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Abstract 
 

We show how data collected from a GPS device can be incorporated in 

motor insurance ratemaking. The calculation of premium rates based upon 

driver behaviour represents an opportunity for the insurance sector. Our 

approach is based on count data regression models for frequency, where 

exposure is driven by the distance travelled and additional parameters that 

capture characteristics of automobile usage and which may affect claiming 

behaviour. We propose implementing a classical frequency model that is 

updated with telemetrics information. We illustrate the method using real 

data from usage-based insurance policies. Results show that not only the 

distance travelled by the driver, but also driver habits, significantly 

influence the expected number of accidents and, hence, the cost of 

insurance coverage. This paper provides a methodology including a 

transition pricing transferring knowledge and experience that the company 

already had before the telematics data arrived to the new world including 

telematics information. 
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1. Introduction and motivation 

Telematics is the technology of sending, receiving and storing information via 

telecommunication devices in conjunction with affecting control on remote objects. Thus, vehicle 

telematics allows driver information to be collected using an electronic device. Broadly speaking, 

this GPS-based technology records mileage in addition to other data related to driver behaviour. 

The significance of this for the field of transportation research has been highlighted in a number 

of recent papers (Shafique and Hato, 2015; Xu et al., 2015
1
; Isaacson et al., 2016) and it seems 

likely to bring about fundamental changes in automobile insurance in the near future.  

Pay-as-you-drive insurance (PAYD) was initially proposed by Vickrey (1968) and it has 

evolved rapidly with technological advances. The potential benefits of this system have been 

stated as improved actuarial accuracy and the opportunity for those policyholders that drive less 

to reap the benefits (see, Tselentis et al., 2017, Baecke and Bocca, 2017).  

Classical insurance ratemaking is based on frequency and severity models that predict the 

expected number of claims and their expected cost on the grounds of historical information 

stored in an insurance company’s database. Traditionally, the variables included in the predictive 

models are collected about the driver and vehicle at the time of policy issuance, but information 

about driving habits are not considered directly on the grounds that driving style and intensity 

could not hitherto be measured objectively. 

Guidelines governing the calculation of motor insurance premiums recognise that distance 

driven is an exposure variable that should be taken into consideration in the modelling process. 

However, as policyholders tend not to be very precise when reporting their average annual 

mileage, attempts to introduce mileage in the models have not been successful. However, the 

technology available today provides a means of collecting mileage information automatically. It 

seems clear to us, therefore, that future ratemaking models will incorporate these technological 

advances. Here, we propose a method for modernising the ratemaking system that involves 

combining traditional motor insurance rating factors with new information obtained from 

telemetric data collection. Our practical illustration, employing real data, shows that the 

combination of classical actuarial insights with telematics information is superior to working 

with either system in isolation.  

1.1 The transition from classical insurance pricing to telematics pricing 

 

This paper is particularly concerned about the transition process from classical insurance pricing 

to insurance pricing including telematics. Let us say an insurance company wants to introduce 

telematics. And let us say that this company has a long history of understanding their customers 

and pricing their risk. It probably would not be a good idea to throw away the historical 

knowledge and intellectual progress the company has obtained over the years. A better approach 

                                                           
1
 See Xu et al. 2015 for an extensive review of studies examining human mobility patterns in the field of 

transportation research.   
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seems to be to consider the problem as a three stage process: (i) pricing before telematics is 

introduced, (ii) the transition to pricing including telematics, and (iii) a new regime, where 

telematics data is fully integrated in the business processes of the company. Therefore, in this 

paper we imagine telematics to be introduced to the insurance company as a correction to their 

current pricing. At the surface, this results in something that looks like an inefficient estimation 

method. It is technically speaking not statistically efficient to do classical pricing first based on 

some variables and then afterwards correcting the pricing using new telematics covariates. 

Statistical theory would tell us to estimate all variables at the same time. In that case, there is no 

incremental nature reason of keeping step (ii) prior to step (iii) from a technical point of view. 

However, the adjustment approach is not so much about statistical efficiency as about a transition 

from classical pricing to pricing including telematics. So, it is a practical method. When 

telematics is introduced to the company as a correction to the current pricing, then it provides an 

incremental innovation to the business processes of that company allowing the company to build 

on current strengths while developing the new regime. After a transition period that is sufficient 

to have built up enough data and enough confidence in the actuarial and pricing office of the 

insurance company, then it might be time to transfer the statistical estimation to a full blown 

statistical estimation including all parameters at the same time. However, the validations this 

paper provides based on real data suggest that pricing based on a transition adjustment will be 

almost just as accurate as the more complicated full blown statistical minimization. This is good 

news implying that the insurance company can allow itself an extensive transition period, where 

experience, data and methodology is built according to the new challenges of incorporating 

telematics data in the day-to-day ratemaking. 

1.2 Background 

Various papers in the literature examine the ratemaking process from this classical point of view 

(see Denuit et al., 2007, for an extensive review). The frequency and severity of claims have been 

the main dependent variables in these models, both from an “a priori” perspective (considering as 

regressors certain characteristics of the insured and his vehicle) and from an “a posteriori” 

perspective within a bonus-malus system. In the case of “a priori” ratemaking, classical variables 

such as the driver’s age, experience and the age of the vehicle have been used. The insured’s 

gender has also been a traditional ratemaking variable; however, in Europe, this factor can no 

longer be used for pricing, it having been deemed discriminatory under the ruling of the 

European Court of Justice (ECJ), issued on 1 March 2011 (Aseervatham et al., 2016).  

However, new methods of automobile insurance ratemaking have become available thanks to 

technological advances. Information can now be collected via GPS devices installed in the 

insured’s vehicle, which means insurance companies have access to more accurate information 

about the distance driven each year by the insured and his driving patterns (Paefgen et al., 2013).  

Analyses of driver behaviour are frequent in transportation research. Some authors, including 

Ellison et al. (2015), Underwood (2013), Jun et al. (2011), Elias et al. (2010) and Ayuso et al. 

(2010), have shown that factors such as night driving, urban driving, speeding and highway 
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driving are correlated with the risk of being involved in an accident and with the corresponding 

severity of that accident.  

In the insurance literature, papers examining PAYD policies clearly identify the opportunities 

afforded by this focus on an insured’s driving patterns. In PAYD automobile insurance, the 

premium is calculated on the basis of vehicle usage. Thus, premiums can be personalized 

according to the distance driven each year by the insured (Edlin, 2003; Ferreira and Minikel, 

2013). Additionally, drivers’ speed profiles, the type of roads they most frequently take, and the 

time of day they are typically on the roads are taken into account in the rating system (Litman, 

2005; Sivak et al., 2007; Langford et al., 2008; Paefgen et al., 2013, 2014). These policies are 

often only sold to young drivers; yet, significant differences have been reported between novice 

and experienced young drivers, suggesting young policyholders constitute a heterogeneous risk 

group (Ayuso et al., 2014).  

A number of analyses of PAYD insurance have generated interesting results that need to be 

considered in the ratemaking process. For example, Boucher et al. (2013) and, previously, 

Litman (2005) and Langford et al. (2008), report that the relationship between the number of 

accidents and the distance travelled by a driver may not necessarily be linear (that is, the 

relationship between the distance travelled by a vehicle and the risk of accident is not 

proportional). Additionally, Ayuso et al. (2016a) show that gender differences are mainly 

attributable to intensity of vehicle use, so while gender is significant in explaining the time to the 

first crash, it is no longer significant when the average distance travelled per day is introduced in 

the model. On this basis, these authors conclude that no gender discrimination is necessary if 

telematics provides enough information about driving habits. 

Despite the recent research on PAYD insurance and driving patterns, little has been said as to 

how the information collected by telematics systems can be used to improve or complement 

traditional ratemaking systems. Ferreira and Minikel (2013) show that mileage is a significant 

predictor of insurance risk, but that this factor alone cannot replace traditional rating factors, such 

as class and territory (yet, mileage gains in explanatory power when used in conjunction with 

these traditional factors). Lemaire et al. (2016) demonstrate that annual mileage is a powerful 

predictor of the number of claims at fault and its significance exceeds that of all other classical 

variables, including those traditionally linked to bonus-malus systems (BMS). However, they 

argue that the inclusion of annual mileage (as a new rating variable) should be combined with 

classical BMS methods, given that information contained in the BMS premium level 

complements that contained in annual mileage figures. Our objective here, therefore, is to weigh 

up the different alternatives now available to the insurance sector of introducing the new risk 

factors, obtained via telemetry, into the insurance pricing system. These alternatives, moreover, 

are not just limited to annual mileage data, but include other factors related to driver behaviour. 

The new pricing systems should benefit not only the insurance industry, by being able to charge 

premiums based on the risk at hand, but drivers as well, since they should be motivated to 

improve their driving and to drive more carefully as this will have a direct impact on their 

insurance costs. 
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The rest of the paper is organized as follows. In the following section, we analyse the 

traditional methods used by actuaries to estimate premiums and how these might be modified to 

include risk factors based on exposure and driver behaviour. In the third section, we present the 

data used in this study along with our descriptive statistics. In section four, we present the results 

of the empirical evaluation. Finally, we highlight the conclusions and limitations of this paper, 

and make suggestions for further research.  

 

2. Methods 

The usual method for identifying the pure insurance premium is to apply a frequency and 

severity model, where frequency refers to the number of claims per year and severity is the cost 

per claim. In this paper we concentrate on the number of claims and assume severity to be 

obtained from another model. We analyse a variety of alternatives for including information 

acquired from a GPS system into the pricing process.  

2.1 Frequency model 

Let Y
i
, i=1,...,n denote the number of claims reported by insured i during a fixed time period, 

which is usually one year. A total of n policyholders are to be used to build the models and each 

policy unit is considered independent from all others. 

Since policyholders present different characteristics, we denote by x
i
=(𝑥𝑖1, … , 𝑥𝑖𝑘) the 

vector of k exogenous variables that measure the individual features or the risk factors that are 

believed to have an impact on the expected number of claims. These risk factors are assumed to 

be known when the policy is issued and they are either static or perfectly predictable over time 

(age being a typical example of a regressor that changes deterministically over time). 

We assume that there is a degree of heterogeneity in the risk of reporting a claim and, so, the 

expected number of claims depends on these risk factors.  

The Poisson regression model is a special case of the generalized linear model class and can 

be used as a benchmark model. We also know that it is robust to the distribution assumption, 

provided the mean is correctly specified. This is a classical result proved by Gourieroux et al. 

(1984a and 1984b) in two celebrated papers published in Econometrica, which explains why the 

model is omnipresent in the predictive modelling of count data (see, also Denuit et al., 2007; 

Boucher et al., 2009; Boucher and Guillen, 2009).  

Let us assume that given x
i
, the dependent variable Y

i
 follows a Poisson distribution with 

parameter i , which is a function of the linear combination of parameters and regressors, 

𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘 𝑥𝑖𝑘. Indeed,  

 

 𝐸(𝑌𝑖|𝑥𝑖) = exp (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘 𝑥𝑖𝑘). (1) 
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The unknown parameters to be estimated are (𝛽0, … , 𝛽𝑘). 

When exposure to risk varies, we can include an offset in the model. Let us call T
i
 the 

exposure factor for policy holder i, then the model can incorporate this factor as follows: 

  

 𝐸(𝑌𝑖|𝑥𝑖 , 𝑇𝑖) = 𝑇𝑖exp (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘 𝑥𝑖𝑘). (2) 

 

In this case, the analysis can be understood as a model for the number of claims per unit of 

exposure. 

Traditional software programmes allow for the maximum likelihood estimation of these 

models and other generalizations that take into account overdispersion or zero-inflation, which 

are common in automobile insurance applications. The Poisson model has many good properties, 

including the consistency of the parameter estimates if the expectation is correctly specified, as 

discussed above. This means that the predictive performance is robust, so parameter estimates do 

not change much when implementing distributions that have additional parameters such as the 

Negative Binomial – provided the expectation specified in (1) is correct. 

The Akaike information criterion (AIC) can be used to compare models. It is calculated as 

twice the number of parameters in the model minus twice the value of the log-likelihood in the 

maximum given an observed sample. The best model is the one that presents the smallest AIC 

criterion. The AIC penalizes the number of parameters less strongly than does the Bayesian 

information criterion (BIC), which is calculated on the basis of the logarithm of the number of 

observations, as opposed to multiplying the number of parameters by two as in the AIC. 

2.2 Frequency model with telematics 

By implementing telematics, we assume that additional information about the driving habits of 

the policyholder becomes available. Let us denote by zi=(𝑧𝑖1, … , 𝑧𝑖𝑙), the vector of l variables that 

are collected from the electronic system. We only consider variables that refer to the whole 

period of exposure and summarize the driving behaviour. We consider a new set of parameters 

(𝛾1, … , 𝛾𝑙) so that we can include information on usage in the specification of the model. Thus, 

we have a full model with telematics data as follows:  

 

𝐸(𝑌𝑖|𝑥𝑖, 𝑇𝑖, 𝑧𝑖)  = 𝑇𝑖exp (𝛽0 + 𝛽1𝑥𝑖1 + ⋯ + 𝛽𝑘 𝑥𝑖𝑘 + 𝛾1𝑧𝑖1 + ⋯ + 𝛾𝑘 𝑧𝑖𝑘).       (3) 

 

The vector of unknown (k+l+1) parameters to be estimated is now(𝛽0, … , 𝛽𝑘, 𝛾1, … , 𝛾𝑙). The 

maximum likelihood method for the Poisson model can also be used here. 

2.3 Telematics as a correction 

In this section, a two-step procedure is considered including classical actuarial information. 

The initial classical actuarial model is assumed not to contain telematics information. So, in 

the first step, we rely on a classical frequency model, such as (1), to obtain a prediction of the 
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expected number of claims for every policy i. Let us call iŶ  the prediction of the expected 

number of claims for policy i given the information on the initial characteristics x
i
. In the second 

step, we assume that additional information collected by a GPS system becomes available. 𝑌̂𝑖
𝑈𝐵𝐼 

is the prediction from usage-based insurance that is obtained as in the second step. Let us specify  

 

)...exp(ˆ)ˆ,|( 110 ikkiiii

UBI

i zzYYzYE            (4) 

The parameter estimates can now be obtained using iŶ as an offset. 

This is a practical method assessing the influence on the expected claim frequency of the 

usage-based indicators and can be viewed as a correction to the initial ratemaking model. Our 

aim is to compare the goodness-of-fit of the previous models, not only from the point of view of 

global significance but also when analysing the individual significance of each model parameter. 

In order to assess the prediction performance of the models we implement a statistic based on 

the comparison of pairs of observations with a different outcome and the predictions provided by 

the models for these observations. A pair is concordant if the predicted value of the model is 

higher for the observation within a pair that has the highest observed value. The percentage of 

concordant pairs is a measure of the predictive accuracy of the model. This statistic, and other 

transformations, such as Somers’ D, has been used extensively in the context of binary logistic 

regression to assess model performance (Lokshin and Newson, 2011) and has also been 

implemented for use with more general cases (Newson, 2015). 

 

3. Data 

We have information on risk exposure and number of claims for 25,014 insured drivers, with car 

insurance coverage throughout 2011, that is, individuals exposed to the risk for a full year. Our 

sample is composed of drivers who underwrote a PAYD policy in 2009 with a leading Spanish 

insurance company. On signing the agreement, their driving patterns began to be registered using 

a GPS system. The follow-up period was concluded on 31December 2011. All the drivers were 

under the age of forty at the time of underwriting the policy. The sample mean age is 27.57, 

which is younger that the average age of all drivers. Authors studying the driving population in 

Spain report average age to be older than the age of our sample. Official figures on the age of 

citizens who have a driver’s license in Spain indicate that the average is 48.63 years. Alcañiz et 

al. (2014) analyse a sample of random drivers who were stopped at sobriety checkpoint and they 

report similar results for Catalonia (Spain). 

The variables included in the modelling are shown in Table 1. The explanatory variables include 

both the traditional factors used for pricing, including the age of the insured driver and gender, 

and the new risk factors derived from a remote system. Our descriptive statistics, presented in 

Tables 2 and 3, highlight differences between drivers with no claims and those with claims.  
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Table 1. Explanatory variables included in the models  

 
Traditional ratemaking factors  

Age 

 

Age of the insured driver (in years) 

Age
2
 Age squared of the insured driver 

Male Gender of the insured driver (1 if male, 0 female) 

Age driving licence Nº of years in possession of a driving license 

Vehicle age Age of the insured vehicle 

Power Power of the insured vehicle 

Parking 1 if the car is parked in a garage overnight, 0 otherwise 

 

New telematic ratemaking factors  

Km per year (000s) 

 

 

Total kilometres travelled per year (in thousands) 

Km per year at night (%) Percentage of kilometres travelled at night during the year 

Km per year at night (%)
2
 Percentage of kilometres travelled at night squared 

Km per year over speed limit (%) Percentage of kilometres travelled during the year above the limit 

Km per year over speed limit (%)
2
 Percentage of kilometres travelled during the year above the limit 

squared 

Urban km per year (%) Percentage of kilometres travelled in urban areas during the year 

N = 25,014 

 

 

Table 2. Descriptive statistics by claims  

(quantitative variables) 

 

All Sample  

N = 25,014 

Drivers with no claims  

N = 20,608 (82.4%) 

Drivers with claims  

N = 4,406 (17.6%) 

  Mean Std. Dev. Mean Std. Dev. Mean Std. Dev. 

Age 27.57 3.09 27.65 3.09 27.18 3.10 

Age driving licence 7.17 3.05 7.27 3.07 6.73 2.94 

Vehicle age 8.75 4.17 8.76 4.19 8.69 4.11 

Power 97.22 27.77 96.98 27.83 98.36 27.46 

Km per year (000s) 7.16 4.19 6.99 4.14 7.96 4.35 

Km per year at night (%) 6.91 6.35 6.85 6.32 7.16 6.49 

Km per year over speed 

limit (%) 
6.33 6.83 6.28 6.87 6.60 6.59 

Urban km per year (%) 25.87 14.36 25.51 14.31 27.56 14.47 
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Table 3. Descriptive statistics by claims  

(categorical variables) 

 

All Sample  

N = 25,014 

Drivers with no claims  

N = 20,608 (82.4%) 

Drivers with claims  

N = 4,406 (17.6%) 

Gender Frequency Percent Frequency Percent Frequency Percent 

Men 12,235 48.91 10,018 48.61 2,217 50.32 

Women 12,779 51.09 10,590 51.39 2,189 49.68 

    

Parking Frequency Percent Frequency Percent Frequency Percent 

Yes 19,356 77.38 15,912 77.21 3,444 78.17 

No 5,658 22.62 4,696 22.79 962 21.83 

 

Our overall sample is made up of 48.91% male drivers (48.61% in the case of drivers with no 

claims and 50.32% in that of drivers with claims). The mean age of the whole sample of drivers 

is 27.57 (and the standard deviation is 3.09) and the mean number of years in possession of a 

driving licence (Age driving licence) is 7.17 (with a standard deviation of 3.05). The mean age of 

drivers with no claims (27.65) is quite similar to that of drivers with claims (27.18)
2
 but the 

mean driving licence age is higher for the former (7.27 vs. 6.73). No relevant differences are 

found between vehicle age means (8.75 for the whole sample) and vehicle power. 

The mean distance driven per year is 7,160 km, while the mean distance driven by those with 

claims is higher than that driven by those without claims (7,960 km vs. 6,990 km). The mean 

percentage of kilometres driven at night per year is 6.91% and is higher for drivers with claims 

(7.16% vs. 6.85%). The mean percentage of kilometres driven over the speed limit per year is 

about 6.33% and again is higher for drivers with claims (6.60% vs. 6.28%). Finally, drivers with 

claims drive a higher mean percentage of kilometres in urban zones (27.56% vs. 25.51%; 25.87% 

for the whole sample). 

We conducted a Mann-Whitney test to determine whether the above differences in the 

classical regressors and the new driving patterns are statistically significant (note that the 

normality hypothesis of these variables is rejected using the Kolmogorov-Smirnov test). The 

results indicate that the differences between drivers with no claims and drivers with claims are 

statistically significant for all variables except for Vehicle age (p-value=0.331) and Percent over 

the speed limit squared (p-value=0.9293). No significant association between gender and drivers 

with no claims and drivers with claims was found. 

 

                                                           
2
 The maximum age of the observed individuals is 37. Note that the insurance company that provided the sample 

sell this type of PAYD contract to young drivers. 
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4. Results 

Table 4 presents the Poisson model estimates for all claim types using all available 

information, both telematics and non-telematics data, and for the two-step approach. Table 5 

presents similar Poisson model estimates as those presented in Table 4, but in this case for claims 

where the policyholder was at fault. Claims “at fault” refer to accidents that have been caused by 

other drivers. So they sometimes mean that at least another car was involved in the scene. Spain 

has a “no fault” insurance system so that the policy covers the accident even it is not the 

insured’s fault. In the United States, some States have regulation with no fault insurances, where 

most often this just refers to the medical coverage provided in the policy. A minimum amount of 

coverage is required depending the State's laws. Only the medical portion pays out regardless of 

fault Tables 6 and 7 present the same model estimates including exposure to risk (kilometres 

driven per year) as an offset in the model
3
. The reason why we show Tables 6 and 7 with offset 

km per year is that we believe that many insurers are developing systems to price the insurance 

contract based on mileage or kilometres driven. They plan to charge on a “per km” or “per mile” 

basis. This is the reason why we have expressed the model on those units. However, as noted by 

several authors (see, Boucher et al. 2013) the risk of an accident is not strictly proportional to the 

distance driven. Indeed, there is a “learning effect” so that the risk does not increase 

proportionally to distance driven. 

  

                                                           
3
 We have used SAS PROC GENMOD to produce the model estimates and PROC IML to assess predictive 

performance. 
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Table 4. Poisson model results. All claim types (n=25,014)  

 All variables Non-telematics Telematics 

Telematics with 

offsets (Log of 

prediction of 

Non-telematics 

model- Column 2) 

 

Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) 

Intercept -1.503 0.122 0.135 0.888 -3.427 <.0001 -1.807 <.0001 

Age -0.132 0.064 -0.101 0.153         

Age2 0.002 0.066 0.002 0.208         

Male -0.040 0.155 0.084 0.003         

Age Driving License -0.061 <.0001 -0.061 <.0001         

Vehicle Age 0.010 0.003 0.002 0.549         

Power 0.003 <.0001 0.003 <.0001         

Parking 0.031 0.347 0.037 0.252         

 

Log of km per year 

(thousands) 0.644 <.0001     0.645 <.0001 0.620 <.0001 

Km per year at night (%) -0.004 0.295     -0.001 0.761 -0.007 0.067 

Km per year at night (%)2  0.0002 0.140     0.0001 0.413 0.0002 0.041 

Km per year over speed 

Limit (%) 0.026 <.0001     0.026 <.0001 0.022 <.0001 

Km per year over speed 

Limit (%)2 -0.001 <.0001     -0.001 <.0001 -0.001 <.0001 

Urban km per year (%) 0.023 <.0001     0.024 <.0001 0.022 <.0001 

AIC 29,464.858 30,315.914 29,640.186 29,483.041 

BIC 29,578.638 30,380.931 29,697.076 29,539.931 

LogL -13,658.440 -14,089.960 -13,753.100 -13,674.530 

Chi-2 1,120.220 <0.001 257.180 <0.001 930.900 <0.001 1,088.040 <0.001 

Table 4 shows that the inclusion of variables related to mileage and driver behaviour give better 

results than when only the traditional variables are included. The AIC value is lower when 

considering telematics data, and the AIC presents similar values when estimating a traditional 

Poisson model with all variables (column 1) or when considering the log of the prediction of the 

non-telematics model as an offset in the Poisson model with all telematics-related variables 

(column 4). The goodness-of-fit of the model using only telematics variables (column 3) is 

superior to that of the model that only uses traditional variables (column 2), meaning that the 

inclusion of telematics information is relevant, or in other words that the model with telematics 

perform statistically better than the model without. The results confirm the conclusions of 

previous studies (Ferreira and Minikel, 2013; Lemaire et al., 2016), in which the authors claim 

that the inclusion of risk exposure variables in pricing models together with traditional variables 

improves the overall model.  

Our analysis shows, therefore, that the estimation improves when we include variables 

related to the behaviour of the insured driver. All the parameters that include an offset with the 

log of prediction of the non-telematics model (column 4) are statistically significant, indicating 

that all the telematics variables are relevant in explaining the number of claims made by the 



12 

insureds. The percentage of kilometres per year over the speed limit, the percentage of urban 

kilometres per year and, even, the total number of kilometres per year (all of which present a 

p-value lower than 1%) show a direct relationship with the number of claims reported to the 

insurance company. Additionally, the parameter of the square of the percentage of kilometres per 

year driven at night is significant (p-value<5%), which means there is a non-linear relationship 

between the percentage of kilometres driven at night and the number of claims. Thus, after a 

driver has driven a certain number of kilometres per year at night, the effect of the variables 

becomes positive and, so, the number of claims increases. Note that when we estimate the 

Poisson model with telematics variables only (column 3), the percentage of kilometres driven per 

year at night is not significant and, thus, the global goodness-of-fit is poorer than in the other 

models. Nevertheless, the behaviour of the rest of the variables in this model is congruent with 

respect to that of the model with offsets (column 4).  

The effect of the classical variables is seen to change when we introduce the variables 

related to risk exposure and driver behaviour to the specification (column 1 vs. column 2). Age 

does not have a significant effect in the model that includes only the classical rating variables 

(column 2) but, in the model that includes all variables, age becomes significant at the 10% level. 

The inclusion of factors related to driver behaviour points to a degree of heterogeneity among the 

group of young drivers. An analogous situation is evident in the case of driving experience (age 

driving license). The negative sign presented by the coefficient of this variable (statistically 

significant at the 1% level in the model that includes all variables and in that which includes only 

traditional variables) tells us that the expected number of claims decreases as driving experience 

increases. However, as the age of the vehicle increases, the expected number of claims increases, 

although the parameter is not significant in the traditional model. Vehicle power presents a 

positive effect in the traditional model as well in the model that includes all variables, but this is 

not the case with gender, which is not significant when we include the telematics variables. 

Indeed, Ayuso et al. (2016b) stress the importance of including the new variables of risk 

exposure and driver behaviour in the new framework that prohibits companies from charging 

different premiums according to the gender of the driver. Finally, the results are the same for the 

model with telematics variables and the version with offsets (columns 3 and 4), with a significant 

influence of the annual distance but also with the percentage of kilometres driven per year over 

the speed limit and the percentage of urban kilometres driven per year. 

Following Lemaire et al. (2016), we select those accidents in which the policy holder is at 

fault. The results are presented in Table 5. We present models with and without claims “not at 

fault” in an attempt to reflect the inside mechanism of insurance pricing. Insurers only consider 

claims at fault to be indicative of the true severity of the driver’s risk. If a driver had a claim 

because someone else has caused an accident, which he has been involved in, them he should not 

be blamed for that. Indeed, other claims due to external causes or third parties should not be 

considered in the models that are aimed to predict the riskiness of a driver measured by the 

number of claims.. Overall, similar results are obtained in terms of goodness of fit, but with a 

lower AIC value, when using the model that includes all the variables (column 1) and very 
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similar results are also obtained for the model combining the telematics variables and offsets 

(column 4). The worst fit is obtained with the traditional model that includes only the classical 

rating variables (column 2). Two marked differences emerge from a comparative analysis of the 

individual significances of the parameters with respect to those obtained in Table 4. In the case of 

the model with offsets (column 4), the percentage of kilometres driven per year at night is not a 

significant parameter when we only consider the claims of drivers at fault. Additionally, the 

variables related to driver’s age and gender are now statistically significant both in the traditional 

model (column 2) and in the model that includes all variables (column 1). The negative sign for 

the male variable indicates that the expected number of claims decreases if the driver at fault is 

male. The age variable has a non-linear effect on the expected number of claims and, here again, 

it points to the heterogeneous behaviour of young drivers that are at fault. The rest of the 

variables analysed present a similar behaviour to that described in Table 4. Among the new risk 

factors, the number of kilometres driven per year is the variable that has the greatest influence, 

although having information about the percentage of kilometres driven per year over the speed 

limit and the percentage of urban driving allows us to improve the model when the driver is at 

fault. 

 

Table 5. Poisson model results. Claims where the policyholder was at fault (n=25,014) 

 

 

 All variables Non-telematics Telematics 

Telematics with 

offsets (Log of 

prediction of 

Non-telematics 

model- Column 2) 

 

Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) 

Intercept -0.363 0.795 1.129 0.416 -4.235 <.0001 -1,809 <.0001 

Age -0.264 0.011 -0.224 0.029         

Age2 0.005 0.009 0.004 0.033         

Male 0.024 0.571 0.163 <.0001         

Age Driving License -0.086 <.0001 -0.085 <.0001         

Vehicle Age 0.013 0.011 0.005 0.337         

Power 0.001 0.089 0.002 0.013         

Parking -0.034 0.470 -0.022 0.638         

 

Log of km per year (000s) 0.602 <.0001     0.605 <.0001 0.575 <.0001 

Km per year at night (%) 0.004 0.560     0.008 0.169 0.000 0.993 

Km per year at night (%) 2  0.0001 0.526     0 0.978 0.0002 0.285 

Km per year over speed 

Limit (%) 0.042 <.0001     0.038 <.0001 0.037 <.0001 

Km per year over speed 

Limit (%)2 -0.001 <.0001     -0.001 <.0001 -0.001 <.0001 

Urban km per year (%) 0.022 <.0001     0.025 <.0001 0.021 <.0001 

AIC 17,347.370 17,733.343 17,483.578 17,352.691 

BIC 17,461.149 17,798.360 17,540.468 17,409.581 

LogL -8,309.030 -8,508.010 -8,384.130 -8,318.690 
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Chi-2 588.760 <0.001 190.800 <0.001 438.560 <0.001 569.440 <0.001 

 

 

 

Table 6 presents the results obtained when we include the risk exposure (km per year) as an 

offset of the model (see equations 2 and 3 in section 2). The table presents the Poisson model 

estimates for all claim types and for all the variables, for telematics and non-telematics data 

separately and for the two-step approach. Table 7 presents the same results but includes only the 

claims where the policy holder is at fault.  

 

Table 6. Poisson model results with offset km per year. All claim types (n=25,014) 

 

 

All variables Non-telematics Telematics 

Telematics with 

offsets (Log of 

prediction of 

Non-telematics 

model - Column 2) 

 

Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) 

Intercept -2.193 0.024 -0.472 0.625 -4.219 <.0001 -0.731 <.0001 

Age -0.145 0.043 -0.200 0.005         

Age2 0.003 0.040 0.004 0.005         

Male -0.086 0.002 -0.049 0.076         

Age Driving License -0.061 <.0001 -0.076 <.0001         

Vehicle Age 0.015 <.0001 0.022 <.0001         

Power 0.003 <.0001 0.001 0.063         

Parking 0.034 0.292 0.034 0.299         

 

Log of km per year (000s) 

 

1.000 

 

-- 

 

1.000 

 

-- 

 

1.000 

 

-- 

 

1.000 

 

-- 

Km per year at night (%) -0.008 0.051     -0.005 0.161 -0.009 0.017 

Km per year at night (%)2  0.0002 0.062     0.0001 0.193 0.0002 0.033 

Km per year over speed 

Limit (%) 
0.015 0.004     0.014 0.006 0.019 <.001 

Km per year over speed 

Limit (%)2 
-0.001 0.001     -0.001 0.003 -0.001 <.001 

Urban km per year (%) 0.029 <.0001     0.031 <.0001 0.028 <.0001 

AIC 29,631.281 30,624.100 29,809.179 29,658.447 

BIC 29,736.934 30,689.117 29,857.942 29,707.210 

LogL -13,742.650 -14,244.060 -13,838.600 -13,763.230 

Chi-2 1,357.220 <0.001 354.400 <0.001 1,165.320 <0.001 1,316.060 <0.001 

 

 

When we include risk exposure as another model variable, similar results are obtained to those 

reported in Table 4. Here again the best results in terms of goodness-of-fit are obtained for the 

model that includes both the traditional and driver behaviour variables (column 1) and the model 

that includes the logarithm of the prediction of the non-telematics model as an offset (column 4). 
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However, the p-value of the percentage of kilometres driven per year at night is now below 5% 

(whereas it was just below 10% in Table 4). In the model that includes all driver variables, this 

parameter, in addition to the gender variable, is significant, indicating a reduction in the expected 

number of accidents if the driver is male. 

Table 7 presents similar Poisson model estimates to those presented in Table 5, but for 

claims where the policyholder was at fault. We draw similar conclusions in terms of fit, although 

here the gender variable is not statistically significant.  

 

Table 7. Poisson model results with offsets. Claims where the policyholder was at fault 

(n=25,014) 

 

 

All variables Non-telematics Telematics 

Telematics with 

offsets (Log of 

prediction of 

Non-telematics 

model - Column 2) 

 

Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) Coefficient (p-value) 

Intercept -1.119 0.425 0.546 0.695 -5.144 <.0001 -0.834 <.0001 

Age -0.279 0.007 -0.324 0.002         

Age2 0.005 0.005 0.006 0.001         

Male -0.028 0.494 0.027 0.501         

Age Driving License -0.086 <.0001 -0.100 <.0001         

Vehicle Age 0.018 0.000 0.024 <.0001         

Power 0.001 0.086 0.000 0.865         

Parking -0.030 0.525 -0.024 0.603         

 

Log of km per year (000s) 

 

1.000 

 

-- 

 

1.000 

 

-- 

 

1.000 

 

-- 

 

1.000 

 

-- 

Km per year at night (%) -0.0001 0.981     0.004 0.499 -0.002 0.702 

Km per year at night (%)2  0.0001 0.373     0.0001 0.751 0.0002 0.253 

Km per year over speed 

Limit (%) 0.030 <.001     0.024 0.001 0.033 <.0001 

Km per year over speed 

Limit (%)2 -0.001 <.001     -0.001 0.002 -0.001 <.001 

Urban km per year (%) 0.029 <.0001     0.031 <.0001 0.028 <.0001 

AIC 17,443.476 17,885.544 17,579.678 17,446.174 

BIC 17,549.129 17,950.561 17,628.442 17,494.937 

LogL -8,358.080 -8,584.120 -8,433.180 -8,366.430 

Chi-2 709.340 <0.001 257.260 <0.001 559.140 <0.001 692.640 <0.001 

 

Finally, Table 8 shows the percentage of concordant pairs when comparing the observed and 

estimated number of claims for the sampled individuals in the models analysed. The results 

confirm the utility of including in the pricing process the variables related to risk exposure and 

driver behaviour. The number of kilometres driven per year should be included in the model as 

an explanatory variable or offset. Additionally, when including variables associated with driving 

over the speed limit, percentages of urban driving and percentages of driving at night, the 

prediction performance improves. 
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Table 8. Concordant predictions of all models (in percentages)  

 All variables Non-telematics Telematics Telematics with offsets  

Poisson model results. All claim types  62.28  55.91  61.34  62.10  

Poisson model results with offsets (Log of km per year 

in 000s). All claim types  
62.15  58.60  61.18  62.05 

 

Poisson model results. Claims where the policyholder is 

at fault  
62.70  57.72  61.13  62.65 

 

Poisson model results with offsets (Log of km per year 

in 000s). Claims where the policyholder is at fault  
62.38  58.96  60.89  62.43 

 

 

5.  Discussion and conclusions 

We have shown that combining classical actuarial insurance pricing and modern pricing based on 

telematics gives better outcomes than a method based on just one or the other of these two 

pricing strategies. Insurance companies have traditionally set vehicle insurance rates by analysing 

such variables as driver and vehicle profiles that impact the odds of their being involved in an 

accident. These variables can be considered as deterministic, meaning that their values are known 

and do not change with time or they change in a controlled manner. For example, this is the case 

of the policy holder’s age, gender, number of years in possession of a driving licence, vehicle 

power and whether the vehicle is parked at night. The only variable for which we can expect 

changes and that actually has an impact on the policy premium is the number of accidents, which 

results in a penalty being imposed every time a claim is made (bonus-malus system). 

However, the information provided by telemetry represents a significant change in the 

traditional pricing system, since dynamic information about the driver becomes available. This 

information includes not only the distances driven during a given period of time, but also the 

drivers’ habits and behaviour that may undergo changes during this time and which, in turn, 

might be influenced by the application of different premium rates. The inclusion of mileage in 

the model means real risk exposure can be taken into account and, consequently, actuarial 

premiums at the individual level can be more accurately calculated. 

Individuals driving longer distances are more exposed to the risk of an accident than those 

that drive less. Yet, mileage is not the only relevant factor. Those that drive long distances and 

spend long periods of time in their vehicles are likely to be more skilled drivers and so are at less 

of a risk of an accident than those that drive shorter distances and that are less skilled. Indeed, 

Boucher et al. (2013) highlight the existence of a non-proportional relationship between the 

number of kilometres driven per year and the probability of having an accident. A driver’s 

experience is one of the key factors underpinning this relationship. Here, therefore, we have 

examined the influence of other factors, including the percentage of kilometres driven over the 

speed limit, at night and in urban environments. Other potential variables include the percentage 

of kilometres driven on highways/motorways (considered as being safer than other roads) and the 
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percentage of kilometres driven on certain days of the week (a distinction being drawn between 

weekdays and weekends). However, one limitation of the conclusions of our results on the effects 

on telematics factors on the risk of an accident is that our sample is composed of young drivers 

and these results may not be extrapolated to a population of older drivers. 

Telemetry can ensure the inclusion in the ratemaking process of factors that are typically 

identified by traffic authorities as being accident indicators. It can provide important information 

about traffic violations, as well as about the road types the driver typically travels on and about 

the time of day and day of the week when the driver is using their vehicle. In this paper we have 

specifically taken into account the percentage distance driven over the speed limit, but GPS 

information could also provide details about such driver habits as sudden or hard braking, the 

distance the driver maintains with other vehicles on the road and other habits in adverse weather 

conditions. Many recent papers in the field of safety research, for example, have examined the 

effects on driver behaviour of reduced visibility (Abdel-Aty et al. 2011; Hassan and Abdel-Aty 

2013; Yan et al. 2014). The premium penalties for policyholders that ignore speed limits 

contribute to the development of road safety policies and to collaboration between public 

institutions and business. 

We conclude, therefore, that the use of usage-based information is informative for 

premium ratemaking. We also show that telemetrics information can serve to correct the classical 

frequency model and is a practical approach to the implementation of telemetrics. Our results 

show that variables related to the annual distance driven and to a driver’s behaviour lead to better 

estimations of the expected number of accidents than those reached when using the traditional 

variables of driver age and gender. However, the model that performs the best is the one that 

includes both traditional and the new telemetric variables, with the annual distance included as 

either a regressor or offset (risk exposure) in the model. The study of the effects on a model 

accounting for a large number of zeros in the dependent variable constitutes our immediate line 

of future research (given that 82.4% of the drivers were not involved in an accident, rising to 

91.3% if we only consider cases where the policyholder was at fault), although this would be 

oriented towards explaining the excess of zeros
4
 with respect to the relationship to the distance 

driven rather than towards the prediction and correction of insurance rates. 

 

 

 

                                                           
4
 The concept “excess of zeros” is a standard expression in the field of statistics that refers to situations where a 

large proportion of observations equal the value zero. This is the case in our data, many drivers did not report a claim 

in one year. It is likely that not all zeros are driven by the same rules. For instance, some may be due to a good 

driving style, while others may be caused by insureds that do not drive at all. Additionally the same (or different) set 

of explanatory variables might have varying effects on the two types of zeroes. For example, the car age may be a 

factor of danger thus leading to a larger number of claims, but at the same time having an old car may be associated 

to people who do not use the car much, so that they are likely to be occasional users and then the risk of a claim is 

lower. 
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