implement high-level preconditioning interfaces for the hybridization of mixed problems,
as well generic static condensation. Our implementation builds on the solver composability of the
PETSc library by providing reduced operators, which are obtained from locally assembled expres-
sions, with the necessary context to specify full solver configurations on the resulting linear systems.
We present some examples for model second-order elliptic problems, including a new hybridization
preconditioner for the linearized system in a nonlinear method for a simplified atmospheric model.

Key words. Domain-specific language, automatic code generation, hybridization, static con-
densation, mixed finite elements.

AMS subject classifications. 65F08, 65K05, 65M60, 68N19.

1. Introduction. The development of simulation software is becoming an in-
creasingly important aspect of modern scientific computing. Such software requires
a vast range of knowledge spanning several disciplines, ranging from abstract mathe-
matics and computer science to software engineering and high-performance comput-
ing. Developing advanced finite element techniques are particularly complicated from
both implementation and mathematical perspectives. Software projects developing
automatic code-generation systems has become quite popular in recent years, as such
systems help create a separation of concerns which focuses on a particular complex-
ity independent from the rest. Examples of such projects include FreeFEM++ [31],
Sundance [42], the FEniCS Project [39], Feel++ [45], and Firedrake [46].

The finite element method (FEM) is a mathematically robust framework for com-
puting solutions of partial differential equations (PDEs), with a formulation that is
highly amenable to code-generation techniques. The description of the weak formu-
lation of the PDEs, together with the discrete spaces from which solution approxi-
mations are constructed, is sufficient to characterize the problem completely. Both
the FEniCS and Firedrake projects employ the Unified Form Language (UFL) [1]
to specify the finite element integral forms and discrete function spaces necessary
to properly define the finite element problem. UFL is a highly expressive domain-
specific language (DSL) embedded in Python which provides the information which

∗

Funding: This work was supported by the Engineering and Physical Sciences Research Coun-
cil [grant numbers EP/M011054/1, EP/L000407/1, EP/L016613/1]; and the Natural Environment
Research Council [grant number NE/K008951/1]
†Department of Mathematics, Imperial College London, South Kensington Campus, London SW7

2AZ, UK (t.gibson15@imperial.ac.uk, david.ham@imperial.ac.uk, colin.cotter@imperial.ac.uk)
‡Department of Computing and Department of Mathematics, Imperial College London, South

Kensington Campus, London SW7 2AZ, UK (lawrence.mitchell@imperial.ac.uk)

1

ar
X

iv
:1

80
2.

00
30

3v
1

 [
cs

.M
S]

 1
 F

eb
 2

01
8

mailto:t.gibson15@imperial.ac.uk
mailto:david.ham@imperial.ac.uk
mailto:colin.cotter@imperial.ac.uk
mailto:lawrence.mitchell@imperial.ac.uk

2 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

finite element code-generation systems require.
There are classes of finite element discretizations which admit discrete systems

that can be solved more efficiently by directly manipulating local tensors. For exam-
ple, the static condensation technique for the reduction of global finite element sys-
tems [29, 34] produces smaller globally-coupled linear systems by eliminating interior
unknowns to arrive at an equation for the facet1 degrees of freedom only. Alterna-
tively, hybridized finite element methods [3, 14, 18] introduce Lagrange multipliers
enforcing certain continuity constraints on finite element functions. Static condensa-
tion can then be applied to the augmented system to produce a reduced equation for
the multipliers. Methods of this type are often accompanied by local post-processing
techniques that produce superconvergent approximations [10, 20, 21].

The main objective of this paper is to provide a high-level description of elemen-
tal linear algebra for code-generation systems. In doing so, we provide a means to
enable rapid development of hybridization and static condensation techniques within
an automatic code-generation framework. Our work is implemented in the Firedrake
finite element framework and the PETSc solver library. Firedrake’s solver abstrac-
tion builds on the PETSc’s formalism for solving discrete systems, using the latter’s
Python interface, petsc4py [24].

The rest of the paper is organized as follows. In section 2, we introduce our
new DSL within the Firedrake software package [46] which allows concise expression
of localized linear algebra operations on finite element tensors. We provide some
contextual examples for static condensation and hybridization, including a discussion
on post-processing. We then outline in section 3 how the Python interface with
PETSc can be used in tandem with our DSL to automate the hybridization and
static condensation of finite element systems as preconditioners. We demonstrate
our implementations for manufactured test problems in section 4. Subsection 4.3
demonstrates the composability of our implementation of a hybridized mixed method
as a preconditioner for the linearized system of a nonlinear method for the rotating
shallow water equations. Conclusions follow in section 5.

1.1. Notation. Let Th denote a tesselation of Ω ⊂ Rn, the computational do-
main, consisting of polygonal elements K associated with a mesh size parameter h,
and ∂Th = {e ∈ ∂K : K ∈ Th} the set of facets of Th. We denote the integral forms
over Th and any facet set Γ ⊂ ∂Th by

(u, v)K =

∫
K

u · v dx, 〈u, v〉e =

∫
e

u · v ds,(1)

(u, v)Th =
∑
K∈Th

(u, v)K , 〈u, v〉Γ =
∑
e∈Γ

〈u, v〉e,(2)

where · should be interpreted as standard multiplication for scalar functions or a dot
product for vector functions.

For any double-valued vector field w on a facet e ∈ ∂Th, we define the jump of
its normal component across e by

(3) JwKe =

{
w|e+ · ne+ +w|e− · ne− , e ∈ ∂Th \ ∂Ω ≡ E◦h
w|e · ne, e ∈ ∂Th ∩ ∂Ω ≡ E∂h

1“Facets” here describes the topological entity of the mesh which is one less than the total space
dimension. In two dimensions, these are edges, and in three dimensions the are polygonal faces of
each cell of the mesh.

A DSL FOR HYBRIDIZATION 3

where + and − denotes the positive and negative restrictions respectively. Whenever
the facet domain is clear by the context, we omit the subscripts and will instead write
JwK.

2. A language for linear algebra on local finite element tensors. We
present an expressive language for dense linear algebra on the elemental matrix sys-
tems arising from finite element problems. The language, which we call Slate, inherits
typical mathematical operations performed on matrices and vectors, hence the input
syntax is comparable to high-level linear algebra software (e.g. MATLAB). The Slate
language provides basic abstract building blocks which can be used by a specialized
compiler for linear algebra to generate low-level code implementations.

Slate is designed around the Unified Form Language (UFL) [1, 39], a DSL embed-
ded in Python which provides abstract representations of finite element forms. UFL
expressions are interpreted by a form compiler, which translates UFL into compiled
code for the local assembly of a form over the cells and facets of a mesh. The FEniCS
project employs the FEniCS Form Compiler (FFC) [35, 40], while Firedrake uses the
Two-Stage Form Compiler (TSFC) [33]. It is the job of the FEM framework to take
the resulting code and assemble the local contributions of the finite element form over
the mesh. These local data objects must then be inserted into global data structures
before handing over to a linear solver. These operations are handled by the PyOP2
[47] and DOLFIN [41] frameworks in Firedrake and FEniCS respectively.

2.1. An overview of Slate. To clarify conventions and scope of Slate, we start
by considering a general form. With Th, E◦h, and E∂h denoting the sets of cells, interior
facets, and exterior facets respectively, suppose we have a finite element form:

(4) a(c;v) =
∑
K∈Th

∫
K

Ic(c;v)dx+
∑
e∈E◦h

∫
e

If,◦(c;v)ds+
∑
e∈E∂h

∫
e

If,∂(c;v)ds,

where dx and ds denote appropriate integration measures. Equation (4) is uniquely
determined by its lists (possibly of 0-length) of arbitrary coefficient functions c =
(c0, · · · , cp) in the associated finite element spaces, arguments v = (v0, · · · , vq) de-
scribing any test or trial functions, and its integrand expressions for each integral
type: Ic, If,◦, If,∂ . The form a(c;v) describes a finite element form globally over
the entire problem domain. The contribution of (4) in each cell K of the mesh Th is
simply

(5) a(c;v)|K =

∫
K

Ic(c;v)dx+
∑

e∈∂K\∂Ω

∫
e

If,◦(c;v)ds+
∑

e∈∂K∩∂Ω

∫
e

If,∂(c;v)ds.

We call (5) the cell-local contribution of a(c;v). Equation (5) produces an element
tensor which is mapped into a global data structure. However, one may want produce
a new local tensor by algebraically manipulating different element tensors. This is
precisely the job of our new DSL.

The Slate language consists of two primary abstractions for linear algebra: (1)
terminal element tensors corresponding to multi-linear integral forms, or assembled
data; and (2) expressions consisting of operations on terminal tensors or existing Slate
expressions. A summary of Slate nodes are listed below:

• Tensor(a(c;v))
associates a form, expressed in UFL, with its local element tensor:

(6) AK ← a(c;v)|K , for all K ∈ Th.

4 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

The number of arguments v determine the rank of Tensor, i.e. scalars, vec-
tors, and matrices are produced from 0-forms, 1-forms, and 2-forms2 respec-
tively.

• AssembledVector(f)
where f is some finite element function. The result associates a function with
its local coefficient vectors.

• Block(AK , i)
where AK is a Tensor corresponding to a mixed form and i are indices over
the test and trial spaces associated with the mixed tensor. The result is
a block of AK corresponding to the indices i. For example, if a matrix A
corresponds to the bilinear form a : V ×W → R, where V = V0×· · ·×Vn and
W = W0 × · · · ×Wm are product spaces consisting of finite element spaces
{Vi}ni=0, {Wi}mi=0, then the cell-local tensors have the form:

(7) AK =


AK00 AK01 · · · AK0m
AK10 AK11 · · · AK1m

...
...

. . .
...

AKn0 AKn1 · · · AKnm

 .
The associated submatrix of (7) with indices i = (p, q), p = {p1, · · · , pr},
q = {q1, · · · , qc}, is

(8) AKpq =

A
K
p1q1 · · · AKp1qc
...

. . .
...

AKprq1 · · · AKprqc

← Block(AK , (p, q)),

where p ⊂ {1, · · · , n}, q ⊂ {1, · · · ,m}.
• TensorOp(operands)

implements all unary and binary operations on Slate objects. These include
the following:

– Binary operations:
Add(A, B): The addition of two tensors of equal rank and shape;
Mul(A, B): Standard multiplication of two tensors of appropriate
shape.

– Unary operations:
Negative(A): The additive inverse of a local tensor;
Transpose(A): The transpose of a local tensor;
Inverse(A): The inverse of a local square tensor.

By construction, each Tensor is uniquely defined by its associated form, and
performing any number of binary or unary operations on the Tensor objects produces
a Slate expression. The composition of all the operations presented gives us the
necessary algebraic framework needed for the class of problems presented in this paper.

Slate expressions are handled by a linear algebra compiler, which employs TSFC
for local assembly and generates a dense linear algebra kernel to be iterated cell-wise.
Our compiler generates C++ code, using the templated library Eigen [28] for dense
linear algebra. During execution, the local computations in each cell are mapped

2As with UFL, Slate is capable of abstractly representing arbitrary rank tensors. However, only
rank ≤ 2 tensors are typically used in most finite element applications and therefore we currently
only generate code for those ranks.

A DSL FOR HYBRIDIZATION 5

into global data objects via appropriate indirection mappings. Figure 1 provides an
illustration of the complete tool-chain.

Fig. 1. The Slate language wraps forms, expressed in UFL, describing the finite element prob-
lem. The Slate expressions are handed over to a specialized linear algebra compiler, which produces
TSFC kernels for local element assembly, and a single “macro” kernel which performs the dense
linear algebra. The resulting kernels are passed to the PyOP2 interface, which wraps the Slate kernel
in a mesh-iteration kernel. Parallel scheduling and code generation occurs after the PyOP2 layer.

2.2. Examples. We now present a few examples and discuss solution methods
which require element-wise manipulations of finite element systems and their speci-
fication in Slate. We stress here that Slate is not limited to these model problems;
rather these examples were chosen for clarity and to demonstrate key features of the
Slate language. In section 3 and section 4, we discuss more intricate ways the Slate
DSL is used in custom preconditioners for linear systems, including some numerical
tests ranging from manufactured problems to a simplified atmospheric model.

2.2.1. Static condensation of CG methods. As a first example, consider the
positive-definite Helmholtz problem given by:

−∇ · (κ∇p) + cp = f in Ω,(9)

p = p0 on ∂ΩD,(10)

−κ∇p · n = g on ∂ΩN ,(11)

where ∂ΩD ∪ ∂ΩN = ∂Ω and κ, c : Ω→ R+ are positive-valued coefficients. The H1-
discretization is formed by tessellating Ω into Th, multiplying by a test function and
integrating by parts in the usual finite element way. The resulting weak formulation
reads: find ph ∈ Vh such that

(12) a(κ, c;φ, ph) ≡ (∇φ, κ∇ph)Th + (φ, cph)Th = (φ, f)Th − 〈φ, g〉∂ΩN
≡ F (f, g;φ)

for all φ ∈ Vh,0, where Vh is a continuous piecewise polynomial space incorporating
the condition ph = p0 on ∂ΩD, and Vh,0 is a continuous piecewise polynomial space
whose functions have zero trace on ∂ΩD. With P denoting the vector degrees of

6 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

freedom, solving (12) requires the solution of the symmetric system of the form:

(13) AP = F.

The static condensation technique of Guyan and Irons [29, 34] reduces the size
of the global matrix A by partitioning the problem into separate systems for the
degrees of freedom interior to each element, and the degrees of freedom associated
with elemental boundaries. This produces a system of the form:

(14)

[
A00 A0∂

A∂0 A∂∂

]{
P0

P∂

}
=

{
F0

F∂

}
,

where the subscripts 0 and ∂ denote elemental interior and boundary coupling respec-
tively. The interior unknowns are then condensed out of (14) via a Schur complement,
leaving a smaller globally-coupled system for the interface unknowns:

(15)
(
A∂∂ −A∂0A

−1
00 A0∂

)
P∂ = F∂ −A∂0A

−1
00 F0.

The matrix A00 has block-diagonal structure by our choice of degrees of freedom.
Therefore the system in (15) can be assembled by performing element-wise operations
on the local finite element matrices and vectors. Once P∂ is determined, P0 can be
recovered by solving the system:

(16) A00P0 = (F0 −A0∂P∂) .

By the same argument as before, (16) can be evaluated by solving a sequence of local
systems in each element of Th.

There are a number of ways to obtain the partitioned matrix system in (14).
The most natural way using UFL is to construct the appropriate finite element basis
functions by introducing the spaces:

V 0
h = {φ ∈ Vh : φ|K ∈ Vh(K), φ|∂K = 0,∀K ∈ Th},(17)

V ∂h = {φ ∈ Vh : φ|K ∈ Vh(K), φ|∂K = 0 =⇒ φ|K = 0,∀K ∈ Th},(18)

where V 0
h and V ∂h are function spaces corresponding to functions in Vh restricted to

element interiors and boundaries respectively. Note that the space V ∂h must now
enforce the boundary condition in (10). We can now rewrite the problem in (12) as
the following: find (p0

h, p
∂
h) ∈ V 0

h × V ∂h such that

(19) â
(
κ, c;

(
φ0, φ∂

)
,
(
p0
h, p

∂
h

))
= F̂ (f, g;φ0, φ∂)

holds for all test functions (φ0, φ∂) ∈ V 0
h × V ∂h,0, where

â
(
κ, c;

(
φ0, φ∂

)
,
(
p0
h, p

∂
h

))
≡

{
a(κ, c;φ0, p0

h) + a(κ, c;φ0, p∂h),

a(κ, c;φ∂ , p0
h) + a(κ, c;φ∂ , p∂h),

(20)

F̂ (f, g;φ0, φ∂) ≡

{
F (f, g;φ0),

F (f, g;φ∂).
(21)

See Listing 5 in Appendix A.1 for a UFL formulation of (19).
Listing 1 here displays abridged code using Slate to form the system in (15).

The syntax of Slate is designed to enable one to naturally and concisely express the

A DSL FOR HYBRIDIZATION 7

1 A = Tensor(a)

2 F = Tensor(F)

3 S = A.block((1, 1)) - A.block((1, 0)) * A.block((0, 0)).inv * A.block((0, 1))

4 E = F.block((1,)) - A.block((1, 0)) * A.block((0, 0)).inv * F.block((0,))

5 pd = Function(Vd) # Function to store the result: P∂

6 Smat = assemble(S, bcs =[...]) # Assemble and solve: SP∂ = E
7 Evec = assemble(E)

8 solve(Smat , pd, Evec)

9

10 po = Function(Vd) # Function to store the result: P0

11 PD = AssembledVector(pd) # Coefficient vector for P∂

12 assemble(A.block((0, 0)).inv * (F.block((0,)) - A.block((0, 1)) * PD), po)

Listing 1
Slate expressions (highlighted in orange) for the Schur complement system in (15), as well as

the local reconstruction of the interior unknowns described by (16). Here, the finite element forms
a and F in lines 1 and 2 are previously defined UFL expressions for (20), (21) respectively. In this
example, the argument field index for the interior element space is denoted by 0, and 1 for the facet
element space.

desired algebraic expressions. Calling block on the Slate tensors associated with the
UFL forms produces the corresponding blocks of the partitioned matrix and vector
(lines 3–4). Equation (15) is the only system which requires a global solve (line 8).
Strong boundary conditions should be provided during the Schur complement operator
assembly (line 6). Line 12 displays the Slate expression for locally assembling the
interior degrees of freedom by directly inverting the local matrices of A00 onto the
relevant right-hand side.

2.2.2. Hybridized mixed methods. Here we demonstrate the use of Slate to
facilitate the implementation of hybridized finite element methods. We use the mixed
formulation of the second-order system (9)–(11) as our example:

µu+∇p = 0 in Ω,(22)

∇ · u+ cp = f in Ω,(23)

p = p0 on ∂ΩD,(24)

u · n = g on ∂ΩN ,(25)

where µ = κ−1 and u = −κ∇p. Traditional mixed methods seek a solution (uh, ph)
in the finite dimensional spaces

Uh = {w ∈H(div; Ω) : w|K ∈ U(K),∀K ∈ Th,w · n = g on ∂ΩN},(26)

Vh = {φ ∈ L2(Ω) : φ|K ∈ V (K),∀K ∈ Th}(27)

respectively. The space Uh consists of H(div)-conforming piecewise vector polyno-
mials, where choices of U(K) typically include the Raviart-Thomas (RT), Brezzi-
Douglas-Marini (BDM), or Brezzi-Douglas-Fortin-Marini (BDFM) elements [12, 13,
43, 48]. The implementation of H(div) finite element spaces within a code-generation
framework is discussed in [49].

The mixed finite element formulation of (22)–(25) reads as follows: find (uh, ph) ∈
Uh × Vh satisfying

(w, µuh)Th − (∇ ·w, ph)Th = −〈w · n, p0〉∂ΩD
(28)

(φ,∇ · uh)Th + (φ, cph)Th = (φ, f)Th(29)

8 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

for all (w, φ) ∈ Uh,0 × Vh, where Uh,0 is the space of functions in Uh whose normal
components vanish on ∂ΩN . With U and P denoting the vector of degrees of freedom
for uh and ph respectively, computing the solution of (28)–(29) requires solving the
saddle point system:

(30)

[
A B
C D

]{
U
P

}
=

{
G
F

}
.

Methods to efficiently invert such systems include H(div)-multigrid [4] (requir-
ing complex overlapping-Schwarz smoothers), global Schur complement factorizations
(which require an approximation to the inverse of the elliptic Schur complement op-
erator), or auxiliary space multigrid [32]. Here, we focus on a solution method using
hybridization [3, 9, 11, 12, 14].

For the hybridized mixed method, the discrete solution spaces are Vh for ph and
Ûh for uh, where

(31) Ûh = {w ∈ [L2(Ω)]n : w|K ∈ U(K),∀K ∈ Th}.

The vector finite element space Ûh is a subspace of [L2(Ω)]n consisting of localH(div)
functions, but normal components are no longer continuous on ∂Th. Lagrange multi-
pliers are introduced as an auxiliary trace variable in the function space:

(32) Mh = {γ ∈ L2(∂Th) : γ|e ∈M(e),∀e ∈ ∂Th},

where M(e) denotes a polynomial space defined on each facet e.
Deriving the hybridized mixed system is accomplished by standard integration

by parts over each element K. The trace function λh is introduced in surface in-
tegrals approximating ph on elemental boundaries. An additional constraint equa-
tion is added to close the system. The hybridized mixed formulation reads: find
(uh, ph, λh) ∈ Ûh × Vh ×Mh such that

a(µ, c; (w, φ), (uh, ph)) + b(w, λh) = F (p0, f ;w, φ)(33)

b(uh, γ) = G(g; γ),(34)

for all (w, v, γ) ∈ Ûh × Vh ×Mh,0, where Mh,0 denotes the space of traces vanishing
on ∂ΩD, and the finite element forms are defined as:

a(µ, c; (w, φ), (uh, ph)) =

{
(w, µuh)Th − (∇ ·w, ph)Th
(φ,∇ · uh)Th + (φ, cuh)Th

(35)

b(uh, γ) = 〈γ, JuhK〉∂Th\∂ΩD
(36)

F (p0, f ;w, φ) =

{
−〈JwK, p0〉∂ΩD

(φ, f)Th
(37)

G(g; γ) = 〈γ, g〉∂ΩN
.(38)

We refer the reader to Listing 6 in Appendix A.2 for an example of how one may
formulate (35)–(38) in UFL.

Arising from the hybridized-mixed formulation, we have the augmented system
of linear equations with the general form:

(39)

[
A BT

B 0

]{
X
Λ

}
=

{
F
G

}
,

A DSL FOR HYBRIDIZATION 9

where X =
[
U P

]T
and Λ are the vectors of degrees of freedom for the flux, scalar,

and trace unknowns. Equation (39) defines a 3×3 block system which is block-sparse

by our choices of Ûh, Vh, and Mh. If the space of Lagrange multipliers Mh is chosen
appropriately, then the solution U in (39), albeit sought a priori in a discontinuous
space, will coincide with its H(div)-conforming counterpart in (30) via:

(40) b(uh, γ) = G(g; γ), for all γ ∈Mh,0.

Equation (40) enforces both continuity of the normal components of uh across el-
emental boundaries, as well as the Neumann condition on ∂ΩN . As a result, the
formulations in (33)–(34) and (28)–(29) are mathematically equivalent [3].

The hybridized problem has a number of immediate advantages:
1. By our choice of function spaces, the operator:

(41) A =

[
A00 A01

A10 A11

]
is block-sparse. As a result, we can simultaneously eliminate U and P by
performing element-wise static condensation to (39), producing a significantly
smaller problem for Λ only:

(42) SΛ = E,

where S and E are given by

S = BA−1BT(43)

E = BA−1F −G.(44)

2. The matrix S is sparse, symmetric, and positive-definite [18]. Furthermore, S
is a discrete elliptic operator and therefore we can solve (42) using standard
algebraic multigrid (AMG) preconditioning for elliptic problems [27].

3. Once Λ is computed, both U and P can be recovered locally. Using (41) and
noting that the matrix B is of the form B =

[
K 0

]
, we can derive elemental

systems for U and P :

A00U = (G−A01P −KTΛ),(45)

(A11 −A10A
−1
00 A01)P = (F −A10A

−1
00 (G+KTΛ)).(46)

An expression for the Schur complement can be formed by expanding out the
block matrix products and inverse:

(47) S =
[
K 0

] [A00 A01

A10 A11

]−1 [
KT

0

]
.

However, it can be quite cumbersome in general to write out (47) in terms of individual
matrices. Instead, Slate can operate directly on the defined block matrices. See
Listing 2 for the corresponding Slate code for the static condensation of (39) and
local recovery in (45)–(46).

2.2.3. Hybridized discontinuous Galerkin methods. The hybridized dis-
continuous Galerkin (HDG) method is a natural extension of its mixed counterpart.
The unification of hybridized methods is discussed in [18], and the HDG method was

10 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

1 # Local element tensors corresponding to the relevant forms

2 A = Tensor(a)

3 B = Tensor(b)

4 F = Tensor(F)

5 G = Tensor(G)

6 S = B * A.inv * B.T

7 E = B * A.inv * F - G

8 lambdah = Function(M) # Function to store the result: Λ
9 Smat = assemble(S, bcs =[...]) # Assemble and solve: SΛ = E

10 Evec = assemble(E)

11 solve(Smat , lambdah , Evec)

12

13 ph = Function(V) # Function to store the result: P
14 uh = Function(U) # Function to store the result: U
15 Lv = AssembledVector(lambdah) # Coefficient vector for: Λ
16 A00 = A.block((0, 0)) # Blocks for two -stage reconstruction

17 A01 = A.block((0, 1))

18 A10 = A.block((1, 0))

19 A11 = A.block((1, 1))

20 K = B.block((0, 1))

21 assemble((A11 - A10 * A00.inv * A01).inv * (G - A10 * A00.inv * (F + K.T * Lv)), ph)

22 assemble(A00.inv * (F - A01 * AssembledVector(p h) - K.T * Lv, uh)

Listing 2
Slate code for the Schur complement system and the local solves for the scalar and flux

unknowns. The form arguments a, b, F, and G in lines 2–5 correspond to UFL expressions for
the forms in (35)–(38). The element-wise assembly of the Schur complement system occurs in
lines 9 and 10. Lines 22 and 21 correspond to equations (45) and (46). Note that any vanishing
conditions on the trace space should be provided during operator assembly in line 9.

studied numerically in [20, 21, 37]. Here, we follow [18, 20] and present a specific
HDG method, namely the LDG-H method for (28)–(29).

The LDG-H method seeks flux and scalar approximations in the spaces Uh =
[Vh]n and Vh, respectively, with Vh being the space of discontinuous polynomials.
Next, we introduce the numerical fluxes:

(48) ûh = uh + τ (ph − p̂h)n, p̂h = λh,

where λh ∈Mh is a function approximating the trace of p on ∂Th and τ is a positive
function that may vary on each facet e ∈ ∂Th.

The full LDG-H formulation is obtain via integrating by parts, which produces
the following problem: find (uh, ph, λh) ∈ Uh × Vh ×Mh such that

(w, µuh)Th − (∇ ·w, ph)Th + 〈JwK, λh〉∂Th = 0,(49)

−(∇φ,uh)Th + 〈φ, JûhK〉∂Th + (φ, cph)Th = (φ, f)Th(50)

〈γ, JûhK〉∂Th\∂ΩD
= 〈γ, g〉∂ΩN

,(51)

〈γ, λh〉∂ΩD
= 〈γ, p0〉∂ΩD

,(52)

for all (w, φ, γ) ∈ Uh × Vh ×Mh. Equation (51) enforces continuity of the numerical
flux û on the mesh skeleton, and (52) weakly applies the Dirichlet condition. Note
that the choice of τ has a significant influence on the theoretical convergence rates
in the computed solutions, as discussed in [20]. We elaborate further and numeri-
cally demonstrate the effects of τ in subsection 4.2. See Appendix A.3 for a UFL
formulation of (49)–(52).

A DSL FOR HYBRIDIZATION 11

The LDG-H system has more degrees of freedom than its hybridized mixed coun-
terpart, but its matrix-form exhibits the same useful properties as (39). The matrix
system arising from (49)–(52) has the general form:

(53)

A B K
C D L
M N Q

UP
Λ

 =

GF
H

 .

By our function spaces, the upper-left 2×2 block has block-sparse structure and we
may eliminate U and P element-wise to obtain a reduced system for Λ:

(54) SΛ = E,

where

S = Q−
[
M N

] [A B
C D

]−1 [
K
L

]
,(55)

E = H −
[
M N

] [A B
C D

]−1{
G
F

}
.(56)

Equation (54) shares the same properties as the Schur complement system of (42) for
hybridized mixed method.

1 # Element tensors defining the local 3-by -3 block system

2 R = Tensor(a)

3 Z = Tensor(L)

4

5 # Extracting blocks of R and Z to form the reduced system

6 Q = R.block((2, 2))

7 H = Z.block((2,))

8 S = Q - R.block((2, (0, 1))) * R.block(((0, 1), (0, 1))).inv * R.block(((0, 1), 2))

9 E = H - R.block((2, (0, 1))) * R.block(((0, 1), (0, 1))).inv * Z.block(((0, 1),))

10 lambdah = Function(M) # Function to store the result: Λ
11 Smat = assemble(S, bcs =[...]) # Assemble and solve: SΛ = E
12 Evec = assemble(E)

13 solve(Smat , lambdah , Evec)

Listing 3
Slate code for assembling (54) via extracting the relevant mixed blocks of the full 3×3 block

system, given UFL expressions a, L for (49)–(51). Arguments of the mixed space Uh ×Vh ×Mh are
indexed by 0, 1, and 2 respectively. As with the hybrid-mixed method, vanishing conditions on the
trace variables should be provided as boundary conditions during operator assembly.

Listing 3 displays the Slate code for assembling Schur complement system in (54).
Providing the appropriate argument indices via the block method on Slate tensors
extracts the corresponding mixed blocks in equations (55) and (56). Note that it
is indeed possible to rewrite the Slate expressions purely in terms of the individual
blocks of (53). However, this is quite cumbersome and the expressions are far more
intelligible when written in this way.

As before, we may reconstruct U and P locally once Λ is computed. This can be
accomplished in two stages, first computing P locally by solving:

(57) (D − CA−1B)P = G− CA−1F − (L− CA−1K)Λ,

followed by:

(58) AU = F −BP −KΛ.

12 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

See Listing 4 for the Slate expressions corresponding to equations (57) and (58).
The local systems are constructed from the individual blocks of the system in (54),
following similarly from the hybridized mixed method.

14 A = R.block((0, 0)) # Individual blocks for the local solves

15 B = R.block((0, 1))

16 C = R.block((1, 0))

17 D = R.block((1, 1))

18 K = R.block((0, 2))

19 L = R.block((1, 2))

20 F = Z.block((0,))

21 G = Z.block((1,))

22

23 Sd = D - C * A.inv * B # Intermediate expressions

24 Sl = L - C * A.inv * K

25 Lv = AssembledVector(lambdah) # Coefficient vector for Λ
26 ph = Function(V) # Function to store the result: P
27 uh = Function(U) # Function to store the result: U
28

29 # Solve for P and U
30 assemble(Sd.inv * (G - C * A.inv * F - Sl * Lv), ph)

31 assemble(A.inv * (F - B * AssembledVector(ph) - K * Lv), uh)

Listing 4
Slate code for locally reconstructing the scalar and flux unknowns of the LDG-H method.

2.2.4. Local post-processing. Local post-processing techniques for the con-
struction of superconvergent approximations were discussed within the context of
mixed methods in [3, 10, 52], and discontinuous Galerkin methods in [20, 21]. Here,
we present two post-processing techniques for producing local solutions of higher ap-
proximation order. The Slate code follows naturally from previous discussions in
subsection 2.2.2 and subsection 2.2.3, using the standard set of operations on local
tensors. Listings and further discussion on these techniques can be found in Ap-
pendix B.

Post-processing of the scalar solution. There are number of post-processing
techniques for enhancing the accuracy of the scalar approximation of the hybridized
mixed method and its DG variant. We present a modified version of the procedure
presented by Stenberg in [52], and highlighted within the context of hybridizing eigen-
problems in [19].

Let Pk(K) denote a polynomial space of degree ≤ k on an element K ∈ Th. Then
for a given pair of computed solutions uh, ph of the hybridized methods, we define
the post-processed scalar p?h ∈ Pk+1(K) as the unique solution of the local problem:

(∇w,∇p?h)K = −(∇w, κ−1uh)K ,(59)

(v, p?h)K = (v, ph)K ,(60)

for all (w, v) ∈ P⊥,lk+1(K) × Pl(K), 0 ≤ l ≤ k. Here, the space P⊥,lk+1(K) denotes the
L2-orthogonal complement of Pl(K). This post-processing method directly uses the
definition of the flux uh = −κ∇ph to construct the local problem above. In practice,
the space P⊥,lk+1(K) may be constructed using an orthogonal hierarchical basis, and
solving (59)–(60) amounts to inverting a local symmetric positive definite system.

At the time of this work, neither FEniCS nor Firedrake supports the construction
of such a finite element basis. However, we can use a standard Lagrange multiplier

A DSL FOR HYBRIDIZATION 13

method (for example, see [38, §4.7]) to enforce the orthogonality constraint. The local
problem then becomes the mixed system: find (p?h, ψ) ∈ Pk+1(K)× Pl(K) such that

(∇w,∇p?h)K + (w,ψ)K = −(∇w, κ−1uh)K ,(61)

(φ, p?h)K = (φ, ph)K ,(62)

for all (w, φ) ∈ Pk+1(K) × Pl(K), 0 ≤ l ≤ k. The local problems (61)–(62) and
(59)–(60) are equivalent, with the Lagrange multiplier ψ enforcing orthogonality of
test functions in Pk+1(K) with functions in Pl(K).

It has been shown that the post-processing method above produces a new approx-
imation which superconvergences at a rate of k+ 2 for the hybridized mixed methods
[3, 19, 52]. For the LDG-H method, similar results are proven when τ = O(1) and
τ = O(h), but only k + 1 convergence is achieved when τ = O(1/h) [20, 21]. We
demonstrate this numerically in section 4.

Post-processing of the flux. For the post-processing of the flux for the LDG-
H method, we use the numerical trace ûh from (48). The technique we outline here
follows from [21], and produces a new flux with better conservation properties.

Let Th be a mesh consisting of simplices. On each elementK ∈ Th, we define a new
function u?h to be the unique element of the local Raviart-Thomas space [Pk(K)]n +
xPk(K) satisfying

(r,u?h)K = (r,uh)K ,(63)

〈µ,u?h · n〉e = 〈µ, ûh · n〉e,(64)

for all (r, µ) ∈ [Pk−1(K)]n × Pk(e), e ∈ ∂K. This local problem produces a new flux
u?h with the following properties:

1. u?h converges at the same rate as uh for all choices of τ producing a solvable
system for (49)–(51). However,

2. u?h ∈H(div; Ω). That is,

(65) Ju?hKe = 0 for all e ∈ E◦h.

3. Furthermore, the divergence of u?h convergences at a rate of k + 1.
We demonstrate the rates of of convergence of the post-processed flux for varying
choices of τ in section 4.

3. Static condensation is a preconditioner. The solver abstraction of Fire-
drake follows the PETSc formalism for solving and preconditioning linear systems.
PETSc [6, 7] is a fully-featured library which provides access to a large range of
its own and third party implementations of solver algorithms. For example, PETSc
provides access to direct solvers like LU, with the possibility of utilizing external pack-
ages like MUMPS [2], or UMFPACK [25]. PETSc also provides many robust block
preconditioners via the fieldsplit option [15] for mixed problems. Together with
the Python interface with PETSc via petsc4py [24], composing solvers in Firedrake
becomes a straightforward process.

Following PETSc’s abstraction for preconditioning linear systems, one can think
of (left) preconditioning the matrix equation in residual form:

(66) r = r(A, b) ≡ b−Ax = 0

by an operator P (which may not necessarily be linear) as a transformation into an
equivalent system of the form

(67) P r = P (b−Ax) = 0.

14 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Given a current iterate xi, the residual at the i-th iteration is simply the expression
ri ≡ b − Axi. P acts on the residual to produce an approximation to the error
εi ≡ x− xi. The solver converges if

(68) ‖rm‖2 = ‖P rm−1(A, b)‖2 ≤ max(εrtol‖b‖2, εatol),

where the norms are measured in the standard vector 2-norm. In the case that P is
an application of an exact inverse, the residual is converted into an exact (up to nu-
merical round-off) residual. In this way, direct methods are expressed in PETSc’s
Krylov method interface by specifying “preconditioner only” as a ksp_type (e.g.
-ksp_type preonly -pc_type lu) [6].

We denote the application of particular Krylov method for the linear system (66)
as Kx(r(A, b)). Upon preconditioning the system via P as in (67), we write

(69) Kx(P r(A, b)).

If (69) is solved directly via the application of A−1, then P r(A, b) = A−1b−Ix, where
I is the identity matrix. So, we have that Kx(P r(A, b)) = Kx(r(I, A−1b)) produces
the exact solution of (66) in a single iteration of K.

3.1. Interfacing with PETSc via custom preconditioners. The implemen-
tation of preconditioners for these systems requires manipulation not of assembled
matrices, but rather their symbolic representation. To do this, we use the precondi-
tioning infrastructure developed in [36], which gives preconditioners written in Python
access to the symbolic problem description. We manipulate this appropriately and
provide operators assembled from Slate expressions to PETSc for further algebraic
preconditioning. Using this technique, we have developed a static condensation solver
for continuous Galerkin methods, a hybridized mixed context for H(div)×L2 mixed
problems, and a generic static condensation interface for hybridized systems (both
hybridized mixed and HDG methods). The advantage of writing even the latter as a
preconditioner is the ability to switch out the solution scheme for the system, even
when nested inside a larger set of coupled equations.

3.1.1. A static condensation preconditioner. The Firedrake preconditioner
SCCG is a generic static condensation interface whose setUp method takes an H1

problem, and uses the Slate DSL to write and form the condensed system for the
facet degrees of freedom. The preconditioning operator P here is the inverse of the
Schur-complement factorization of the left-hand side operator in (14):

(70) P =

[
I A−1

00 A0∂

0 I

] [
A−1

00 0
0 S−1

] [
I 0

A∂0A
−1
00 I

]
,

where S is the Schur-complement left-hand side of (15).
Normally when using the fieldsplit options together with a Schur complement

preconditioner in PETSc, two Krylov solvers are needed to invert both S and the
upper-left block A00. However, only S requires an iterative method; the matrix A00

has block-diagonal structure and therefore recovery of the interior unknowns is per-
formed element-wise using a Slate description of the local problem (see (16)).

The incoming co-vector b is defined on the H1 finite element space, and is parti-
tioned into interior (b0) and facet (b∂) sections. The right-hand side for the reduced
system is assembled pointwise via:

(71) b̃ = b∂ −A∂0A
−1
00 b0,

A DSL FOR HYBRIDIZATION 15

where A∂0A
−1
00 b0 is assembled locally using Slate. This preconditioner requires a single

global solver for the facet unknowns x∂ :

(72) Kx∂ (P 1r(S, b̃))

where P 1 is another preconditioning operator for the system associated with S.
This static condensation procedure composes naturally with PETSc in that ad-

ditional solver specifications and preconditioning for (72) is completely configurable
through standard PETSc options. Once both the interior and facet solutions are
solved for, the results are placed back into an H1 residual function (x∂ , x0)→ x. The
residual of the problem is checked to verify convergence of the solver.

3.1.2. Preconditioning mixed methods via hybridization. The precon-
ditioner HybridizationPC takes an H(div) × L2 system and forms the hybridized
problem by manipulating the UFL objects representing the discretized PDE. This in-
cludes replacing argument spaces with their discontinuous counterparts, introducing
test functions on an appropriate trace space, and providing operators assembled from
Slate expressions. This is an alternative to using standard fieldsplit options.

More precisely, let Ax = b, x← (xU , xP), where xU and xP are the flux and scalar
unknowns respectively, be the mixed saddle point problem. Then this preconditioner
replaces Ax = b with the augmented system:

(73)

[
Ã BT

B 0

]{
x̃
xλ

}
=

{
b̃
bλ

}
where b̃ ← (̃bU , bP), b̃U , bP are the right-hand sides for the flux and scalar equations
respectively, and ·̃ indicates modified matrices and co-vectors with discontinuous func-
tions. Here, B is an off-diagonal block matrix containing the contributions of the
multipliers, and x̃← (x̃U , xP) are the new discontinuous unknowns.

The preconditioning operator for (73) has the form:

(74) P̃ =

[
I Ã−1BT

0 I

] [
Ã−1 0

0 S−1

] [
I 0

BÃ−1 I

]
,

where S is the Schur complement matrix S = −BÃ−1BT . Note that (74) is actually a
3×3 block factorization, with the two fields for the flux and scalar unknowns associated
with the block Ã. The only globally coupled system that needs an iterative solver is
the reduced problem for the Lagrange multipliers:

(75) Kxλ(P 1r(S,E)),

where E is the reduced right-hand size of the hybridized mixed system. Once xλ is
computed, the flux and scalar fields are reconstructed element-wise via solving the
local problems in (45) and (46).

Since the flux is constructed in a discontinuous space Ûh, we must project the
computed solution into Uh ⊂ H(div). This can be done cheaply via local facet
averaging. The resulting solution is then x ← (Πdivx̃U , xP), where xP , Πdivx̃U are
the scalar and projected flux solutions respectively. This ensures the residual for the
original mixed is properly evaluated to test for convergence.

We note here that assembly of the right-hand side E in (75) requires special
attention. The situation we are given is that we have bU = bU (w) for w ∈ Uh, but

require b̃U (ŵ) for ŵ ∈ Ûh. For consistency, we also require for any w ∈ Uh that

(76) b̃U (w) = bU (w).

16 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

We can construct such a b̃U satisfying (76) using the local definition:

(77) b̃U (ψ̂i) =
bU (ψ̂i)

Ni
, ψ̂i ∈ Ûh,

where Ni is the number of cells that the degree of freedom corresponding to the basis
function ψi ∈ Uh touches. For H(div)-elements, Ni = 2 for facet nodes, and 1

otherwise. By construction of space Ûh, we have for ψi ∈ Uh:

(78) ψi =

{
ψ̂

+

i + ψ̂
−
i ψi associated with a facet node,

ψ̂i ψi associated with an interior node,

where ψ̂i, ψ̂
±
i ∈ Ûh, and ψ̂

±
i are functions corresponding to the positive and negative

restrictions associated with the i-th facet node.3 Using (77) and (78), we can verify

that our construction of b̃U satisfies (76).

3.1.3. A static condensation interface for hybridization. It may be the
case that one formulates the hybridized system of three fields directly and wishes to
only solve the problem via a Schur complement method. In this case, we created
a static condensation interface HybridSCPC which takes a hybridized linear system
Ax = b, where A and b have the general block form described in (53), and forms
the Schur complement system for the trace variables using operators generated from
Slate expressions. As before, a single global solve is required for the trace unknowns,
and local reconstructions are performed to retrieve the discontinuous flux and scalar
solutions.

4. Numerical results. We now present results utilizing the Slate DSL and our
custom Firedrake preconditioners for a set of test problems. All numerical studies
conducted in this paper were performed on a 32-core workstation, with each core
being a Intel E5-2450v2 (Xeon) CPU at 2.5GHz. Solver configurations for the test
problems in this section are provided in Appendix E.

4.1. A three-dimensional positive-definite Helmholtz equation. We con-
sider solving a positive definite Helmholtz equation in three dimensions on a regular
unit-cube mesh consisting of tetrahedral elements. We solve a simple pure-Neumann
problem:

(79) −∇ · ∇p+ p = f in Ω = [0, 1]3, ∇p · n = g on ∂Ω,

where f and g are chosen such that the analytic solution is simply the trigonometric
function p(x, y) = cos(3πx) cos(3πy) cos(3πz). We solve (79) using our static conden-
sation preconditioner in subsection 3.1.1.

We perform a convergence study using Lagrange elements of degree 4, 5, 6, and
7 on refined tetrahedral meshes. The meshes are divided into 2r cells in all spatial
directions. The elliptic problem on the facet nodes is inverted using conjugate gra-
dients, preconditioned with using hypre’s boomerAMG algebraic multigrid method
(AMG) [5]. To ensure an accurate result, we specify a relative tolerance of 10−13.
Figure 2 shows the convergence of the L2 error as the mesh is refined.

3These are the two “broken” parts of ψi on a particular facet connecting two elements. That is,
for two adjacent cells, a basis function in Uh for a particular facet node can be decomposed into two
basis functions in Ûh defined on their respective sides of the facet.

A DSL FOR HYBRIDIZATION 17

2 0 2 1 2 2 2 3 2 4 2 5

10 10

10 8

10 6

10 4

10 2

100
L2 e

rro
r

5

8

3D Helmholtz convergence

Mesh size h = 2 r

Degree 4
Degree 5

Degree 6
Degree 7

Fig. 2. Error convergence rates of the continuous Galerkin method for degrees 4, 5, 6, and 7.
The solution was obtained using the static condensation method. Slope markers are added to assist
in comprehension. For all degrees, we achieve the expected k+1 rate of convergence in the L2 errors
between the computed solution and the analytic result.

Currently, we compute local inverses directly without exploiting the use of fac-
torization methods, like QR or LU with pivoting. Therefore, it is likely that our
implementation is introducing small errors during operator assembly. To investigate
this, we measure the reduction in the problem residual after a single application of our
static condensation preconditioner. While reductions slowly decrease as the resolu-
tions increase, we observe significant reductions overall (the residual is reduced down
to 10−12 for all degrees at the highest resolution). Isolated calculations can be found
in Appendix C.1.

We remark here that the setup cost of this preconditioner is quite high, since
it requires the assembly of dense inverses of high-degree element tensors. In three-
dimensions especially, the overall algorithmic intensity grows rapidly, and how we
compute local matrix inverses has a significant impact. This suggests a future direc-
tion for optimizations in Firedrake. A more thorough performance analysis is needed
to draw further conclusions on when using static condensation is advantageous for
problems of this type. See [44] for a more comprehensive study.

4.2. Hybridized methods for the Poisson equation. We seek a solution to
the Dirichlet problem for the Poisson equation as a first-order system:

(80) u+∇p = 0 in Ω = [0, 1]2, ∇ · u = f in Ω, p = p0 on ∂Ω,

where f and p0 are chosen so that the analytic solution is the sinusoid p(x, y) =
sin(πx) sin(πy) and its negative gradient. We solve this problem by hybridizing the
mixed formulation of (80), and employ our static condensation preconditioner in 3.1.3.
The trace variables are obtained with a direct method: LU with MUMPS providing
the factorization algorithms [2].

The standard error estimates for the RT and BDM mixed methods are well-
known [3, 12, 16, 26, 48]. To verify our implementation of the hybridized-mixed
preconditioner, we run a convergence study using the setup above. Additionally,
we compute post-processed scalar solutions using the method described in (61)–(62).

18 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

2 1 2 2 2 3 2 4 2 5 2 6

10 11

10 9

10 7

10 5

10 3

10 1

L2 e
rro

r

1

3

4

Scalar

2 1 2 2 2 3 2 4 2 5 2 6

2

4

5

Post-processed scalar

2 1 2 2 2 3 2 4 2 5 2 6

1

3

4

Flux

Mesh size h = 2 r

RT order 0 RT order 1 RT order 2 RT order 3

Fig. 3. Error convergence rates of the hybridized RT method of orders 0, 1, 2, and 3. We
observe the expected theoretical rates for the scalar and flux solutions of the standard RT method.
Additionally, we can clearly see the effects of post-processing the scalar solution, yielding supercon-
vergent results.

Figure 3 displays the convergence rates for the hybridized RT method. We repeat
the same study for the BDM method on simplices and RT method on quadrilaterals,
which can be found in Appendix C.2.

We repeat this same study for the LDG-H method with varying choices of τ in
order to examine how τ influences the convergence rates. The expected theoretical
rates for the LDG-H method given a particular order of τ is discussed in [20]. In all
our experiments, we use the post-processing methods described in subsection 2.2.4
to produce approximations p?h and u?h. We consider three cases: τ = 1, τ = 1

h , and
τ = h. The convergence rates for each LDG-H method for approximation degrees 1,
2, and 3 are summarized in Appendix C.3.

For τ = 1 and τ = h, we expect the post-processed scalar p?h to superconverge at
a rate of k + 2 for k ≥ 1. This superconvergence is lost when τ = 1

h . No matter the
choice of τ , the post-processed flux u?h converges at the same rate as uh. Furthermore,
the errors in the post-processed flux are actually smaller than uh, indicating a slight
increase in accuracy while maintaining the convergence order of the flux. Similar
behavior was observed in [21]. We isolate the cases for τ = h and τ = 1

h and display
the convergence rates in Figure 4.

4.3. A nonlinear method for the shallow water equations. A primary
motivator for our interest in hybridized methods revolves around developing efficient
solvers for problems in geophysical flows. In this last section, we present some results
integrating the shallow water equations on the sphere using Test Case 5 (the mountain
test case) from [53]. We use the framework of compatible finite elements [22, 23].

4.3.1. Semi-implicit solver. We start with the vector-invariant rotating non-
linear shallow water system defined on a two-dimensional spherical surface Ω embed-

A DSL FOR HYBRIDIZATION 19

10 9

10 7

10 5

10 3

10 1

L2 e
rro

r

1

2

3

Scalar

3

4
5

Post-processed scalar

2 1 2 2 2 3 2 4 2 5 2 6

10 8

10 6

10 4

10 2

100

L2 e
rro

r 2

3

4

Flux

2 1 2 2 2 3 2 4 2 5 2 6

2

3

4

Post-processed flux

Mesh size h = 2 r

Degree 1 (= (h))
Degree 1 (= (1

h))
Degree 2 (= (h))
Degree 2 (= (1

h))
Degree 3 (= (h))
Degree 3 (= (1

h))

Fig. 4. Error convergence rates for the LDG-H method with τ = h and τ = 1
h

. This illustrates
the sensitivity of this discretization subject to appropriate choices of stabilization parameter τ . We
see no change in the convergence rates between the scalar and post-processed scalar solutions when
τ = 1

h
. Superconvergence is achieved when taking τ = h. The post-processed flux rates in both cases

match the rates of the unprocessed flux.

ded in R3:

∂u

∂t
+
(
∇⊥ · u+ f

)
u⊥ +∇

(
g (D + b) +

1

2
|u|2

)
= 0,(81)

∂D

∂t
+∇ · (uD) = 0,(82)

where u is the fluid velocity, D is the depth field, f is the Coriolis parameter, g is
the acceleration due to gravity, b is the bottom topography, and (·)⊥ ≡ k̂ × ·, with k̂
being the unit normal to the surface Ω. For some tessellation, Th, our semi-discrete
mixed method for (81)–(82) seeks approximations (uh, Dh) ∈ Uh×Vh ⊂H(div)×L2

20 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

satisfying: (
w,

∂uh
∂t

)
Th
−
(
∇⊥

(
w · u⊥h

)
,u⊥h

)
Th

+
(
w, fu⊥h

)
Th

(83)

+〈Jn⊥w · u⊥h K, ũ⊥h 〉∂Th

−
(
∇ ·w, g (Dh + b) +

1

2
|uh|2

)
Th

= 0,(
φ,
∂Dh

∂t

)
Th
− (∇φ,uhDh)Th + 〈JφuhK, D̃h〉∂Th , = 0,(84)

for all (w, φ) ∈ Uh × Vh, where ·̃ indicates that the value of the function should be
taken from the upwind side of each facet.

The timestepping scheme follows a prediction-correction/Picard iteration semi-
implicit approach, where predictive values of the relevant fields are determined at
each time-step, and corrective updates are generated by solving the linear system
(linearized about a state of rest) for (∆uh,∆Dh) ∈ Uh × Vh, given by

(w,∆uh)Th +
∆t

2

(
w, f∆u⊥h

)
Th

(85)

−∆t

2
(∇ ·w, g∆Dh)Th = −Ru[un+1

h , Dn+1
h ;w],

(φ,∆Dh)Th +
H∆t

2
(φ,∇ ·∆uh)Th = −RD[un+1

h , Dn+1
h ;φ],(86)

for all (w, φ) ∈ Uh × Vh, where H is the mean layer depth, and Ru and RD are
residual linear forms that vanish when un+1

h and Dn+1
h are solutions to the im-

plicit midpoint rule time discretisation of the semi-discrete equations. The solu-
tion (∆uh,∆Dh) is then used to update the iterative values of un+1

h and Dn+1
h

according to (un+1
h , Dn+1

h) ← [(un+1
h + ∆uh, D

n+1
h + ∆Dh), having initially chosen

(un+1
h , Dn+1

h) = (unh, D
n
h). For the interested reader, Appendix D outlines the proce-

dure in more detail.
For each Picard iteration, solving the implicit linear system requires the solution

of the indefinite saddle-point system:

(87)

[
A B
C D

]{
∆U
∆D

}
=

{
Ru

RD

}
.

In staggered finite difference models, the standard approach for solving (87) is to ne-
glect the Coriolis term and eliminate the velocity unknowns ∆U to obtain a discrete
elliptic problem for which smoothers like Richardson or relaxation methods are con-
vergent. This is more problematic in the compatible finite element framework, since
A is not diagonal. Instead, we use the preconditioner described in subsection 3.1.2 to
form the hybridized problem and eliminate both ∆U and ∆D locally.

4.3.2. Atmospheric flow over a mountain (Williamson, test case 5). We
use the finite element spaces BDM2 ×DG1, on an octahedral sphere mesh of radius
R� = 6.37122 × 106m. The test case is initialized with depth and velocity fields in
geostrophic balance:

(88) D(x; 0) = D0 −
(
R�Ω�u0 +

u2
0

2

)
z2

gR2
�
, u(x; 0) =

u0

R�

{
−y x 0

}T
,

A DSL FOR HYBRIDIZATION 21

where Ω� = 7.292×10−5s−1 is the angular rotation rate of the Earth, u0 = 20ms−1 is
the maximum amplitude of the zonal wind, and D0 = 5960m. An isolated mountain
is placed with its center at latitude π

6 and longitude −π2 , given by the expression:

b = 2000m
(

1− r
R0

)
, where R0 = π

9 and r2 = min[R2
0, (xlat − φ

6)2 + (xlon + π
2)2].

We run for a fixed number of time-steps, and compare the simulation time using
two difference solver configurations for the implicit linear system. First, we use an
approximated Schur complement preconditioner for GMRES of the form:[

I 0
CA−1 I

] [
A−1 0

0 Ŝ−1

] [
I −A−1B
0 I

]
,

where Ŝ = D−CÂ−1B, and Â = diag(A) is a diagonal approximation to the velocity

mass matrix. The approximate Schur complement Ŝ is inverted using conjugate gra-
dients preconditioned with PETSc’s smoothed aggregation multigrid (GAMG). The

solver for Ŝ is configured to reduce the preconditioned residual norm by a factor of
108. A−1 is computed approximately using a single application of incomplete LU.

Table 1
PETSc performance summary for a 20 time-step run of the Williamson 5 test case. We use a

midpoint method for time integrating the equations. The simulation was run using 16-cores on the
workstation described above. The mesh was generated by refining a regular octahedron seven times,
giving 131072 cells. The DOF count of the problem is just over 1 million (1,376,256 total unknowns
for velocity and depth). We do not display timings associated with writing data or problem setup.
Instead, we display the total time to complete the profile runs. We observe significant speed-up when
using hybridization over preconditioned GMRES.

Simulation stage
Hybridization Approx. Schur Speedup

Time (s) Time (s) factor
Total run-time 3.463e+02 1.623e+03 4.687

Time (s) % total Time (s) % total
Advection 1.2326e+02 35.6 % 1.2445e+02 7.7 %

Linear solver 2.0588e+02 59.4 % 1.4812e+03 91.3 % 7.194

Next, we use a “preonly” application of our hybridization preconditioner. We use
GAMG-preconditioned conjugate gradients with a relative residual tolerance of 10−8

to invert the Lagrange multiplier system. Table 1 displays the timings for our profiling
run using the two configurations mentioned above. We expect the overall simulation
time to be dominated by the linear solve for the correction updates. When using
hybridization, we observe a significant reduction in time spent during the implicit
solve stage compared to the preconditioned GMRES approach, as well as overall
simulation time.

We present more specific timings in Table 2. In particular, we examine the overall
time spent during setup and application of each preconditioner. For both precondi-
tioners, the times spent during setup are comparable. However, the application of
hybridization is nearly an order of magnitude faster. This is primarily because we
reduce the number of required “outer” iterations to zero. Hybridization is performing
an exact Schur complement factorization of the original problem. We also measure
the reductions in the true-residual of the linear system (87). Our hybridized method
reduces the residual down by a factor of 108 on average, which coincides with the
specified relative tolerance for the Krylov method on the trace system.

22 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Table 2
Setup, application, and solve times for both solver configurations. These are cumulative times

in each stage of the two preconditioners throughout the entire profile run. We display the average it-
eration count (rounded to nearest the integer) for both the outer GMRES and the inner CG+GAMG
Krylov solves. The solve time for the preconditioned GMRES configuration consists of numerically
inverting both A and Ŝ for each GMRES iteration. For the hybridization preconditioner, this time
includes both inverting the Schur complement system for the trace solution, and element-wise re-
constructions.

Configuration
PC setup PC apply Krylov solve Outer Inner
Time (s) Time (s) Time (s) its. its.

Hybridization 8.6671e+01 1.7799e+02 1.9148e+02 None 5
Approx. Schur 5.8638e+01 1.4232e+03 1.4666e+03 10 5

5. Conclusions and future outlooks. We have presented Slate, and shown
how this language can be used to create concise mathematical representations of
localized linear algebra on the tensors corresponding to finite element forms. We have
shown how this DSL can be used in tandem with UFL in Firedrake to implement
solution approaches making use of static condensation, hybridization, and localized
post-processing. In particular, this framework alleviates much of the difficulty in
implementing such methods within intricate numerical code. In this way, Slate can
be used to help enable the rapid development and exploration of new hybridization
and static condensation techniques.

Our approach to preconditioner design revolves around its composable nature, in
that these Slate-based implementations can be seamlessly incorporated into compli-
cated solution schemes. In particular, there is current research in the design of dynam-
ical cores for numerical weather prediction using implementations of hybridization and
static condensation with Slate [8, 51]. The performance of such methods for geophys-
ical flows is a subject of ongoing research. Slate is a developing project and continues
to expand in its features, including extending compiler technology to generate code
suitable for vectorization and implementation on different computer architectures.

Acknowledgments. The authors would like to thank Miklós Homolya for his
helpful input on developing Slate as a language and suggestions for designing its
compiler.

Code availability. We cite archives of the exact software versions used to pro-
duce the results in this paper. The Slate-based preconditioners from subsection 3.1
can be found in [61]. For all components of the Firedrake project, we used the recent
versions: COFFEE [54], FIAT [55], FInAT [56], Firedrake [57], PETSc [58], petsc4py
[59], PyOP2 [60], TSFC [63], and UFL [64]. The numerical experiments, including
raw data and plotting scripts, are available as [62].

Appendix A. UFL listings. This section presents listings of UFL [1] formu-
lations of the problems covered in subsection 2.2. The purpose here is to assist in
comprehension and provide further context, in light of the examples using the Slate
DSL, where UFL code has been omitted for brevity. We outline each method in the
order in which they are presented.

A.1. Partitioned H1-formulation. The first example covered starts with an
H1 weak formulation of an elliptic problem, as specified in (9)–(11): given an appro-
priate finite element space Vh ⊂ H1, find ph ∈ Vh such that

(89) a(κ, c; ph, φ) = F (f, g;φ), for all v ∈ Vh,0,

A DSL FOR HYBRIDIZATION 23

where

a(κ, c; ph, φ) = (∇φ, κ∇ph)Th + (φ, cph)Th(90)

F (f, g;φ) = (φ, f)Th − 〈φ, g〉∂ΩN
.(91)

The static condensation technique for problems of this type is accomplished by par-
titioning the coefficient vector for ph into coefficients for basis functions interior to
each cell, and on the trace (or skeleton) of the mesh.

Since UFL strictly works from the weak formulation of PDEs, and code-generation
systems like Firedrake [46] and FEniCS [39] work directly from UFL, we must perform
the partitioning at this level. That is, we introduce finite element spaces which possess
the right construction of basis functions for interior and boundary degrees of freedom
respectively. We start by introducing the spaces V 0

h and V ∂h , as defined in (17) and
(18) respectively. These are function spaces corresponding to functions in Vh restricted
to element interiors (V 0

h) and boundaries (V ∂h).
Note that we have the following decomposition Vh = V 0

h ⊕ V ∂h . Then it follows
that ph ∈ Vh has the form ph = p0

h + p∂h. We perform a similar splitting of test and
trial functions of Vh to produce the rewritten form of (89) as a mixed system: find
(p0
h, p

∂
h) ∈ V 0

h × V ∂h such that

(92) â
(
κ, c;

(
φ0, φ∂

)
,
(
p0
h, p

∂
h

))
= F̂ (f, g;φ0, φ∂)

holds for all test functions (φ0, φ∂) ∈ V 0
h × V ∂h,0, where

â
(
κ, c;

(
φ0, φ∂

)
,
(
p0
h, p

∂
h

))
≡

{
a(κ, c;φ0, p0

h) + a(κ, c;φ0, p∂h),

a(κ, c;φ∂ , p0
h) + a(κ, c;φ∂ , p∂h),

(93)

F̂ (f, g;φ0, φ∂) ≡

{
F (f, g;φ0),

F (f, g;φ∂).
(94)

Equation (92) is the starting point for statically condensing the resulting matrix
system, as described in (14) of the manuscript. Using UFL, it is straightforward to
express the forms in (92). Since the forms are linear in test and trial arguments,
we can simplify the UFL code. See Listing 5 for a complete UFL description of the
partitioned problem.

A.2. Hybrid-mixed formulation. To form the hybridized-mixed formulation
of the first-order system:

µu+∇p = 0 in Ω,(95)

∇ · u+ cp = f in Ω,(96)

p = p0 on ∂ΩD,(97)

u · n = g on ∂ΩN ,(98)

we introduce the finite element spaces Ûh, Vh, and Mh, where Vh is the space of dis-
continuous piece-wise polynomials, and Ûh, Mh are as defined in (31) and (32). With
uh, ph and λh being approximations to u, p, and p|∂Th respectively, the hybridized-

mixed method reads: find (uh, ph, λh) ∈ Ûh × Vh ×Mh such that

(w, µuh)Th − (∇ ·w, ph)Th + 〈JwK, λh〉∂Th\∂ΩD
= −〈JwK, p0〉∂ΩD

(99)

(φ,∇ · uh)Th + (φ, cuh)Th = (φ, f)Th(100)

〈γ, JuhK〉∂Th\∂ΩD
= 〈γ, g〉∂ΩN

(101)

24 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

1 # Decomposed Lagrange finite element space

2 element = FiniteElement("Lagrange", triangle , degree)

3 V = FunctionSpace(mesh , element)

4 Vo = FunctionSpace(mesh , element["interior"])

5 Vd = FunctionSpace(mesh , element["facet"])

6 W = Vo * Vd

7

8 # Test/trial arguments and coefficients

9 vo, vd = TestFunctions(W)

10 uo, ud = TrialFunctions(W)

11 c = Coefficient(V)

12 f = Coefficient(V)

13 g = Coefficient(V)

14 kappa = Coefficient(V)

15 u = uo + ud

16 v = vo + vd

17

18 # Finite element forms

19 a = dot(grad(v), kappa*grad(u))*dx + inner(v, c*u)*dx

20 L = inner(v, f)*dx - inner(v, g)*ds

Listing 5
UFL code for the partitioned Helmholtz system as described in (19) of subsection 2.2.1. We

treat this system as a mixed problem, with a mixed space consisting of the restrict Lagrange element
spaces (lines 2–6). Test and trial functions are defined on each component space, and we write the
finite element forms as functions of the sum of each component argument. Expanding of the forms
in lines 19 and 20 occurs during form compilation.

for all (w, v, γ) ∈ Ûh × Vh ×Mh,0, where Mh,0 denotes the space of traces vanishing
on ∂ΩD.

Expressing the relevant forms for (99)–(101) in UFL can be done by defining the
expressions:

a(µ, c; (w, φ), (uh, ph)) =

{
(w, µuh)Th − (∇ ·w, ph)Th
(φ,∇ · uh)Th + (φ, cuh)Th

(102)

b(uh, γ) = 〈γ, JuhK〉∂Th\∂ΩD
(103)

F (p0, f ;w, φ) =

{
−〈JwK, p0〉∂ΩD

(φ, f)Th
(104)

G(g; γ) = 〈γ, g〉∂ΩN
.(105)

Here, we note that the facet integrals in (99) and (101) have elemental tensors which
are simply the transposes of each other. We therefore need only write an expression for
one of these to write the necessary Slate expressions, as discussed in subsection 2.2.2.
Listing 6 summarizes how these forms can be expressed in UFL.

A.3. LDG-H formulation. The LDG-H method for solving the system (95)–
(97) is formed by first introducing the numerical fluxes

ûh = uh + τ (ph − p̂h)n,(106)

p̂h = λh ∈Mh,(107)

where n is the outward normal to elemental boundaries, and τ is some positive-valued
function that may vary on facets of the mesh. We note that the definitions in (106)–
(107) are specific to the LDG-H method.

A DSL FOR HYBRIDIZATION 25

1 # Discontinuous RT , DG , and trace finite element spaces

2 RT = FiniteElement("RT", triangle , 1)

3 U = FunctionSpace(mesh , BrokenElement(RT))

4 V = FunctionSpace(mesh , FiniteElement("DG", triangle , 0))

5 M = FunctionSpace(mesh , FiniteElement("HDiv Trace", triangle , 0))

6 W = U * V

7

8 # Test/trial arguments and coefficients

9 u, p = TrialFunctions(W)

10 w, phi = TestFunctions(W)

11 gamma = TestFunction(M)

12 n = FacetNormal(mesh)

13 p0 = Coefficient(V)

14 c = Coefficient(V)

15 f = Coefficient(V)

16 g = Coefficient(V)

17 mu = Coefficient(V)

18

19 # Finite element forms

20 a = dot(w, mu*u)*dx - div(w)*p*dx + phi*div(u)*dx + phi*c*p*dx

21 b = gamma*jump(u, n=n)*dS + gamma*dot(u, n)*ds(2)

22 F = phi*f*dx - dot(w, n)*p0*ds(1)

23 G = gamma*g*ds(2)

Listing 6
UFL code defining the relevant finite element forms for the hybrdized mixed method. This

example features the hybridized lowest order RT method. We arbitrarily label the Dirichlet boundary
by an integer 1, and 2 for the Neumann portion using subdomain notation in UFL.

Using L2-finite element spaces for u and p, the full LDG-H formulation reads:
find (uh, ph, λh) ∈ Uh × Vh ×Mh such that

(w, µuh)Th − (∇ ·w, ph)Th + 〈JwK, λh〉∂Th = 0,(108)

−(∇φ,uh)Th + 〈φ, JûhK〉∂Th + (φ, cph)Th = (φ, f)Th(109)

〈γ, JûhK〉∂Th\∂ΩD
= 〈γ, g〉∂ΩN

,(110)

〈γ, λh〉∂ΩD
= 〈γ, p0〉∂ΩD

,(111)

for all (w, φ, γ) ∈ Uh × Vh ×Mh. Notice that all boundary conditions are applied
naturally in the finite element forms. Writing (108)–(111) in UFL is shown in Listing
7.

Appendix B. Post-processing. Here we focus on how Slate can be used
to define local systems arising from the post-processing techniques described in sub-
section 2.2.4. To establish our context, suppose we solved the following three-field
hybridized finite element problem defined on a tessellation Th: find (uh, ph, λh) ∈
Uh × Vh ×Mh such that

(112) a(w, φ, γ;uh, ph, λh) = L(w, φ, γ)

for all (w, φ, γ) ∈ Uh×Vh×Mh. We remain ambiguous whether this is a hybridized-
mixed or an LDG-H formulation, described in subsection 2.2.2 and subsection 2.2.3
respectively, as most of our discussion applies to both cases. We will be specific when
necessary. We also assume (112) arises within the context of mixed first-order systems.
That is, uh, ph, λh are approximations to u = −κ∇p, p, and p|∂Th respectively.

26 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

1 # Equal -order discontinuous Galerkin spaces

2 element = FiniteElement("Discontinuous Lagrange", triangle , degree)

3 U = VectorFunctionSpace(mesh , element)

4 V = FunctionSpace(mesh , element)

5 M = FunctionSpace(mesh , FiniteElement("HDiv Trace", triangle , degree))

6 W = U * V * M

7

8 # Test/trial arguments and coefficients

9 u, p, lambdar = TrialFunctions(W)

10 w, phi , gamma = TestFunctions(W)

11 n = FacetNormal(mesh)

12 p0 = Coefficient(V)

13 c = Coefficient(V)

14 f = Coefficient(V)

15 g = Coefficient(V)

16 mu = Coefficient(V)

17

18 # LDG -H fluxes , stability parameter , and forms. Note that

19 # τ can also be a function of the facet area.

20 tau = Constant (1)

21 phat = lambdar

22 uhat = u + tau*(p - phat)*n

23 a = dot(w, mu*u)*dx - div(w)*p*dx - dot(grad(phi), u)*dx + phi*c*p*dx +\

24 2*avg(lambdar*dot(w, n))*dS + lambdar*dot(w, n)*ds +\

25 2*avg(phi*dot(uhat , n))*dS + phi*dot(uhat , n)*ds +\

26 2*avg(gamma*dot(uhat , n))*dS + gamma*dot(uhat , n)*ds(2) +\

27 gamma*lambdar*ds(1))

28 L = phi*f*dx + gamma*g*ds(2) + gamma*p0*ds(1)

Listing 7
UFL code defining the LDG-H method in (49)–(51). The choice of function spaces are the

traditional discontinuous Lagrange spaces of equal order. While τ in this listing is simply 1, it is
indeed possible to take τ to be a function of the facet area of the mesh.

B.1. Post-processing of ph. Post-processing techniques for the scalar solution
ph of (112) has been studied extensively, dating back to Stenberg in [52]. Several
post-processing methods have been constructed which yields a more accurate scalar
approximation, however we will simply focus on the method described in (59)–(60),
which was also featured in [19].

Assuming that Vh is constructed in the usual way, with elemental functions in
Pk(K), K ∈ Th, then (59)–(60) produces a new approximation p?h which is locally
Pk+1(K). As discussed in subsection 2.2.4, we rewrite (59)–(60) using a Lagrange
multiplier method: find (p?h, ψ) ∈ Pk+1(K)× Pl(K) such that

(∇w,∇p?h)K + (w,ψ)K = −(∇w, κ−1uh)K ,(113)

(φ, p?h)K = (φ, ph)K ,(114)

for all (w, φ) ∈ Pk+1(K)× Pl(K), 0 ≤ l ≤ k.
Explicitly in terms of linear algebra, (113)–(114) produces the local system:

(115)

[
A CT

C 0

]{
P ?

Ψ

}
=

{
U
P

}
,

where P ? and Ψ are the vectors of degrees of freedom for p?h and ψ respectively.
Since ψ only acts as a Lagrange multiplier to enforce an orthogonality constraint on
functions in Pk+1(K) with Pl(K), we only need to return P ? once (115) is solved

A DSL FOR HYBRIDIZATION 27

in each element. This post-processing method works for both hybridized-mixed and
HDG-type problems. We demonstrate this numerically in both subsection 4.2 and
Appendix C.

Expressing (113)–(114) in UFL [1] requires slight modifications. UFL currently
can only express finite element problems globally over the problem domain. However,
this is not an issue. To ensure locality of the post-processing problem, we may simply
use global discontinuous-Galerkin spaces and construct the relevant finite element
forms in the usual way using standard UFL notation. Listing 8 displays the UFL
code for expressing the system in (113)–(114), including the Slate tensors for solving
the local systems. These are solved locally by directly inverting the operator in (115)
onto the right-hand side.

1 # Solve the hybridized problem for uh, ph, λh
2 U = FunctionSpace(mesh , ...)

3 V = FunctionSpace(mesh , ...)

4 M = FunctionSpace(mesh , ...)

5 W = U * V * M

6 a = ...

7 L = ...

8 w = Function(W)

9 solve(a == L, w, ...)

10 u_h , p_h , lambda_h = w.split()

11

12 # Define finite element spaces for the post -processing problem:

13 # l should be an integer with 0 ≤ l ≤ k,
14 # where k is the approximation degree of the scalar solution.

15 k = ...

16 l = ...

17 PP = FunctionSpace(mesh , "DG", k + 1)

18 Pl = FunctionSpace(mesh , "DG", l)

19 Wpp = PP * Pl

20

21 # Define elemental matrices/vectors for the local problems

22 pp, psi = TrialFunctions(Wpp)

23 w, phi = TestFunctions(Wpp)

24

25 a_pp = inner(grad(w), grad(pp))*dx + inner(w, psi)*dx +\

26 inner(phi , pp)*dx

27 L_pp = -inner(grad(w), mu*u_h)*dx +\

28 inner(phi , p_h)*dx

29 A = Tensor(a pp)

30 b = Tensor(L pp)

31

32 pstar = Function(PP) # Function to store the result of p?h
33 assemble((A.inv * b).block((0,)), pstar)

Listing 8
UFL and Slate code for writing out the scalar post-processing problem in (113)–(114). The

resuling local systems are solved by directly inverting the full matrix onto the right-hand side, shown
in line 33. We return only the block corresponding to the post-processed solution. Slate objects and
syntax are highlighted in orange.

B.2. Post-processing of uh. We follow the discussion in subsection 2.2.4 con-
cerning post-processing of the flux. We restrict our attention to a mesh Th consisting
of simplicial elements K. Moreover, the method described here uses the numerical flux
ûh of the LDG-H method, defined as a function of uh, ph, and λh. As a result, this
discussion applies specifically to the LDG-H method, summarized in subsection 2.2.3.

28 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

The post-processing method described in (63)–(64) defines a new flux u?h which is
locally a unique element of the Raviart-Thomas space: RTk(K) = [Pk(K)]n+xPk(K).
To summarize here, we wish to compute u?h ∈ RTk(K) for all K such that

(r,u?h)K = (r,uh)K ,(116)

〈γ,u?h · n〉e = 〈γ, ûh · n〉e,(117)

for all (r, γ) ∈ [Pk−1(K)]n×Pk(e), e ∈ ∂K. Equation (116)–(117) produces a locally
square system of equations for the degrees of freedom for the new flux approximation:

(118) KU? = R.

The new flux u?h, while it converges at the same rate as uh, possesses better
conservation properties. Namely, u?h ∈H(div; Th) in the sense that its interior jump
is zero:

(119) Ju?hKe = 0 for all e ∈ E◦h.

Furthermore, its divergence converges at a rate of k + 1. See Appendix C.2 and
Appendix C.3 for our numerical study.

Similarly to the scalar post-processing method, its representation and implemen-
tation in UFL using Slate is achieved by writing a global discontinuous formulation of
(116)–(117), using a discontinuous Raviart-Thomas space for the post-processed flux
to ensure locality.

34 # Define the numerical flux using the computed trace , scalar and flux:

35 n = FacetNormal(mesh)

36 uhat = u_h + tau*(p_h - lambda_h)*n

37

38 # Define finite element spaces for the post -processing problem:

39 RTd = FunctionSpace(mesh , "DRT", k + 1)

40 DG = VectorFunctionSpace(mesh , "DG", k - 1)

41 UU = DG * M # Reuse the trace space from before

42

43 # Define elemental matrices/vectors for the local problems

44 up = TrialFunction(RTd)

45 r, gamma = TestFunctions(UU)

46

47 a_up = inner(r, up)*dx +\

48 gamma(’+’)*jump(up, n=n)*dS + gamma*dot(up , n)*ds

49 L_up = inner(r, u_h)*dx +\

50 gamma(’+’)*jump(uhat , n=n)*dS + gamma*dot(uhat , n)*ds

51 K = Tensor(a up)

52 R = Tensor(L up)

53

54 ustar = Function(RTd) # Function to store the result of u?
h

55 assemble(K.inv * R, ustar)

Listing 9
UFL and Slate code for writing out the flux post-processing problem in (116)–(117). The resuling

local systems are solved by directly inverting the full matrix onto the right-hand side, shown in line
55.

We remark here, since Slate designed to be a general-purpose tool for local finite
element systems, many more post-processing schemes are possible which are not cov-
ered in this paper. The methods presented in subsection 2.2.4 were simply chosen

A DSL FOR HYBRIDIZATION 29

to complement our numerical results. There is ongoing work pertaining to the im-
plementation and studying the effects of various methods for more general problems
using Slate. We refer the reader to [3, 10, 19, 20, 21, 52] for an overview of some
post-processing methods one could explore further in our framework, some of which
are covered here.

Appendix C. Convergence studies. We use our previously defined notation
in section 1, where Th denotes a tessellation of Ω, and E◦h, E∂h denotes the set of interior
and exterior facets respectively.

C.1. H1-Helmholtz. Here, we present more detailed numerical results to com-
pliment the discussion in subsection 4.1 for the three-dimension Helmholtz problem
in (79). The H1-formulation reads: find ph ∈ Vh such that

(120) (∇φ,∇ph)Th + (φ, ph)Th = (φ, f)Th

for all φ ∈ Vh.
The mesh Th of the unit cube [0, 1]3 consists of tetrahedral cells, which is regularly

refined during the convergence test. For each approximation degree k = 4, 5, 6, and
7, we solve (120) using our static condensation preconditioner from subsection 3.1.1.
The complete solver configuration is described in Appendix E.1.

Figure 2 is a visualization of Table 3, which confirms that our solution method,
using our implementation of static condensation, is achieving the expected theoretical
rates. However, a more telling indicator is how well our preconditioner is reducing
the problem residual after application. Table 4 displays the reduction factor for the
finest mesh (r = 5) consisting of 196608 tetrahedral cells.

As discussed in subsection 4.1, there are a number of possible directions for fu-
ture optimizations. While we suspect small errors are being introduced during local
operator assembly (as a result of inverting high-degree element tensors inefficiently),
we still observe significant reductions in the problem residual. This suggests that
we are indeed solving (120) sufficiently, but more importantly our preconditioner is
performing an exact Schur complement factorization (subject to rounding errors).

C.2. Hybrid-mixed methods. In this section, we complement the results in
subsection 4.2 by providing complete convergence studies for the hybridized variants
of some mixed methods for the model Dirichlet problem:

(121) u+∇p = 0 in Ω = [0, 1]2, ∇ · u = f in Ω, p = 0 on ∂Ω,

where f is chosen so that the analytic solution is simply p(x, y) = sin(πx) sin(πy).
Recall that, for suitable finite element spaces such that the second Brezzi condition

[30] is satisfied, the fully-discrete mixed formulation of the model Poisson problem
reads as follows: find (uh, ph) ∈ Uh × Vh such that

(w,uh)Th − (∇ ·w, ph)Th = 0,(122)

(φ,∇ · uh)Th = (φ, f)Th ,(123)

for all (w, φ) ∈ Uh × Vh.
Equation (122)–(123) can be rewritten as a hybrid-mixed method by introducing

the discontinuous variant of Uh, Ûh, and an appropriate trace space Mh such that
functions in Mh belong to the same polynomial space as uh ·n|e, for all e ∈ ∂Th. The

30 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Table 3
Convergence history for the H1 method of the three-dimensional Helmholtz system using our

static condensation preconditioner. For each approximation degree k, the mesh consists of regularly-
refined tetrahedral cells. We approach the expected convergence rate of k+ 1 in the L2-errors as we
refine the mesh.

H1 Helmholtz

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk+1)

r L2-error rate

4

0 1.040e+00 —
1 5.410e-01 0.943
2 1.054e-02 5.681
3 3.847e-04 4.777
4 1.239e-05 4.957
5 3.958e-07 4.968

5

0 4.443e+00 —
1 3.993e-01 3.476
2 2.436e-03 7.357
3 4.902e-05 5.635
4 8.544e-07 5.842
5 1.369e-08 5.963

6

0 1.676e+00 —
1 9.205e-02 4.186
2 6.178e-04 7.219
3 5.499e-06 6.812
4 4.262e-08 7.011
5 3.321e-10 7.004

7

0 2.256e+00 —
1 1.042e-01 4.437
2 1.195e-04 9.768
3 5.260e-07 7.827
4 2.301e-09 7.837
5 9.331e-12 7.946

Table 4
Residual reductions (maximum over all mesh) for the three-dimensional Helmholtz problem

subsection 4.1 using our static condensation preconditioner.

Degree Reductions (finest mesh):
‖b−Ax∗‖2
‖b‖2

4 1.003e-12
5 1.92e-12
6 3.412e-12
7 6.49e-12

resulting three-field hybridized problem reads: find (uh, ph, λh) ∈ Ûh×Vh×Mh such
that

(w,uh)Th − (∇ ·w, ph)Th + 〈JwK, λh〉E◦h = 0,(124)

(φ,∇ · uh)Th = (φ, f)Th ,(125)

〈γ, JuhK〉E◦h = 0,(126)

A DSL FOR HYBRIDIZATION 31

for all (w, φ, γ) ∈ Ûh × Vh ×Mh,0, where Mh,0 is the space of traces vanishing on
∂ΩD.

For the Raviart-Thomas (RT) and Brezzi-Douglas-Marini (BDM) mixed meth-
ods for (122)–(123), the convergence rates are well-known. Its hybridized variants
inherit these rates, as both formulations were shown to be equivalent problems [3].
Furthermore, post-processing methods using the computed fields can produce new
approximations that converge at accelerated rates. While there are a number or post-
processing methods available, we restrict our attention to the procedures described in
Appendix B.

For our convergence study on simplicial elements, we use a uniform mesh of [0, 1]2

with square sides of size 2−r, which are then divided into two triangles per square
cell. The expected theoretical rates for the hybridized RT method of order k are k+1
in the L2-norm for both the scalar and flux approximations [3, 48]. With the post-
processing method described in (113)–(114), we expect the new scalar approximation
to superconverge at a rate of k + 2, for all k ≥ 0.

Table 5 summarizes our findings for the RT-H method on triangular cells. We
repeat the same study for the RT method on quadrilateral cells (RTCF-H) in Table 6,
which should have the same convergence rates at the RT method on triangles. We
can see from the tables that these convergence rates are achieved in full agreement
with the theoretical rates.

Table 5
Convergence history for the hybridized Raviart-Thomas method of order k on simplices, for

k = 0, 1, 2, 3. The computed scalar and flux approximations are expected to converge at a rate of
k + 1. With post-processing of the scalar solution, we expect superconvergence at a rate of k + 2.

RT-H method

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk+1) ‖u− uh‖L2(Ω) ≤ O(hk+1) ‖p− p?h‖L2(Ω) ≤ O(hk+2)

r L2-error rate L2-error rate L2-error rate

0

1 2.207e-01 — 9.818e-01 — 1.017e-01 —
2 1.254e-01 0.815 5.019e-01 0.968 2.975e-02 1.774
3 6.476e-02 0.954 2.516e-01 0.996 7.724e-03 1.945
4 3.264e-02 0.988 1.259e-01 0.999 1.949e-03 1.986
5 1.635e-02 0.997 6.295e-02 1.000 4.885e-04 1.997
6 8.180e-03 0.999 3.148e-02 1.000 1.222e-04 1.999

1

1 7.114e-02 — 2.187e-01 — 2.406e-02 —
2 1.934e-02 1.879 5.566e-02 1.974 3.063e-03 2.974
3 4.941e-03 1.968 1.400e-02 1.991 3.832e-04 2.999
4 1.242e-03 1.992 3.512e-03 1.995 4.779e-05 3.003
5 3.109e-04 1.998 8.800e-04 1.997 5.962e-06 3.003
6 7.776e-05 2.000 2.203e-04 1.998 7.443e-07 3.002

2

1 1.615e-02 — 3.870e-02 — 4.435e-03 —
2 2.159e-03 2.903 4.874e-03 2.989 2.925e-04 3.922
3 2.745e-04 2.975 6.113e-04 2.995 1.854e-05 3.980
4 3.446e-05 2.994 7.665e-05 2.996 1.164e-06 3.994
5 4.313e-06 2.998 9.599e-06 2.997 7.283e-08 3.998
6 5.392e-07 3.000 1.201e-06 2.998 4.554e-09 3.999

3

1 2.869e-03 — 5.447e-03 — 6.573e-04 —
2 1.894e-04 3.921 3.376e-04 4.012 2.094e-05 4.972
3 1.200e-05 3.980 2.108e-05 4.002 6.558e-07 4.997
4 7.526e-07 3.995 1.319e-06 3.998 2.049e-08 5.000
5 4.708e-08 3.999 8.251e-08 3.998 6.403e-10 5.000
6 2.943e-09 4.000 5.160e-09 3.999 2.001e-11 5.000

32 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Table 6
Convergence history for the hybridized Raviart-Thomas method of order k on quadrilateral

cells, for k = 0, 1, 2, 3. We expect the same rates of convergence as the H-RT method on simplicies,
detailed in Table 5.

RTCF-H method

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk+1) ‖u− uh‖L2(Ω) ≤ O(hk+1) ‖p− p?h‖L2(Ω) ≤ O(hk+2)

r L2-error rate L2-error rate L2-error rate

0

1 2.894e-01 — 1.054e+00 — 1.378e-01 —
2 1.568e-01 0.884 5.127e-01 1.039 3.840e-02 1.844
3 7.974e-02 0.976 2.531e-01 1.018 9.864e-03 1.961
4 4.003e-02 0.994 1.261e-01 1.005 2.483e-03 1.990
5 2.003e-02 0.999 6.298e-02 1.001 6.218e-04 1.998
6 1.002e-02 1.000 3.148e-02 1.000 1.555e-04 1.999

1

1 6.203e-02 — 2.024e-01 — 1.681e-02 —
2 1.606e-02 1.949 5.098e-02 1.989 2.071e-03 3.021
3 4.052e-03 1.987 1.276e-02 1.998 2.582e-04 3.004
4 1.015e-03 1.997 3.191e-03 2.000 3.225e-05 3.001
5 2.539e-04 1.999 7.979e-04 2.000 4.031e-06 3.000
6 6.349e-05 2.000 1.995e-04 2.000 5.038e-07 3.000

2

1 8.350e-03 — 2.667e-02 — 1.531e-03 —
2 1.070e-03 2.964 3.376e-03 2.982 9.473e-05 4.015
3 1.346e-04 2.991 4.233e-04 2.996 5.895e-06 4.006
4 1.685e-05 2.998 5.295e-05 2.999 3.680e-07 4.002
5 2.107e-06 2.999 6.620e-06 3.000 2.299e-08 4.000
6 2.634e-07 3.000 8.276e-07 3.000 1.437e-09 4.000

3

1 8.326e-04 — 2.638e-03 — 1.116e-04 —
2 5.304e-05 3.972 1.670e-04 3.981 3.482e-06 5.003
3 3.331e-06 3.993 1.047e-05 3.995 1.087e-07 5.001
4 2.084e-07 3.998 6.550e-07 3.999 3.396e-09 5.000
5 1.303e-08 4.000 4.094e-08 4.000 1.061e-10 5.000
6 8.146e-10 4.000 2.559e-09 4.000 3.317e-12 5.000

Additionally, we run the same numerical study on the hybridized BDM discretiza-
tion, starting with the lowest order method on simplices. Our findings for the BDM-H
method are presented in Table 7. Again, for all k we achieve the expected rates of
convergence in the L2-norm for the scalar and flux approximations, which are k and
k+ 1 respectively [14]. When using scalar post-processing, we also obtain accelerated
rates of convergence in the post-processed scalar. A noticeable difference here is that
the lowest-order method (k = 1) with scalar post-processing produces a new approx-
imation converging at a rate of k + 1, while subsequent orders of k > 1 produce new
scalars converging at a rate of k+2. This is in full agreement with the theory, and this
behavior is summarized in a more general context in [16] using Lp-error estimates.

C.3. LDG-H method. We now carry out numerical experiments to validate
our implementation by verifying the theoretical properties of the LDG-H method for
(121). In particular, we examine how select choices of stabilization parameter can
influence the convergence rates of the computed solutions.

The LDG-H method seeks approximations uh and ph in the finite-dimensional
discontinuous spaces Uh = [Vh]2 and Vh respectively, with Vh being the space of
discontinuous Lagrange polynomials. As discussed in subsection 2.2.3, we introduce

A DSL FOR HYBRIDIZATION 33

Table 7
Convergence history for the hybridized Brezzi-Douglas-Marini method of order k on simplices,

for k = 1, 2, 3. For all k, we expect the scalar and flux approximations to converge at a rate of k
and k+1, respectively. When using scalar post-processing, the lowest-order (k = 1) method achieves
k+ 1 convergence in the new scalar. For orders k > 1, superconvergence in the post-processed scalar
is achieved at a rate of k + 2.

BDM-H method

k
mesh ‖p− ph‖L2(Ω) ≤ O(h) ‖u− uh‖L2(Ω) ≤ O(h2) ‖p− p?h‖L2(Ω) ≤ O(h2)

r L2-error rate L2-error rate L2-error rate

1

1 2.578e-01 — 6.323e-01 — 1.160e-01 —
2 1.320e-01 0.966 1.833e-01 1.787 3.274e-02 1.824
3 6.567e-02 1.007 4.776e-02 1.940 8.491e-03 1.947
4 3.276e-02 1.003 1.208e-02 1.984 2.144e-03 1.986
5 1.637e-02 1.001 3.029e-03 1.995 5.373e-04 1.996
6 8.182e-03 1.000 7.580e-04 1.999 1.344e-04 1.999

‖p− ph‖L2(Ω) ≤ O(hk) ‖u− uh‖L2(Ω) ≤ O(hk+1) ‖p− p?h‖L2(Ω) ≤ O(hk+2)

2

1 7.386e-02 — 1.072e-01 — 1.291e-02 —
2 1.950e-02 1.921 1.465e-02 2.871 9.590e-04 3.750
3 4.951e-03 1.978 1.882e-03 2.960 6.312e-05 3.925
4 1.243e-03 1.994 2.374e-04 2.987 4.003e-06 3.979
5 3.110e-04 1.999 2.977e-05 2.995 2.513e-07 3.994
6 7.776e-05 2.000 3.726e-06 2.998 1.573e-08 3.998

3

1 1.629e-02 — 1.806e-02 — 1.275e-03 —
2 2.164e-03 2.913 1.195e-03 3.917 4.096e-05 4.960
3 2.747e-04 2.978 7.560e-05 3.983 1.272e-06 5.009
4 3.447e-05 2.994 4.741e-06 3.995 3.964e-08 5.004
5 4.313e-06 2.999 2.966e-07 3.998 1.238e-09 5.001
6 5.392e-07 3.000 1.855e-08 3.999 3.869e-11 5.000

the numerical flux terms:

ûh = uh + τ (ph − p̂h)n,(127)

p̂h = λh,(128)

where λh ∈Mh is a function approximating the trace of the scalar variable on ∂Th and
τ > 0 is a stabilization parameter that, in general, may vary on each facet e ∈ ∂Th.
The full LDG-H formulation reads: find (uh, ph, λh) ∈ Uh × Vh ×Mh such that

(w,uh)Th − (∇ ·w, ph)Th + 〈JwK, λh〉∂Th = 0,(129)

−(∇φ,uh)Th + 〈φ, JûhK〉∂Th = (φ, f)Th ,(130)

〈γ, JûhK〉E◦h = 0,(131)

〈γ, λh〉∂ΩD
= 0,(132)

for all (w, φ, γ) ∈ Uh × Vh ×Mh.
The theoretical convergence rates for the LDG-H method vary depending on the

choice of τ . Therefore we run our numerical study as before, but take various choices
of τ . Table 8 summarizes the expected convergence rates for the LDG-H method with
various orders of τ , which is also discussed in more detail in [17, 20]. We consider
three cases: τ = 1 (Table 9), τ = h (Table 10), and τ = 1

h (Table 11), where h denotes
the facet area. In all LDG-H experiments, we use both scalar and flux post-processing
methods described in Appendix B to generate new approximations: p?h and u?h.

34 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Table 8
The expected theoretical convergence rates of the LDG-H method with a stability parameter τ of

a particular order. Note that the orders of τ considered in this table correspond to the ones in our
experiments. There may be other possible choices of τ which yield different rates of convergence.

parameter expected rates of convergence (k ≥ 1)
τ ‖p− ph‖L2(Ω) ‖u− uh‖L2(Ω) ‖p− p?h‖L2(Ω) ‖u− u?h‖L2(Ω)

O(1) k + 1 k + 1 k + 2 k + 1
O(h) k k + 1 k + 2 k + 1

O
(
h−1

)
k + 1 k k + 1 k

Table 9
Convergence history for the LDG-H method with stabilization parameter τ = 1 for degree

k = 1, 2, 3.

LDG-H method (τ = O(1))

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk+1) ‖u− uh‖L2(Ω) ≤ O(hk+1) ‖p− p?h‖L2(Ω) ≤ O(hk+2) ‖u− u?h‖L2(Ω) ≤ O(hk+1)

r L2-error rate L2-error rate L2-error rate L2-error rate

1

1 1.700e-01 — 3.746e-01 — 3.101e-02 — 2.356e-01 —
2 4.829e-02 1.816 9.985e-02 1.907 3.947e-03 2.974 6.033e-02 1.965
3 1.256e-02 1.943 2.531e-02 1.980 4.844e-04 3.027 1.516e-02 1.993
4 3.182e-03 1.981 6.342e-03 1.997 5.960e-05 3.023 3.795e-03 1.998
5 7.997e-04 1.993 1.586e-03 2.000 7.380e-06 3.014 9.492e-04 1.999
6 2.003e-04 1.997 3.964e-04 2.000 9.177e-07 3.007 2.373e-04 2.000

2

1 3.621e-02 — 8.362e-02 — 5.063e-03 — 4.249e-02 —
2 5.023e-03 2.850 1.110e-02 2.913 3.266e-04 3.954 5.369e-03 2.984
3 6.485e-04 2.953 1.405e-03 2.982 2.047e-05 3.996 6.716e-04 2.999
4 8.197e-05 2.984 1.760e-04 2.997 1.277e-06 4.002 8.393e-05 3.000
5 1.029e-05 2.994 2.200e-05 3.000 7.970e-08 4.002 1.049e-05 3.000
6 1.289e-06 2.997 2.749e-06 3.000 4.977e-09 4.001 1.311e-06 3.000

3

1 6.203e-03 — 1.464e-02 — 7.319e-04 — 6.077e-03 —
2 4.248e-04 3.868 9.666e-04 3.921 2.334e-05 4.971 3.784e-04 4.005
3 2.729e-05 3.960 6.114e-05 3.983 7.294e-07 5.000 2.357e-05 4.005
4 1.722e-06 3.986 3.829e-06 3.997 2.276e-08 5.002 1.471e-06 4.002
5 1.080e-07 3.995 2.394e-07 4.000 7.102e-10 5.002 9.192e-08 4.001
6 6.761e-09 3.998 1.496e-08 4.000 2.219e-11 5.000 5.744e-09 4.000

Table 10
Convergence history for the LDG-H method with stabilization parameter τ = h, where h denotes

the facet area, for degree k = 1, 2, 3.

LDG-H method (τ = O(h))

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk) ‖u− uh‖L2(Ω) ≤ O(hk+1) ‖p− p?h‖L2(Ω) ≤ O(hk+2) ‖u− u?h‖L2(Ω) ≤ O(hk+1)

r L2-error rate L2-error rate L2-error rate L2-error rate

1

1 2.838e-01 — 3.762e-01 — 2.770e-02 — 2.266e-01 —
2 1.565e-01 0.859 9.999e-02 1.912 3.280e-03 3.078 5.639e-02 2.007
3 8.012e-02 0.966 2.539e-02 1.978 3.975e-04 3.045 1.406e-02 2.004
4 4.029e-02 0.992 6.372e-03 1.994 4.917e-05 3.015 3.518e-03 1.999
5 2.018e-02 0.998 1.595e-03 1.998 6.125e-06 3.005 8.805e-04 1.998
6 1.009e-02 0.999 3.989e-04 1.999 7.647e-07 3.002 2.203e-04 1.999

2

1 5.925e-02 — 8.398e-02 — 4.888e-03 — 4.030e-02 —
2 1.596e-02 1.892 1.110e-02 2.919 3.151e-04 3.955 4.940e-03 3.028
3 4.067e-03 1.973 1.407e-03 2.980 1.988e-05 3.986 6.138e-04 3.009
4 1.022e-03 1.993 1.765e-04 2.995 1.246e-06 3.996 7.674e-05 3.000
5 2.557e-04 1.998 2.209e-05 2.999 7.794e-08 3.999 9.603e-06 2.998
6 6.394e-05 2.000 2.762e-06 3.000 4.872e-09 4.000 1.201e-06 2.999

3

1 1.006e-02 — 1.470e-02 — 7.092e-04 — 5.689e-03 —
2 1.335e-03 2.913 9.661e-04 3.928 2.259e-05 4.972 3.430e-04 4.052
3 1.694e-04 2.978 6.112e-05 3.982 7.094e-07 4.993 2.123e-05 4.014
4 2.126e-05 2.994 3.832e-06 3.996 2.220e-08 4.998 1.326e-06 4.002
5 2.660e-06 2.999 2.397e-07 3.999 6.937e-10 5.000 8.288e-08 3.999
6 3.326e-07 3.000 1.528e-08 3.971 2.192e-11 4.984 5.993e-09 3.790

A DSL FOR HYBRIDIZATION 35

Table 11
Convergence history for the LDG-H method with stabilization parameter τ = 1

h
, where h denotes

the facet area, for degree k = 1, 2, 3.

LDG-H method (τ = O(h−1))

k
mesh ‖p− ph‖L2(Ω) ≤ O(hk+1) ‖u− uh‖L2(Ω) ≤ O(hk) ‖p− p?h‖L2(Ω) ≤ O(hk+1) ‖u− u?h‖L2(Ω) ≤ O(hk)

r L2-error rate L2-error rate L2-error rate L2-error rate

1

1 1.096e-01 — 3.920e-01 — 3.857e-02 — 2.627e-01 —
2 2.339e-02 2.229 1.257e-01 1.641 8.083e-03 2.255 9.616e-02 1.450
3 5.488e-03 2.091 4.730e-02 1.410 1.907e-03 2.083 4.251e-02 1.177
4 1.348e-03 2.026 2.113e-02 1.162 4.699e-04 2.021 2.050e-02 1.053
5 3.353e-04 2.007 1.022e-02 1.048 1.171e-04 2.005 1.015e-02 1.014
6 8.374e-05 2.002 5.067e-03 1.013 2.924e-05 2.001 5.063e-03 1.004

2

1 2.385e-02 — 8.839e-02 — 5.668e-03 — 4.911e-02 —
2 2.484e-03 3.263 1.454e-02 2.603 4.724e-04 3.585 9.242e-03 2.410
3 2.882e-04 3.107 2.838e-03 2.358 4.658e-05 3.342 2.075e-03 2.155
4 3.525e-05 3.031 6.473e-04 2.132 5.329e-06 3.128 5.023e-04 2.047
5 4.381e-06 3.008 1.577e-04 2.037 6.489e-07 3.038 1.244e-04 2.013
6 5.469e-07 3.002 3.916e-05 2.009 8.052e-08 3.010 3.102e-05 2.004

3

1 4.141e-03 — 1.556e-02 — 8.131e-04 — 7.273e-03 —
2 2.157e-04 4.263 1.297e-03 3.585 3.335e-05 4.608 7.002e-04 3.377
3 1.251e-05 4.107 1.296e-04 3.323 1.654e-06 4.334 7.907e-05 3.147
4 7.652e-07 4.031 1.498e-05 3.112 9.507e-08 4.120 9.555e-06 3.049
5 4.755e-08 4.008 1.834e-06 3.030 5.797e-09 4.036 1.181e-06 3.016
6 2.968e-09 4.002 2.281e-07 3.007 3.597e-10 4.010 1.470e-07 3.006

We can see in Tables 9, 10, and 11 that these orders are achieved fairly well.
It is also interesting to note that, while the post-processed flux u?h maintains the
rate of convergence of uh, the error in u?h is slightly smaller than that of uh. Similar
behavior was observed in [21] on a different manufactured problem. While scalar post-
processing does not yield superconvergence in p?h when τ = 1

h , the errors in p?h are
smaller than that of ph. For a visualization of the effects scalar post-processing has,
Figure 5 displays the computed scalar-fields (τ = 1) with and without post-processing.
We can see the obvious smoothing effect post-processing has on ph.

(a) Scalar solution. (b) Post-processed scalar solution.

Fig. 5. Comparison between the scalar solution of the LDG-H method (τ = 1) using discontin-
uous linear finite elements without (left) and with (right) post-processing. These were computed on
a mesh with r = 3.

36 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

Appendix D. Nonlinear shallow water solver. In this last section, we
provide some supplementary information about the nonlinear shallow water solver
described in Section 4.3.

The starting point is the implicit midpoint rule discretisation of Equations (81–
82), where we seek (un+1

h , Dn+1
h) ∈ Uh × Vh such that(

w,un+1
h − unh

)
Th
−∆t

(
∇⊥

(
w · u∗h

⊥
)
,u∗h

⊥
)
Th

+ ∆t
(
w, fu∗h

⊥
)
Th

(133)

+∆t〈Jn⊥w · u∗h
⊥K, ũ∗h

⊥〉∂Th

−∆t

(
∇ ·w, g (D∗h + b) +

1

2
|u∗h|2

)
Th

= 0,(
φ,Dn+1

h −Dn
h

)
Th
−∆t(∇φ,u∗hD∗h)Th + ∆t〈Jφu∗hK, D̃∗h〉∂Th , = 0,(134)

for all (w, φ) ∈ Uh × Vh, where u∗h = (un+1
h + unh)/2 and D∗h = (Dn+1

h +Dn
h)/2.

To make a more practical approach, we replace the solution of this problem by a
fixed (4, say) number of iterations of a Picard iteration of the form (85–86), where we
now describe the construction of the residual functionals Ru and RD. One approach
would be to simply define these functionals from (133–134), but this leads to a small
critical timestep for stability of the scheme. To make the numerical scheme more
stable, we define residuals as follows.

For Ru, we first solve for vh ∈ Uh such that

(w,vh − unh)Th −∆t
(
∇⊥

(
w · u∗h

⊥
)
,v]h
⊥)
Th

+ ∆t
(
w, fv]h

⊥)
Th

(135)

+∆t〈Jn⊥w · u∗h
⊥K, ˜

v]h

⊥
〉∂Th

−∆t

(
∇ ·w, g (D∗h + b) +

1

2
|u∗h|2

)
Th

= 0,

for all w ∈ Uh, where v]h = (vh +unh)/2. This is a linear variational problem. Then,

(136) Ru[un+1
h , Dn+1

h ;w] =
(
w,vh − un+1

h

)
Th
.

Similarly, for RD we first solve for Eh ∈ Vh such that

(φ,Eh −Dn
h)Th −∆t(∇φ,u∗hE

]
h)Th + ∆t〈Jφu∗hK, Ẽ

]
h〉∂Th = 0,(137)

for all φ ∈ Vh, where E]h = (Eh +Dn
h)/2. This is also a linear problem. Then,

(138) RD[un+1
h , Dn+1

h ;φ] =
(
φ,Eh −Dn+1

h

)
Th
.

The complete scheme is detailed in Algorithm 1.

D.1. Preconditioning via hybridization. Solving the implicit linear system
in line 8 of Algorithm 1 requires the solution of the indefinite saddle-point system:

(139)

[
A B
C D

]{
∆U
∆D

}
=

{
Ru

RD

}
.

In traditional staggered finite difference methods, a typical procedure is to eliminate
the velocity increments from (139) to arrive at a discrete elliptic system. However,

A DSL FOR HYBRIDIZATION 37

Algorithm 1 Nonlinear procedure for the rotating shallow water system using a
semi-implicit time-integration scheme. Lines 7–11 define the Picard cycle, in which
successive linear systems are solved for corrective updates.

1: tn = 0
2: unh ← u0 {Velocity initial condition}
3: Dn

h ← D0 {Depth initial condition}
4: while tn < tmax do
5: un+1

h ← unh
6: Dn+1

h ← Dn
h

7: for i = 1, · · · , k do
8: Solve for (∆uh,∆Dh) ∈ Uh × Vh such that:

(w,∆uh)Th +
∆t

2

(
w, f∆u⊥h

)
Th

−∆t

2
(∇ ·w, g∆Dh)Th = −Ru[un+1

h , Dn+1
h ;w],

(φ,∆Dh)Th +
∆t

2
(φ,H∇ ·∆uh)Th = −RD[un+1

h , Dn+1
h ;φ],

for all (w, φ) ∈ Uh × Vh {Linearized system for corrective updates}
9: un+1

h ← un+1
h + ∆uh

10: Dn+1
h ← Dn+1

h + ∆Dh

11: end for
12: unh ← un+1

h

13: Dn
h ← Dn+1

h

14: tn ← tn + ∆t
15: end while

this is problematic when using compatible finite elements, as the matrix A is not
block-diagonal.

Our approach here is to precondition (139) by replacing the original mixed system
with its hybrid-mixed equivalent form. Upon hybridizing the mixed system, we have
the equivalent problem: find (∆ûh,∆Dh, λh) ∈ Ûh × Vh ×Mh such that

(w,∆ûh)Th +
∆t

2

(
w, f∆û⊥h

)
Th
− ∆t

2
(∇ ·w, g∆Dh)Th(140)

+〈JwK, λh〉∂Th = R̂u,

(φ,∆Dh)Th +
∆t

2
(φ,H∇ ·∆ûh)Th = RD,(141)

〈γ, J∆ûK〉∂Th = 0,(142)

for all (w, φ, γ) ∈ Ûh × Vh ×Mh. Note that the space Mh is chosen such that these
trace functions when restricted to a facet e ∈ ∂Th are from the same polynomial space
as ∆uh · n restricted to that same facet. Additionally, it can be shown that λh is an
approximation to ∆tg∆D/2, which can be exploited to show that the resulting linear
system for λh can be solved using multigrid techniques [27].

The resulting three-field problem for (140)–(142) has the matrix form:

(143)

[
Â CT

C 0

]{
∆X
Λ

}
=

{
R̂∆X

0

}

38 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

where Â is the discontinuous operator corresponding to the left-hand side matrix in

(139), ∆X =
{

∆Ũ ∆D
}T

, and R∆X =
{
R̂u RD

}T
are the problem residuals.

An explanation on how this procedure is implemented can be found in the main
manuscript (see subsection 3.1.2). This discussion includes details on how the resulting
computed solutions for (143), primarily the velocity, is projected back into the original
H(div)-conforming space.

This concludes the summary of our nonlinear procedure for solving (81)–(82)
in the Williamson test case 5. Details about the test case itself and the results
comparing our solver configurations for the implicit linear system (139) are discussed
in subsection 4.3. The solver configurations used in the comparisons are displayed in
Appendix E.3.

Appendix E. Full solver parameters.

E.1. Elliptic Helmholtz: static condensation. Here we use the static con-
densation preconditioner as described in subsection 3.1.1. All local solves and static
condensation operations are performed by evaluating the corresponding Slate expres-
sions. For the inner-most ksp, we numerically invert the Schur complement operator
in the interface problem using the conjugate gradient method preconditioned with
hypre’s boomerAMG algebraic multigrid implementation. We select more aggressive
coarsening techniques, using a method proposed by Ruge and Steuben in [50].

Listing 10
Solver configuration for static condensation

−ksp type preonly
−mat type matfree
−pc type python
−pc python type scpc .SCCG
−s t a t i c c o n d e n s a t i o n k s p t y p e cg
−s t a t i c c o n d e n s a t i o n k s p r t o l 1 . 0 e−13
−s t a t i c c o n d e n s a t i o n p c t y p e hypre
−s t a t i c c o n d e n s a t i o n p c h y p r e t y p e boomeramg
−stat ic condensat ion pc hypre boomeramg no CF True
−s ta t i c condensat i on pc hypre boomeramg coar sen type HMIS
−s ta t i c condensa t i on pc hypre boomeramg inte rp type ext+i
−stat ic condensat ion pc hypre boomeramg P max 4
−s ta t i c condensat ion pc hypre boomeramg agg n l 1

E.2. Hybridized Mixed and LDG-H Poisson: static condensation. The
three-field systems of the hybridized mixed and LDG-H methods is condensed to
a system for the trace using the implementation described in 3.1.3. The reduced
Schur complement is inverted using an LU-factorization, with MUMPS providing the
factorization algorithm [2].

Listing 11
Solver configuration for static condensation of hybridized problems

−ksp type preonly
−mat type matfree
−pc type python
−pc python type scpc . SCHybrid
−hybr id s c k sp type preon ly
−h y b r id s c p c t y p e lu

A DSL FOR HYBRIDIZATION 39

−h y b r i d s c p c f a c t o r m a t s o l v e r p a c k a g e mumps

E.3. Linear solver: hybridization and static condensation.

E.3.1. Approximate Schur complement. For the performance comparison
of the implicit solve in subsection 4.3, we solve the linearized system using GMRES.
A full Schur complement factorization with a diagonally lumped velocity mass matrix
(-selfp) is used to precondition the system. The upper-left matrix block is inverted
approximately using block-jacobi-ILU. For the approximate Schur complement, we use
the conjugate gradient method preconditioned with geometric-agglomerated algebraic
multigrid (GAMG). We set a maximum of two Chebyshev iterations, preconditioned
with block-Jacobi-ILU, for each multigrid level.

Listing 12
Solver configuration for approximate Schur complement approach

−ksp type gmres
−pc type f i e l d s p l i t
−p c f i e l d s p l i t t y p e schur
−p c f i e l d s p l i t s c h u r f a c t t y p e FULL
−p c f i e l d s p l i t s c h u r p r e c o n d i t i o n s e l f p
−p c f i e l d s p l i t 0 k s p t y p e preonly
−p c f i e l d s p l i t 0 p c t y p e b jacob i
−p c f i e l d s p l i t 0 s u b p c t y p e i l u
−p c f i e l d s p l i t 1 k s p t y p e cg
−p c f i e l d s p l i t 1 k s p r t o l 1 . 0 e−8
−p c f i e l d s p l i t 1 p c t y p e gamg
−p c f i e l d s p l i t 1 m g l e v e l s k s p t y p e chebyshev
−p c f i e l d s p l i t 1 m g l e v e l s k s p m a x i t 2
−p c f i e l d s p l i t 1 m g l e v e l s p c t y p e b jacob i
−p c f i e l d s p l i t 1 m g l e v e l s s u b p c t y p e i l u

E.3.2. Hybridization and static condensation. The preconditioner in sub-
section 3.1.2 transforms the mixed system into its hybridized form by introducing La-
grange multipliers and replacing form arguments with discontinuous functions. Once
the hybridized flux is reconstructed, the result is projected back into the H(div) finite
element space via local facet averaging.

Listing 13
Solver configuration for hybridization preconditioner

−ksp type preonly
−mat type matfree
−pc type python
−pc python type scpc . HybridizationPC
−h y b r i d i z a t i o n k s p t y p e cg
−h y b r i d i z a t i o n k s p r t o l 1 . 0 e−8
−h y b r i d i z a t i o n p c t y p e gamg
−h y b r i d i z a t i o n m g l e v e l s k s p t y p e chebyshev
−h y b r i d i z a t i o n m g l e v e l s k s p m a x i t 2
−h y b r i d i z a t i o n m g l e v e l s p c t y p e b jacob i
−h y b r i d i z a t i o n m g l e v e l s s u b p c t y p e i l u

REFERENCES

40 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

[1] M. S. Alnæs, A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Unified form lan-
guage: A domain-specific language for weak formulations of partial differential equations,
ACM Transactions on Mathematical Software (TOMS), 40 (2014), p. 9.

[2] P. R. Amestoy, I. S. Duff, and J.-Y. L’excellent, Multifrontal parallel distributed symmet-
ric and unsymmetric solvers, Computer methods in applied mechanics and engineering,
184 (2000), pp. 501–520.

[3] D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementa-
tion, postprocessing and error estimates, ESAIM: Mathematical Modelling and Numerical
Analysis, 19 (1985), pp. 7–32.

[4] D. N. Arnold, R. S. Falk, and R. Winther, Multigrid in h(div) and h(curl), Numerische
Mathematik, 85 (2000), pp. 197–217, https://doi.org/10.1007/s002110000137.

[5] A. H. Baker, R. D. Falgout, T. Gamblin, T. V. Kolev, M. Schulz, and U. M. Yang,
Scaling algebraic multigrid solvers: On the road to exascale, in Competence in High Per-
formance Computing 2010, Springer, 2011, pp. 215–226.

[6] S. Balay, S. Abhyankar, M. Adams, P. Brune, K. Buschelman, L. Dalcin, W. Gropp,
B. Smith, D. Karpeyev, D. Kaushik, et al., Petsc users manual revision 3.7, tech.
report, Argonne National Lab.(ANL), Argonne, IL (United States), 2016.

[7] S. Balay, W. D. Gropp, L. C. McInnes, and B. F. Smith, Efficient management of paral-
lelism in object-oriented numerical software libraries, in Modern software tools for scientific
computing, Springer, 1997, pp. 163–202.

[8] W. Bauer and C. J. Cotter, Energy-enstrophy conserving compatible finite element schemes
for the shallow water equations on rotating domains with boundaries, arXiv preprint
arXiv:1801.00691, (2018).

[9] D. Boffi, F. Brezzi, M. Fortin, et al., Mixed finite element methods and applications,
vol. 44, Springer, 2013.

[10] J. H. Bramble and J. Xu, A local post-processing technique for improving the accuracy in
mixed finite-element approximations, SIAM Journal on Numerical Analysis, 26 (1989),
pp. 1267–1275.

[11] F. Brezzi, D. Boffi, L. Demkowicz, R. Durán, R. Falk, and M. Fortin, Mixed finite
elements, compatibility conditions, and applications, Springer, 2008.

[12] F. Brezzi, J. Douglas, R. Durán, and M. Fortin, Mixed finite elements for second order
elliptic problems in three variables, Numerische Mathematik, 51 (1987), pp. 237–250.

[13] F. Brezzi, J. Douglas, and L. D. Marini, Two families of mixed finite elements for second
order elliptic problems, Numerische Mathematik, 47 (1985), pp. 217–235.

[14] F. Brezzi and M. Fortin, Mixed and hybrid finite element methods, vol. 15, Springer Science
& Business Media, 2012.

[15] J. Brown, M. G. Knepley, D. A. May, L. C. McInnes, and B. Smith, Composable lin-
ear solvers for multiphysics, in Parallel and Distributed Computing (ISPDC), 2012 11th
International Symposium on, IEEE, 2012, pp. 55–62.

[16] Z. Chen, Lp-posteriori error analysis of mixed methods for linear and quasilinear elliptic
problems, in Modeling, Mesh Generation, and Adaptive Numerical Methods for Partial
Differential Equations, Springer, 1995, pp. 187–199.

[17] B. Cockburn, Static condensation, hybridization, and the devising of the hdg methods, in
Building Bridges: Connections and Challenges in Modern Approaches to Numerical Partial
Differential Equations, Springer, 2016, pp. 129–177.

[18] B. Cockburn, J. Gopalakrishnan, and R. Lazarov, Unified hybridization of discontinuous
galerkin, mixed, and continuous galerkin methods for second order elliptic problems, SIAM
Journal on Numerical Analysis, 47 (2009), pp. 1319–1365.

[19] B. Cockburn, J. Gopalakrishnan, F. Li, N.-C. Nguyen, and J. Peraire, Hybridization and
postprocessing techniques for mixed eigenfunctions, SIAM Journal on Numerical Analysis,
48 (2010), pp. 857–881.

[20] B. Cockburn, J. Gopalakrishnan, and F.-J. Sayas, A projection-based error analysis of hdg
methods, Mathematics of Computation, 79 (2010), pp. 1351–1367.

[21] B. Cockburn, J. Guzmán, and H. Wang, Superconvergent discontinuous galerkin methods
for second-order elliptic problems, Mathematics of Computation, 78 (2009), pp. 1–24.

[22] C. J. Cotter and J. Shipton, Mixed finite elements for numerical weather prediction, Journal
of Computational Physics, 231 (2012), pp. 7076–7091.

[23] C. J. Cotter and J. Thuburn, A finite element exterior calculus framework for the rotating
shallow-water equations, Journal of Computational Physics, 257 (2014), pp. 1506–1526.

[24] L. D. Dalcin, R. R. Paz, P. A. Kler, and A. Cosimo, Parallel distributed computing using
python, Advances in Water Resources, 34 (2011), pp. 1124–1139.

[25] T. A. Davis, Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method,

https://doi.org/10.1007/s002110000137

A DSL FOR HYBRIDIZATION 41

ACM Transactions on Mathematical Software (TOMS), 30 (2004), pp. 196–199.
[26] J. Douglas and J. E. Roberts, Global estimates for mixed methods for second order elliptic

equations, Mathematics of computation, 44 (1985), pp. 39–52.
[27] J. Gopalakrishnan and S. Tan, A convergent multigrid cycle for the hybridized mixed method,

Numerical Linear Algebra with Applications, 16 (2009), pp. 689–714.
[28] G. Guennebaud, B. Jacob, M. Lenz, et al., Eigen v3, 2010, URL http://eigen. tuxfamily.

org, (2015).
[29] R. J. Guyan, Reduction of stiffness and mass matrices, AIAA journal, 3 (1965), p. 380.
[30] F. Hartmann, The discrete babuška-brezzi condition, Archive of Applied Mechanics, 56 (1986),

pp. 221–228.
[31] F. Hecht, New development in freefem++, Journal of numerical mathematics, 20 (2012),

pp. 251–266.
[32] R. Hiptmair and J. Xu, Nodal auxiliary space preconditioning in h(curl) and h(div) spaces,

SIAM Journal on Numerical Analysis, 45 (2007), pp. 2483–2509, https://doi.org/10.1137/
060660588.

[33] M. Homolya, L. Mitchell, F. Luporini, and D. A. Ham, Tsfc: a structure-preserving form
compiler, 2017, https://arxiv.org/abs/1705.03667.

[34] B. Irons, Structural eigenvalue problems-elimination of unwanted variables, AIAA journal, 3
(1965), pp. 961–962.

[35] R. C. Kirby and A. Logg, A compiler for variational forms, ACM Transactions on Mathe-
matical Software (TOMS), 32 (2006), pp. 417–444.

[36] R. C. Kirby and L. Mitchell, Solver composition across the PDE/linear algebra barrier,
SIAM Journal on Scientific Computing, (2017), https://arxiv.org/abs/1706.01346. To ap-
pear.

[37] R. M. Kirby, S. J. Sherwin, and B. Cockburn, To cg or to hdg: a comparative study, Journal
of Scientific Computing, 51 (2012), pp. 183–212.

[38] M. G. Larson and F. Bengzon, The Finite Element Method: Theory, Implementa-
tion, and Practice, Springer-Verlag, Berlin Heidelberg, 2010, https://doi.org/10.1007/
978-3-642-33287-6.

[39] A. Logg, K.-A. Mardal, and G. Wells, Automated solution of differential equations by the
finite element method: The FEniCS book, vol. 84, Springer Science & Business Media,
2012.

[40] A. Logg, K. B. Ølgaard, M. E. Rognes, and G. N. Wells, Ffc: the fenics form com-
piler, Automated Solution of Differential Equations by the Finite Element Method, (2012),
pp. 227–238.

[41] A. Logg and G. N. Wells, Dolfin: Automated finite element computing, ACM Transactions
on Mathematical Software (TOMS), 37 (2010), p. 20.

[42] K. Long, R. Kirby, and B. van Bloemen Waanders, Unified embedded parallel finite ele-
ment computations via software-based fréchet differentiation, SIAM Journal on Scientific
Computing, 32 (2010), pp. 3323–3351.

[43] J.-C. Nédélec, Mixed finite elements in 3, Numerische Mathematik, 35 (1980), pp. 315–341.

[44] D. Pardo, J. Álvarez-Aramberri, M. Paszynski, L. Dalcin, and V. M. Calo, Impact of
element-level static condensation on iterative solver performance, Computers & Mathe-
matics with Applications, 70 (2015), pp. 2331–2341.

[45] C. Prudhomme, V. Chabannes, G. Pena, and S. Veys, Feel++: finite element embedded
language in c++, Free Software available at http://www.feelpp.org. Contributions from
A. Samake, V. Doyeux, M. Ismail and S. Veys.

[46] F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. McRae, G.-T.
Bercea, G. R. Markall, and P. H. Kelly, Firedrake: automating the finite element
method by composing abstractions, ACM Transactions on Mathematical Software (TOMS),
43 (2016), p. 24.

[47] F. Rathgeber, G. R. Markall, L. Mitchell, N. Loriant, D. A. Ham, C. Bertolli, and
P. H. Kelly, Pyop2: A high-level framework for performance-portable simulations on
unstructured meshes, in High Performance Computing, Networking, Storage and Analysis
(SCC), 2012 SC Companion:, IEEE, 2012, pp. 1116–1123.

[48] P.-A. Raviart and J.-M. Thomas, A mixed finite element method for 2-nd order elliptic
problems, in Mathematical aspects of finite element methods, Springer, 1977, pp. 292–315.

[49] M. E. Rognes, R. C. Kirby, and A. Logg, Efficient assembly of h(div) and h(curl) conforming
finite elements, SIAM Journal on Scientific Computing, 31 (2009), pp. 4130–4151.

[50] J. W. Ruge, Algebraic multigrid, Multigrid methods, 3 (1987), pp. 73–130.
[51] J. Shipton and C. Cotter, Higher-order compatible finite element schemes for the nonlinear

rotating shallow water equations on the sphere, arXiv preprint arXiv:1707.00855, (2017).

https://doi.org/10.1137/060660588
https://doi.org/10.1137/060660588
https://arxiv.org/abs/1705.03667
https://arxiv.org/abs/1706.01346
https://doi.org/10.1007/978-3-642-33287-6
https://doi.org/10.1007/978-3-642-33287-6

42 T. H. GIBSON, L. MITCHELL, D. A. HAM, AND C. J. COTTER

[52] R. Stenberg, Postprocessing schemes for some mixed finite elements, ESAIM: Mathematical
Modelling and Numerical Analysis, 25 (1991), pp. 151–167.

[53] D. L. Williamson, J. B. Drake, J. J. Hack, R. Jakob, and P. N. Swarztrauber, A standard
test set for numerical approximations to the shallow water equations in spherical geometry,
Journal of Computational Physics, 102 (1992), pp. 211–224.

[54] Zenodo/COFFEE, COFFEE: A Compiler for Fast Expression Evaluation, Nov. 2017, https:
//doi.org/10.5281/zenodo.597585.

[55] Zenodo/FIAT, FIAT: The Finite Element Automated Tabulator, Jan. 2018, https://doi.org/
10.5281/zenodo.1135105.

[56] Zenodo/FInAT, FInAT: a smarter library of finite elements, Jan. 2018, https://doi.org/10.
5281/zenodo.1135106.

[57] Zenodo/Firedrake, Firedrake: an automated finite element system, Jan. 2018, https://doi.
org/10.5281/zenodo.1135096.

[58] Zenodo/PETSc, PETSc: Portable, Extensible Toolkit for Scientific Computation, Jan. 2018,
https://doi.org/10.5281/zenodo.1135103.

[59] Zenodo/petsc4py, petsc4py: The Python interface to PETSc, Jan. 2018, https://doi.org/10.
5281/zenodo.1135099.

[60] Zenodo/PyOP2, OP2/PyOP2: Framework for performance-portable parallel computations on
unstructured meshes, Jan. 2018, https://doi.org/10.5281/zenodo.1155736.

[61] Zenodo/SCPC, SCPC: Static condensation and hybridization in Firedrake & PETSc, Jan.
2018, https://doi.org/10.5281/zenodo.1135108.

[62] Zenodo/Tabula-Rasa, Tabula-Rasa: experimentation framework for hybridization and static
condensation, Jan. 2018, https://doi.org/10.5281/zenodo.1163390.

[63] Zenodo/TSFC, TSFC: The Two Stage Form Compiler, Jan. 2018, https://doi.org/10.5281/
zenodo.1135098.

[64] Zenodo/UFL, UFL: The Unified Form Language, Jan. 2018, https://doi.org/10.5281/zenodo.
1135104.

https://doi.org/10.5281/zenodo.597585
https://doi.org/10.5281/zenodo.597585
https://doi.org/10.5281/zenodo.1135105
https://doi.org/10.5281/zenodo.1135105
https://doi.org/10.5281/zenodo.1135106
https://doi.org/10.5281/zenodo.1135106
https://doi.org/10.5281/zenodo.1135096
https://doi.org/10.5281/zenodo.1135096
https://doi.org/10.5281/zenodo.1135103
https://doi.org/10.5281/zenodo.1135099
https://doi.org/10.5281/zenodo.1135099
https://doi.org/10.5281/zenodo.1155736
https://doi.org/10.5281/zenodo.1135108
https://doi.org/10.5281/zenodo.1163390
https://doi.org/10.5281/zenodo.1135098
https://doi.org/10.5281/zenodo.1135098
https://doi.org/10.5281/zenodo.1135104
https://doi.org/10.5281/zenodo.1135104

	1 Introduction
	1.1 Notation

	2 A language for linear algebra on local finite element tensors
	2.1 An overview of Slate
	2.2 Examples
	2.2.1 Static condensation of CG methods
	2.2.2 Hybridized mixed methods
	2.2.3 Hybridized discontinuous Galerkin methods
	2.2.4 Local post-processing

	3 Static condensation is a preconditioner
	3.1 Interfacing with PETSc via custom preconditioners
	3.1.1 A static condensation preconditioner
	3.1.2 Preconditioning mixed methods via hybridization
	3.1.3 A static condensation interface for hybridization

	4 Numerical results
	4.1 A three-dimensional positive-definite Helmholtz equation
	4.2 Hybridized methods for the Poisson equation
	4.3 A nonlinear method for the shallow water equations
	4.3.1 Semi-implicit solver
	4.3.2 Atmospheric flow over a mountain (Williamson, test case 5)

	5 Conclusions and future outlooks
	Appendix A. UFL listings
	A.1 Partitioned H1-formulation
	A.2 Hybrid-mixed formulation
	A.3 LDG-H formulation

	Appendix B. Post-processing
	B.1 Post-processing of ph
	B.2 Post-processing of bold0mu mumu uusubsectionuuuuh

	Appendix C. Convergence studies
	C.1 H1-Helmholtz
	C.2 Hybrid-mixed methods
	C.3 LDG-H method

	Appendix D. Nonlinear shallow water solver
	D.1 Preconditioning via hybridization

	Appendix E. Full solver parameters
	E.1 Elliptic Helmholtz: static condensation
	E.2 Hybridized Mixed and LDG-H Poisson: static condensation
	E.3 Linear solver: hybridization and static condensation
	E.3.1 Approximate Schur complement
	E.3.2 Hybridization and static condensation

	References

