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Abstract 

Purpose 

Osimertinib is a third-generation inhibitor of the epidermal growth factor receptor used in treatment 

of non-small cell lung cancer. A full understanding of its disposition and capacity for interaction with 

other medications will facilitate its effective use as a single agent and in combination therapy.  

Experimental design 

Recombinant cytochrome P450s and liver microsomal preparations were used to identify novel 

pathways of osimertinib metabolism in vitro. A panel of knockout and mouse lines humanized for 

pathways of drug metabolism were used to establish the relevance of these pathways in vivo. 

Results 

Although some osimertinib metabolites were similar in mouse and human liver samples there were 

several significant differences, in particular a marked species difference in the P450s involved. The 

murine Cyp2d gene cluster played a predominant role in mouse, whereas CYP3A4 was the major 

human enzyme responsible for osimertinib metabolism. Induction of this enzyme in CYP3A4 

humanized mice substantially decreased circulating osimertinib exposure. Importantly, we 

discovered a further novel pathway of osimertinib disposition involving CPY1A1. Modulation of 

CYP1A1/CYP1A2 levels markedly reduced parent drug concentrations, significantly altering 

metabolite pharmacokinetics (PK) in humanized mice in vivo. 

Conclusion 

We demonstrate that a P450 enzyme expressed in smokers’ lungs and lung tumors has the capacity 

to metabolise osimertinib. This could be a significant factor in defining the outcome of osimertinib 

treatment. This work also illustrates how P450-humanized mice can be used to identify and mitigate 
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species differences in drug metabolism and thereby model the in vivo effect of critical metabolic 

pathways on anti-tumor response. 
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Translational relevance 

 

Globally, there are approximately 1.5 million new cases of non-small cell lung cancer (NSCLC) each 

year. Dependent on ethnicity, between 8 and 30% of these contain mutations in the epidermal 

growth factor receptor (EGFR) which confer sensitivity to therapy with inhibitors of this oncoprotein. 

Acquired resistance to first and second-generation EGFR inhibitors usually involves a further EGFR 

mutation, T790M. Osimertinib (AZD9291) is the most effective treatment in these latter cases and, 

due to its low toxicity and high level of brain penetration, is currently being explored as a first-line 

therapy for metastatic disease.  Osimertinib is a cytochrome P450 substrate. These enzymes can 

define both systemic exposure and intra-tumoral drug concentrations and can therefore be major 

determinants in the outcome of cancer therapy. We report a novel pathway of osimertinib 

disposition which may be of importance in this regard. 
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Introduction 

Lung cancer is both the most common cancer, with an estimated 1.8 million new cases in 2012, and 

the most common cause of mortality from cancer, responsible for 1.5 million deaths in 2012 (1). 

Non-small cell lung cancer (NSCLC) accounts for 80-90% of all cases. A distinct subset of NSCLC – 

between 8 and 30%, depending on ethnicity (2) – possess activating mutations in the kinase domain 

of EGFR (“EGFRm”) which confer sensitivity to therapy involving “first generation” EGFR inhibitors, 

erlotinib and gefitinib (3,4). As with many tyrosine kinase inhibitors (TKIs), however, drug resistance 

emerges rapidly, with disease progression typically occurring after 9-14 months (5). The 

predominant mechanism of acquired resistance involves a substitution of methionine for threonine 

in codon 790 (T790M) in EGFR, arising through point mutation in exon 20. This mutation hinders 

drug binding (6) while also increasing the affinity for ATP (7), and occurs in 50-60% of patients who 

develop resistance to erlotinib or gefitinib (8). Several second-generation EGFR inhibitors, which 

target both EGFRm and T790M, have undergone clinical trial, with afatinib now approved for first-

line therapy in EGFR mutation-positive NSCLC. However, the efficacy of these agents against the 

T790M mutant protein is disputed, as T790M emerges at a similar frequency in EGFRm+ patients 

treated with afatinib (9). Hence a third generation of EGFR inhibitors, designed to target both 

EGFRm and T790M, while sparing wild-type EGFR, is emerging. 

 

Osimertinib is a mono-anilino-pyrimidine which covalently and irreversibly binds to cysteine 797 in 

the ATP binding site of EGFR, exhibiting 200 times greater potency towards EGFRm/T790M than EGFRWT 

(5). Compared with first and second-generation inhibitors, cell line studies demonstrated a similar 

activity against EGFRm, increased activity against EGFRT790M, and an increased selectivity margin 

against EGFRWT (5). On Phase I and II clinical trial data, osimertinib was granted accelerated approval 

by the FDA and the EMA for treatment of metastatic EGFRT790M-positive NSCLC which had progressed 

on or after TKI therapy. It was subsequently reported that the Phase III trial of osimertinib met its 

primary endpoint of increased progression-free survival (PFS), compared to standard platinum-
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doublet chemotherapy, with evaluation of overall survival ongoing (10). Response rates to therapy 

are approximately 70% – of which 3% are complete and 67% partial – with a median response 

duration of 11.4 months as, again, resistance is acquired rapidly (11). Several mechanisms of 

resistance have been identified, most of which are shared with first-generation EGFR inhibitors, such 

as mutation of RAS (12), EGFR bypass through activation or amplification of HER2/ERBB2 or MET 

(12,13) and histological transformation to small cell lung cancer (14).  

 

Population PK analysis of clinical trial data has demonstrated the absence of an exposure/response 

relationship for efficacy of osimertinib across the 20-240 mg per day dose range (the prescribed 

dose is 80 mg per day), but a strong relationship with adverse events (15,16). In light of these data, 

there is significant need for studies into dose reduction and/or altered scheduling to reduce the 

extremely high (85% (11)) incidence of grade 1 and 2 adverse events. Moreover, further dose and 

schedule optimisation will facilitate the combination of osimertinib with other drugs while mitigating 

cumulative toxicities and forestalling resistance (17). To this end, we have investigated the in vitro 

and in vivo metabolism of osimertinib using recombinant cytochrome P450s, human and murine 

microsomal preparations, and knockout and humanized mouse lines. We identify species differences 

in osimertinib metabolism and demonstrate how they can be eliminated by genetic modification, 

and we describe novel pathways of osimertinib disposition of high relevance to the treatment of 

lung cancer. 
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Materials and Methods 

 

Chemicals and reagents 

High/low P450 activity HLM preparations from individual donors were purchased from BD Gentest 

(San Jose, CA, USA). Pooled human liver microsomes (150 donors) were purchased from Thermo 

Fisher Scientific (Waltham, MA, USA). Cloning and expression of human cytochrome P450s has been 

described previously (18). Osimertinib was purchased from Chemietek (Indianapolis, USA). TCDD was 

purchased from Toronto Research Chemicals (Canada). NADPH was purchased from Melford 

laboratories (Ipswich, UK). All other chemicals were purchased from Sigma-Aldrich (Poole, UK). 

 

Animal lines and husbandry 

The generation and characterisation of Cyp2cKO, Cyp2dKO, Cyp3aKO, Cyp2c/2d/3aKO, hCYP2D6*2 

and hPXR/hCAR/hCYP3A4/3A7 mice has been described previously (19-22). For the humanized lines, 

briefly, the hCYP2D6*2 line contains a targeted insertion of an expression cassette containing 9kb of 

the CYP2D6 promoter, along with all exons, introns and 5’ and 3’ untranslated regions, into the 

murine Cyp2d locus, from which all nine functional murine Cyp2d genes have been deleted (20). The 

hPXR/hCAR/hCYP3A4/3A7 line carries a large genomic insertion of human CYP3A4 and CYP3A7 in 

place of the Cyp3a locus, from which seven of the eight murine Cyp3a genes have been deleted (21). 

CYP3A4 is expressed at a low basal level in this line but can be upregulated following ligand-

activated nuclear translocation of the transcription factor, PXR, by RIF. In order to generate the 

hPXR/hCAR/3aKO line, we crossed hPXR/hCAR with Cyp3aKO animals (21). A manuscript describing 

the generation and characterization of the hCYP1A1/1A2 and Cyp1a1/1a2KO lines is in preparation. 

All animals were maintained under standard animal house conditions, with free access to food (RM1 

diet, Special Diet Services, Essex, UK) and water, and a 12h light/dark cycle. All animal work was 

carried out in accordance with the Animal Scientific Procedures Act (1986) and after local ethical 

review. 
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In vitro studies 

Microsomal protein fractions were prepared as described previously (23). All incubations were 

performed in 100mM potassium phosphate buffer, pH 7.4, containing 3.3mM MgCl2 at 37oC and 300 

rpm in a thermomixer. Further details are available in Supplemental data. 

 

In vivo studies 

All animal work was carried out on 8-12 week-old male mice. Osimertinib was suspended in corn oil 

at 2.5 mg/mL for administration by oral gavage at 25 mg/kg (10µL per g body weight). For induction 

of CYP3A4 through PXR, RIF was suspended in corn oil at 1mg/mL for intra-peritoneal (i.p.) 

administration at 10 mg/kg (10µL/g body weight) once daily for three days, as described by 

Hasegawa et. al. (21), with administration of osimertinib on day four. For induction of CYP1A1 

through the aryl hydrocarbon receptor (AhR), TCDD was suspended in corn oil at 1µg/mL for i.p. 

administration at 10 µg/kg (10 µL per g body weight), with administration of osimertinib 48 hours 

subsequently. Details of PK sample analysis are available in Supplemental data. 

 

LC-MS/MS: Multiple Reaction Monitoring (MRM) analysis 

Analysis of in vitro incubation and in vivo blood PK samples was carried out by UHPLC/MS-MS using a 

Waters Acquity UPLC (Micromass, Manchester, UK) and Micromass Quattro Premier mass 

spectrometer (Micromass, Manchester, UK) with Electrospray detection.   

Further details are available in Supplemental data. 

 

LC-MS/MS: MSn analysis 

The LC-MS/MS system consisted of a Waters Alliance 2690 HPLC system (Waters, Milford, MA, USA) 

and a LTQ-Orbitrap XL mass spectrometer (Thermo Fisher Scientific, Somerset, NJ, USA) with an 

electrospray ionization (ESI) interface. Further details are available in Supplemental data. 
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Western blotting 

Microsomal fractions were adjusted to 1 mg/mL in LDS sample buffer (Life Technologies, Carlsbad, 

CA, USA). Primary antibodies used for immunoblotting were anti-CYP1A1 (AB1258, Merck Millipore, 

Billerica, MA, USA) and anti-GRP78 (ab21685; Abcam, Cambridge, UK). 

 

Cell line studies 

The A549_HO1 and H1299_HO1 cell lines will be described in detail in a future publication. Briefly, 

parental A549 and NCI-H1299 were obtained from the American Type Culture Collection (ATCC, 

Manassas, VA, USA). Genes for firefly luciferase and beta-galactosidase were introduced C-terminal 

to the HO1 gene in both lines using the Transcription Activator-Like Effector Nucleases (TALEN) 

genome editing system. These reporter genes are separated from each other, and from HO1, by the 

2A sequence derived from foot-and-mouth disease virus, leading to the production of a tricistronic 

mRNA and thereby allowing efficient production of all three proteins from the HO1 promoter. The 

AREc32 cell line has been described previously (24). All cell lines were cultured in DMEM (Life 

Technologies) containing 10% fetal bovine serum and verified as mycoplasma-free (MycoAlert, 

Lonza, Basel). For induction studies, cells were exposed to osimertinib in complete medium for 24h 

and luciferase activity measured using a commercially available kit (Promega, Madison, WI, USA). 

 

Data analysis 

Spearman’s rank correlation coefficients were calculated in Microsoft Excel (Microsoft, Redmond, 

WA, USA). PK parameters of in vivo data were calculated with a simple non-compartmental model 

using the PK Functions package in Microsoft Excel and p values were calculated using an unpaired, 

two-tailed t-test. *: p = <0.05, **: p = <0.01, ***: p = <0.001. 
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Results 

In vitro metabolism of osimertinib: similarities and differences between human and mouse 

In order to determine the suitability of the mouse as a model system to investigate pathways of 

osimertinib disposition in vivo, we first compared the metabolism of this drug in mouse and human 

liver microsomal fractions in vitro. Analysis of samples from incubations with HLM and wild-type 

MLM identified two demethylated (designated DM-1 and -2) and five hydroxylated (designated OH-1 

to -5) metabolites in each species (Figure 1A and B). The demethyl-osimertinib profile was closely-

matched between species (Figure 1C). However, the hydroxylated forms were produced at very 

different ratios, and two were produced in much greater quantities by MLM (Figure 1D-E). Manual 

fragmentography confirmed that the seven metabolites produced by MLM were the same as those 

produced by HLM, and that DM-1 and DM-2 are the previously reported clinically-important AZ5104 

(M6) and AZ7550 (M3) metabolites, respectively (Supplementary Figure 1) (25,26). The structure of 

osimertinib and sites of modification are shown in Figure 1F. In previous reports, only three mono-

hydroxylated metabolites have been identified (25,26). OH-4 corresponds to M1, but structural 

detail for the other two previously identified metabolites – designated M4 and M7 – are unavailable 

for comparison with our data (25,26). 

 

To further clarify the human cytochrome P450s involved in osimertinib metabolism we carried out 

incubations with a panel of recombinant P450 enzymes. CYP3A4 and CYP1A1 were the most active in 

generating DM-1, exhibiting approximately equivalent activity (Figure 2A). CYP3A4 played a major 

role in generating DM-2, with minor roles for CYP1A1 and CYP2C8 (Figure 2B). Interestingly, CYP1A1 

had by far the highest activity in forming the OH-1,OH-3 and OH-5 metabolites (Figures 2C, 2E and 

2G), while CYP1A2 and, to a lesser extent, CYP3A4, CYP1A1 and CYP2C8 produced OH-2 (Figure 2D). 

CYP3A4 was most active in the generation of the 4-OH metabolite (Figure F).  
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In order to establish which cytochrome P450s play a predominant role in the production of these 

metabolites in human liver we used a panel of HLM from 15 donors, characterised in their activity 

towards probe substrates for individual P450 isoforms. The formation of DM-1 correlated strongly 

with that of 6β-hydroxy-testosterone, the marker for CYP3A4, agreeing with the recombinant 

protein data (Supplementary Table 2). There was also a strong correlation with CYP2A6 activity but 

we deemed this potentially artefactual as CYP3A4 and CYP2A6 probe activities within the HLM panel 

correlate (not shown). This relationship has previously been observed in a separate panel of HLM 

samples (27). Indeed, recombinant CYP2A6 did not produce this metabolite (Figure 2A). It should be 

noted however that Dickinson et al observed some activity of recombinant CYP2A6 with osimertinib 

(26).  Formation of DM-2 in the HLM panel agreed less well with the recombinant protein data, as 

correlation with CYP3A4 activity was considerably weaker than with CYP2A6, CYP2B6 and CYP2C8. 

OH-1 data were consistent as, in the absence of a reference CYP1A1 activity in the HLM panel, 

CYP3A4 was the next strongest correlation (disregarding CYP2A6). Generation of OH-2 correlated 

well with CYP3A4 and CYP2C8 activities, consistent with the recombinant data but, in stark contrast, 

the predicted CYP1A2 correlation was not observed. The reason for this is unclear.  Consistent with 

the recombinant P450 data, the correlation of OH-4 formation with CYP3A4 activity was highest. This 

analysis did not clearly identify the enzymes involved in the formation of the OH-3 and OH-5 

metabolites (Supplementary Table 2). 

 

In addition to the recombinant protein and probe substrate correlation analyses, we further   

characterised the P450s involved in osimertinib disposition using isoform-specific inhibitors in 

pooled HLM. In broad agreement with the above work, the generation of DM-1, DM-2, OH-1 and 

OH-2 were strongly inhibited by the CYP3A4 inhibitor ketoconazole (Supplementary Table 3). 

Further, in agreement with the correlation analysis, inhibition of CYP1A2 did not alter production of 

OH-2. Due to the reported low basal level of expression of CYP1A1 in human liver (28), we did not 

attempt to inhibit this enzyme in HLM. 
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To further characterise the involvement of CYP3A4 and CYP1A1 in osimertinib metabolism, we 

determined the apparent kinetic parameters for conversion to DM-1, DM-2 and OH-1 by 

recombinant forms of these enzymes in vitro. All data were in agreement with the above: (i) both 

CYP1A1 and CYP3A4 generated DM-1, with the former demonstrating a far lower KM and the latter 

demonstrating a higher Vmax, (ii) CYP1A1 was essentially inactive in the formation of DM-2 with 

CYP3A4 exhibiting significant activity (iii) both enzymes generated OH-1, but CYP1A1 had both a 

lower KM and higher Vmax (Supplementary Table 4). 

 

Osimertinib is an irreversible inhibitor of EGFR containing an acrylamide reactive centre which binds 

covalently to cysteine 797 in the kinase active site (5). Specificity for this target is enhanced through 

the formation of two hydrogen bonds between the pyrimidine core of osimertinib and methionine 

793 of EGFR. This alpha/beta unsaturated ketone moiety is thiol-reactive (29), a common feature of 

many activators of the transcription factor nuclear erythroid 2 related factor 2 (NRF2). NRF2 

provides a primary defence against reactive electrophiles and has been associated with drug 

resistance in cancer (30). We therefore tested the ability of osimertinib to activate NRF2-driven 

luciferase reporters in three stable cell lines; two driven off the endogenous heme oxygenase 1 

(HO1) promoter, A549_HO1 and H1299_HO1, for which NRF2 is one of a number of regulators, and 

one driven off a synthetic promoter containing eight copies of the antioxidant response element 

(ARE), which is specific for NRF2, AREc32 (24). In each cell line, treatment with 3 µM osimertinib for 

24 hours (a non-toxic dose, as determined by ATP cytotoxicity assay over 72 hours, data not shown) 

activated the reporter 2- to 3-fold (Supplementary Figure 2).   

 

Murine Cyp2d are responsible for the species difference in osimertinib metabolism 

As described by Cross et al, the half-life of oral clearance of osimertinib is approximately three hours 

in the mouse (5). However, in early clinical studies, the human value was found to be approximately 
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50 hours, “longer than would be predicted from the preclinical data”. The in vitro metabolic stability 

of osimertinib in HLM was much greater than in MLM (Figure 3A). To determine the reason for this 

species difference in metabolism, we analysed osimertinib stability in liver microsomes from Cyp2c, 

Cyp2d and Cyp3a gene cluster knockout mice, and from a combined Cyp2c/2d/3a triple-cluster 

knockout line (19-22). Osimertinib stability was greatly increased in Cyp2d KO (Figure 3A) and 

Cyp2c/2d/3a KO (not shown) microsomes but not in any of the other KO microsomes. The 

production of the major OH-2 metabolite was also concomitantly decreased (Figure 3B). These data 

demonstrated that unlike in human samples, murine hepatic Cyp2d enzymes were responsible for 

osimertinib metabolism and that this defines a major species difference in the pathway of 

disposition. To establish whether this was also the case in vivo, and responsible for the short half-life 

of osimertinib in mice in vivo, we compared the PK profile of wild-type animals to those humanized 

for CYP2D6, which carry the human enzyme in place of the murine Cyp2d cluster. Consistent with 

the in vitro data, in the humanized mouse model a profound change in osimertinib disposition was 

observed. The drug was cleared within 32 hours of administration to wild-type mice, yet remained 

detectable in serum from h2D6 animals 80 hours after administration (Figure 3C). Exposure (AUC0-t) 

and t1/2 were 5.3-fold and 2.80-fold higher, respectively, in the humanized animals, while Cl 

decreased 6.1-fold (Supplementary Table 5). Consistent with this, and with the in vitro data, the 

circulating OH-2 metabolite was also greatly decreased in the humanized line (Figure 3D). 

 

Osimertinib disposition following the induction of CYP3A4 in humanized mice in vivo 

In humans, osimertinib is predominantly metabolized by CYP3A4 in the liver (25,26,31). We 

therefore investigated the role of this enzyme to osimertinib disposition in the humanized 

hPXR/hCAR/h3A4 mouse line in vivo. In order to induce hepatic CYP3A4 expression in this line, 

animals were pre-treated with the PXR activator, RIF. To definitively attribute any effects observed 

to CYP3A4 – i.e. to rule out any effects of this inducing agent on, for example, drug transporters (23), 

we also carried out the analysis on a novel mouse line humanized for PXR and CAR, on a Cyp3a-
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knockout background. In the hPXR/hCAR/h3A4 line, pre-treatment with RIF significantly decreased 

exposure to osimertinib, with a 2.4-fold decrease in AUC0_t and a 2.1-fold decrease in Cmax (Figure 4A 

and Supplementary Table 6). This decrease was due to the activity of CYP3A4, as no change was 

observed in the hPXR/hCAR/3aKO line with RIF pre-treatment (Figure 4B). Notably, both of the 

mouse models utilized here retain the Cyp2d gene cluster, hence the PK profile is more similar to 

wild-type mice than to h2D6. 

 

In humans, CYP3A enzymes have been reported to be primarily responsible for both the generation 

and the further metabolism of the key active metabolites, DM-1 (AZ5104) and DM-2 (AZ7550) 

(25,26,31). In the humanized model exposure to DM-1 decreased to a similar extent in both mouse 

lines after RIF pre-treatment (Figure 4C,D). This pattern was also apparent for DM-2, although was 

less well-defined due to the low signal intensity (Figure 4E,F) suggesting that Rif induces a non-

CYP3A4 route of disposition of these metabolites, possibly through the induction of drug 

transporters. 

 

Osimertinib is a substrate and inducer of CYP1A1 in vivo 

 

Pre-clinical data on the metabolism of osimertinib did not identify CYP1A1 as a catalyst of 

osimertinib metabolism (25,26,31,32). As described above, recombinant CYP1A1 protein was highly 

active in generating DM-1, OH-1 and OH-5, and moderately active in generating DM-2, OH-2 and OH-

3 (Figure 2, Supplementary Table 4). These data are potentially important in relation to the outcome 

of osimertinib therapy as CYP1A1 is highly expressed in the lungs of smokers, and also in lung tumors 

(33). To explore the influence of CYP1A enzymes on osimertinib disposition in vivo we carried out 

pharmacokinetic analysis in novel Cyp1a1/1a2 knockout and CYP1A1/1A2 humanized mouse lines. 

The basal expression of CYP1A1 in the h1A1/1A2 line is low (Kapelyukh et. al., manuscript in 

preparation), however it can be induced in a number of tissues including liver, lung and small 
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intestine by exposure of the mice to TCDD, an activator of the Ah receptor (Ahr). In h1A1/1A2 mice 

pre-treated with TCDD, there was a 3.4-fold decrease in AUC0-t and a 3.3-fold decrease in Cmax of 

osimertinib (Figure 5A and Supplementary Table 7). There was no change in exposure in the 

1a1/1a2KO line. Correspondingly, TCDD-pre-treatment greatly increased circulating levels of the OH-

1 metabolite in humanized mice, but had no effect in knockouts (Figure 5B). In this experiment, 

TCDD-mediated activation of Ahr occurred in several tissues – liver, small intestine and lung 

(Kapelyukh et. al., manuscript in preparation) – hence the effects on osimertinib and metabolite 

disposition were likely to be driven by a combination of hepatic, intestinal and pulmonary 

CYP1A1/1A2. In order to test whether induction of these enzymes in lung could alter osimertinib 

metabolism specifically in this tissue, we carried out in vitro studies using lung microsomes from 

h1A1/1A2, 1a1/1a2KO and wild-type animals, both with and without TCDD-pre-treatment (two days 

prior to harvest). Induction of CYP1A1/1A2 in pulmonary microsomes from humanized animals 

increased OH-1 generation (Figure 5C). Interestingly, there was no increase in OH-1 generation in 

samples for pretreated wild-type animals (Figure 5C). There were, however, far greater increases in 

OH-3 (Figure 5D) and OH-5 (Figure 5E) production in lung samples from wild-type relative to 

h1A1/1A2 mice. As substrates of CYP1A1 are typically found also to be inducers of this enzyme, we 

administered osimertinib once daily for four days to h1A1/1A2 mice. Livers were harvested on day 

five and CYP1A1 protein levels assessed by Western blot (Figure 5F) and EROD activity (Figure 5G). 

Increases in both indicated that this drug is indeed an inducer of CYP1A1 in vivo. 
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Discussion 

Lung cancer is a global problem with high incidence and mortality. It is largely refractive to 

conventional chemotherapy and, despite large numbers of clinical trials and advances in 

stratification facilitated by increasing histopathological subdivision, outcomes are poor. Recently, 

patients with activating mutations in EGFR have benefited from therapy with the first generation 

EGFR inhibitors erlotinib and gefitinib (3,4). However, resistance to these therapies rapidly emerges, 

with the T790M mutation in EGFR representing the predominant mechanism of innate/acquired 

resistance (8). Second generation EGFR inhibitors designed to target this mutant protein exhibit 

significant side effects indicative of widespread inhibition of wild-type EGFR. As a consequence, the 

third generation of EGFR inhibitors has been designed with a higher level of specificity against the 

mutant forms of EGFR (5,34).  However, resistance to these drugs still emerges rapidly, the tumoral 

mechanism of which appears similar to those identified for the first-generation inhibitors (12-14). In 

this work we have identified and modeled, in humanized mice in vivo, the key metabolic factors 

which determine osimertinib disposition. 

 

The half-life of oral clearance of osimertinib in wild-type mice is approximately three hours, yet, in 

the first human patients with confirmed radiographic response, half-life was observed to be 

approximately 50 hours, “longer than would be predicted from the preclinical data” (5). We have 

shown this species difference is due to the extremely high activity of enzymes in the murine Cyp2d 

gene family. Conversely, the human CYP2D6 homolog has minimal activity towards osimertinib. 

Knockout of the murine Cyp2d gene cluster (and humanization for CYP2D6) therefore renders both 

the in vitro metabolic stability and the in vivo PK profile of this drug much more representative of 

that observed in humans. 

 

Unlike in mice, the primary pathway of osimertinib metabolism in patients is mediated by CYP3A 

enzymes (25,26,31). Indeed, prescribing guide lines advocate the avoidance of co-administration of 
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strong CYP3A4 inducers. In clinical trials, the AUCss of osimertinib was reduced by 78% when 

combined with the CYP3A4 inducer rifampicin (35). We found that, in humanized PXR/CAR/CYP3A4 

mice, rifampicin pre-treatment also decreased osimertinib AUC0-t by 58% and through the use of 

Cyp3a-knockout animals we confirmed that this was due to CYP3A4 induction. The osimertinib dose 

in our experiments gave a Cmax of 123.6 ng/mL and an AUC0_t of 1144 hr*ng/mL. In humans, at the 

prescribed dose of 80 mg once daily, Cmax,ss was 311.7 ng/mL (623.8 nmol/L, range: 167-2100, CV: 

53.84%)) and AUCss was 5960 hr*ng/mL (11930 nmol*hr/L (range: 3650-38900, CV: 51.77%)) (15). 

Hence, although our studies gave levels of exposure in the lower range of clinically-observed values, 

the quantitative similarity with the human data demonstrate that CYP3A4-humanized animals 

provide a powerful model for the prediction of CYP3A4-mediated effects on human PK and drug 

efficacy. 

 

Metabolism by CYP3A4 generates two pharmacologically active metabolites, AZ5104 and AZ7550 

(here referred to as DM-1 and DM-2, respectively), which have selectivity profiles similar to parent 

compound, although the former is less specific for T790M (25,26,31). These metabolites are, 

themselves, further metabolized by CYP3A4/5. In our study, pre-treatment with rifampicin 

decreased exposure to AZ5104 and AZ7550 in both mouse lines. These data suggest that RIF is acting 

through PXR, to induce a novel CYP3A4–independent pathway involved in disposition of these 

pharmacologically active metabolites, possibly through the induction of the drug transporters. 

Although CYP3A4 is reported to be the major enzyme responsible for osimertinib metabolism, it is 

important to note that intra- and inter-individual variability in the hepatic levels of this enzyme can 

be as high as 60-fold (27). In this paper, we report the identification of a further novel pathway of 

osimertinib metabolism involving CYP1A1 and that suggest that this enzyme may also play an 

important role in both osimertinib disposition and in its efficacy. CYP1A1 generated both the 

demethylated and hydroxylated metabolites of osimertinib and, indeed, had the highest activity in 

the generation of OH-1, OH-3 and OH-5 metabolites. CYP1A1 is a highly inducible enzyme in almost 
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all tissues as a consequence of activation of the AhR, most notably by the polycyclic aromatic 

hydrocarbons (PAH) found in cigarette smoke (28,33). Further, it is often expressed at significant 

levels in tumors (36). CYP1A2 is considered more liver-specific, but its promoter contains an element 

responsive to PAHs (37) and phenotypic assays are indicative of its induction with smoking (37,38). 

Induction of CYP1A1 and CYP1A2 as a consequence of smoking alters the disposition of a wide 

variety of drugs and, in some cases, this interaction requires dose adjustment or a change in the 

drug prescribed (39).  

CYP1A1-mediated metabolism is of particular relevance to the treatment of lung cancer, as this 

enzyme may metabolize drugs within lung tumors or may alter drug exposure due to metabolism in 

the adjacent lung tissue. This possibility is exemplified by our finding that in vitro incubation of 

osimertinib with lung microsomes following the activation of AhR and the induction of CYP1A1, led 

to greatly increased production of the OH-1 metabolite, with some increase in the OH-3 or OH-5 

osimertinib metabolites. Intra-tumoral osimertinib metabolism could affect both drug and 

metabolite levels and therefore contribute to individual patient responses or indeed drug resistance.   

The induction of CYP1A1 in the lung has also been shown to alter drug exposure (40). In the case of 

the CYP1A substrate, erlotinib, a dose adjustment is recommended in smokers to counteract the 

increased clearance mediated by CYP1A1/1A2 (41). Recently, Phase I clinical trial of a combination of 

erlotinib with dovitinib had to be halted due to a high incidence of grade 3 toxicity and a profound 

drug-drug interaction (DDI), stemming from dovitinib acting as a CYP1A1/1A2 inducer (42). Using a 

novel CYP1A1/1A2 humanized mouse line, we found that induction of these enzymes following 

systemic activation of AhR greatly decreased exposure to osimertinib. Brown et al, in a population 

PK analysis of 778 patients, found that smoking status (current smokers=3%, former smokers=30%, 

never smokers=67%) did not have a significant effect on osimertinib PK (dose-normalized AUCss) 

concluding that CYP1A1 induction does not have a major effect on metabolism (16). However, the 

very small number of current smokers in this study, and the fact that these data were not analysed 

in relation to when smoking cessation occurred, makes interpretation of the potential effects on 
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osimertinib pharmacokinetics unclear. This is an important issue in relation to our work, since when 

patients stop smoking is a key factor in determining CYP1A1 levels. In normal lung tissue of patients 

who stop smoking, CYP1A1 levels begin to decrease after two weeks, becoming undetectable after 

six weeks (33). Initially, the labelling of osimertinib recommended the avoidance of co-

administration of substrates of CYP1A due to potential induction of CYP1A2 (25,32). This 

recommendation was removed from the label in August 2016, without explanation (35). Our data 

suggest that the interaction of osimertinib with CYP1A1/1A2 could have significant effects on its 

therapeutic efficacy. We have examined the AURA clinical trial data, including the recently published 

FLAURA study, to evaluate evidence that smoking is a factor in the outcome of therapy. This has not 

been possible because detailed information on smoking history - in particular, time from cessation in 

relation to the initiation of treatment - was not reported. This information should now be gathered 

as part of the approved clinical use of osimertinib. 

 

During clinical trial of osimertinib, the 80mg per day dose level was selected for evaluation in Phase 

2 as, above this level, incidence and severity of adverse events increased (15). There is no evidence 

of an exposure/response relationship for efficacy across the 20-240 mg dose range. There is 

however a strong relationship between dose and toxicity, with higher exposure resulting in 

increased likelihood of rash, diarrhea – adverse events indicative of the inhibition of wild-type EGFR 

– or elongation of the QTc interval (15,16). Therefore, it would appear that a dose reduction is 

feasible, and might reduce the high incidence of grade 1 and 2 adverse events (85% (11)) without 

loss of efficacy. At steady-state, inter-individual variability in osimertinib PK is high: the coefficient of 

variation for Cmax is 54%, while for AUC0-t is 52% (43). Individuals at either end of the spectrum may 

be greatly under- or over-exposed to drug. Much of this variability in exposure may be driven by 

variability in CYP3A4 and CYP1A1 expression levels. Notably, Brown et al identified ethnicity as a 

covariate for AUC of the CYP3A-generated metabolite, AZ5104 (DM-1), with lower levels observed in 

non-Caucasian patients, including Japanese (16). One possible explanation for this may be the lower 
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level of CYP3A activity in Japanese men than in European American men (44), should this be found 

also to be the case in the other populations examined (Chinese, non-Chinese/non-Japanese Asian 

and non-Asian non-Caucasian). It would be interesting to determine whether or to what extent P450 

levels and exposure to osimertinib and its active metabolites correlate with degree of clinical 

response, severity of side-effects, the emergence of resistance and disease progression, especially in 

light of our observation that, at a concentration which reflects that achieved clinically, this drug 

activates adaptive cellular stress responses which might alter its intracellular levels. 

 

There are several indications that osimertinib may be suitable for first-line therapy of lung tumors; a 

low incidence of grade 3 or above adverse events (15), probable high levels of brain penetration with 

resultant enhanced efficacy over existing EGFR inhibitors for the treatment of metastases and 

leptomeningeal carcinomatosis (5,25,45,46), and, although the frequency is contentious, the pre-

existence of T790M-positive clones in TKI-naïve EGFRm+ tumors (47). Moreover, there are many 

combination strategies involving osimertinib either proposed or in trial. As detailed above, RAS 

mutations are thought to confer resistance to osimertinib, which suggests a potential combination 

with MEK inhibitors (12). Other identified resistance mechanisms involve EGFR bypass through 

HER2/ERBB2 or MET amplification/activation, similar to the T790M-unrelated mechanisms which 

occur in response to first generation inhibitors (12,13), and treatment with MET or EPHA2 inhibitors 

may be effective in these cases (48,49). Furthermore, although over-expression of ABCB1 in cell lines 

did not confer resistance to osimertinib, this compound inhibits ABCB1 activity and can enhance the 

efficacy of concomitantly administered cytotoxic agents (50). We posit that mice humanized for 

pathways of drug disposition can be used to model and predict drug/drug interactions prior to 

clinical trial. Such application would aid in the identification and prioritisation of the combination 

doses and schedules most likely to succeed in the clinic. 
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In conclusion, the data we have presented here will aid in the more effective deployment of 

osimertinib through pharmacologically-guided dose-adjustment. Moreover, with the ever-increasing 

molecular stratification of lung cancer suggesting further options for targeted intervention, and the 

expanding arsenal of targeted agents which might be combined with osimertinib, knowledge of its 

PK and DDI profiles will be essential for the pharmacologically-guided design of effective and 

tolerable combinations.  
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Figure 1. Species comparison of osimertinib metabolites generated in liver microsomal fractions in 

vitro. Incubations were carried out with mouse or human liver microsomal fractions as described in 

the Materials and Methods. Using pooled HLM, two peaks corresponding to demethylated products 

(A) and five peaks corresponding to hydroxylated products (B) were detected. With wild-type MLM, 

two demethylated (C) and two hydroxylated (D) products predominated. (E) Demethylated forms 

were generated at similar levels by HLM and MLM, whereas hydroxylated forms were more species-

specific. In A-D, abundance is calculated relative to base peak signal whereas, in E, abundance is 

calculated relative to internal standard. Data shown are mean ± SD of triplicate incubations. (F) 

Structure of osimertinib showing sites of metabolism, characterised and as shown in more detail in 

Supplementary Figure 1.  

 

Figure 2. In vitro metabolism of osimertinib by a panel of recombinant human cytochrome P450s. 

Osimertinib was incubated with recombinant P450 as described in the Materials and Methods and 

conversion to (A) DM-1, (B) DM-2, (C) OH-1, (D) OH-2, (E) OH-3, (F) OH-4 and (G) OH-5 forms 

measured by LC-MS/MS. Data shown are mean ± SD of triplicate incubations and are representative 

of three separate experiments. 

 

Figure 3. The profound species difference in osimertinib disposition relates to metabolism by 

murine Cyp2d enzymes. (A) Metabolic stability of osimertinib in pooled HLM and MLM from WT and 

P450-knockout mice. Formation of (B) OH-2 was monitored in the same incubations. Data shown are 

mean ± SD of triplicate incubations and are representative of three separate experiments. Wild-type 

and h2D6 animals were administered osimertinib (25 mg/kg p.o.) and blood samples collected at the 

indicated timepoints for measurement of (C) osimertinib and (D) OH-2-osimertinib. Data shown are 

mean ± SD with n = 4 in each group. Apparent PK parameters are detailed in Supplementary Table 4. 
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Figure 4. CYP3A4 mediates osimertinib metabolism in humanised mice. hPXR/hCAR/3aKO and 

hPXR/hCAR/h3A4 animals were administered rifampicin (10 mg/kg i.p.) or corn oil vehicle once daily 

for three days then, on day four, osimertinib (25 mg/kg p.o.). Blood samples were collected at the 

indicated timepoints after osimertinib administration for measurement of (A,B) osimertinib, (C,D) 

DM-1-osimertinib, and (E,F) DM-2-osimertinib. Data shown are mean ± SD with n = 4 in each group. 

Apparent PK parameters are detailed in Supplementary Table 5. 

 

Figure 5. Osimertinib is a substrate and inducer of CYP1A1 in vivo. h1A1/1A2 and 1a1/1a2KO 

animals were administered TCDD (10 µg/kg i.p.) or corn oil vehicle on day one and osimertinib (25 

mg/kg p.o.) on day three. Blood samples were collected at the indicated timepoints after osimertinib 

administration for measurement of (A) osimertinib and (B) OH-1-osimertinib. Data shown are mean 

± SD with n = 4 in each group. Apparent PK parameters are detailed in Supplementary Table 6. 

Formation of (C) OH-1, (D) OH-3 and (E) OH-5 was monitored in incubations with lung microsomes 

from WT, h1A1/1A2, and Cyp1aKO animals with/without TCDD-pretreatment. Data shown are mean 

± SD of triplicate incubations.  In a separate experiment, h1A1/1A2 animals were administered 

vehicle or osimertinib (25 mg/kg p.o.) once daily for four days. On day five, livers were harvested and 

CYP1A1 levels assessed by Western blotting (F) and 7-ethoxyresorufin-O-deethylase activity (G) 

(p=0.027, unpaired t test). 
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