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Ion channels regulate the concentrations of ions
within cells. By stochastically opening and closing
its pore, they enable or prevent ions from crossing
the cell membrane. However, rather than opening
with a constant probability, many ion channels switch
between several different levels of activity even if
the experimental conditions are unchanged. This
phenomenon is known as modal gating: instead
of directly adapting its activity, the channel seems
to mix sojourns in active and inactive modes in
order to exhibit intermediate open probabilities.
Evidence is accumulating that modal gating rather
than modulation of opening and closing at a faster
time scale is the primary regulatory mechanism
of ion channels. However, currently, no method
is available for reliably calculating sojourns in
different modes. In order to address this challenge,
we develop a statistical framework for segmenting
single-channel data sets into segments that are
characteristic for particular modes. The algorithm
finds the number of mode changes, detects their
locations and infers the open probabilities of the
modes. We apply our approach to data from the
inositol-trisphosphate receptor (IP3R). Based upon
these results we propose that mode changes originate
from alternative conformational states of the channel
protein that determine a certain level of channel
activity.

1. Introduction

Ion channels are proteins that regulate the flow of ions
across the cell membrane by stochastic opening and
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closing of a pore. When Neher and Sakmann [46] developed the patch-clamp technique
it became possible to observe opening and closing of a single ion channel. In patch-clamp
experiments, an electrode is moved close to of an ion channel so that electrical currents flowing
through the channel can be measured. Because electrical currents indicate movement of charges
through the channel pore, these data can be used for determining if ions flow through the
channel—if a small (positive or negative) current is detected the channel is open whereas a
zero current indicates that it is closed. Thus, neglecting fluctuations due to measurement noise,
single ion channel data consist of a sequence of stochastic jumps between two or more currents
(conductance levels) that correspond to the channel being open or closed.

Soon after single channel data became available, Colquhoun and Hawkes developed a
mathematical framework for modelling stochastic time series of open and closed observations
with aggregated continuous-time Markov model, see Colquhoun and Hawkes [10] for a very
readable introduction. In the context of ion channel modelling, the time series of open and
closed observations is represented by an aggregated Markov model which describes stochastic
transitions between one or more open and closed that are connected to a directed graph. An
aggregated Markov model not only provides a suitable statistical representation of ion channel
kinetics but it also suggests a biophysical interpretation: opening and closing of the ion channel
requires complex rearrangements of the three-dimensional structure of the channel protein
known as conformational changes. Thus, it is tempting to speculate that transitions between states
in the Markov model correspond to conformational changes of the channel protein. Moreover, the
transition rates describing how fast transitions between adjacent states occur can be interpreted
as the rates of chemical reactions that induce transitions between conformations of the channel
protein associated with these states. Following this idea, modellers have attempted to represent
the effects of all ligands, i.e. compounds that are known to interact with the channel, via
corresponding state transitions. Because channels often have several different ligands that may
each bind to the channel multiple times at different binding sites, this modelling approach has
obvious practical limitations because it requires introducing a large number of open and closed
states that are a priori indistinguishable by observing a time series of open and closed events.
Nevertheless, if not applied dogmatically, the principle of relating the states of an aggregated
Markov model to underlying structural changes at the level of the channel protein certainly has
heuristic value and explains the popularity of these models in the context of ion channels.

There is a large body of literature dealing with the problem of inferring parameters of
aggregated Markov models from given single channel data sets. In the early days of ion channel
modelling, model fitting was based on a qualitative approach. Open and closed time distributions
were calculated from a given Markov model [10] and fitted to empirical open and closed time
histograms of the data. Because open and closed time distributions were parametrised by the
rate constants of the Markov model, the model parameters could be determined by this fit. Horn
and Lange [32] were the first to propose a quantitative approach to model fitting based on a
likelihood function. But it took until the 1990s when sufficiently fast computers became available
that these statistical methods were implemented for practical applications. First, approaches
based on maximum likelihood estimation (MLE) were developed—the two most widely-used
methods have been implemented in the software packages QuB [49, 50] and HICFIT [11]. Rather
than estimating the most likely set of rate constants, Markov chain Monte Carlo (MCMC) gives
a more comprehensive view of uncertainty and correlations of model parameters by sampling
from the posterior distribution. Ball et al. [2] developed the first MCMC algorithm for ion channel
modelling, soon followed by Rosales [52], Rosales et al. [53] who inferred a discrete-time Markov
model for the transitions between consecutive measurements. The method developed in Gin
et al. [23], Siekmann et al. [59, 61] infers a continuous-time Markov model from a sequence of
discrete measurements. Moreover, Hodgson [30], Hodgson and Green [31] applied reversible
jump MCMC (RJIMCMC) to the challenging task of model selection. See Calderhead et al. [5], Gin
et al. [24] for recent reviews on modelling single-channel data with Markov models.
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Aggregated Markov models provide good representations of ion channel kinetics at the fast
timescale of consecutive channel openings and closings. However, there is increasing evidence
that many ion channels primarily adjust their activity at a slower time scale, a phenomenon
known as modal gating. In the broadest sense, modes are defined as different levels of activity
between which the channel switches instantaneously. Thus, modes are at a slower timescale than
individual openings and closings, apparently the notion was developed when it became clear that
classes of bursts showed similar typical characteristics such as intraburst open probability and
the average open time within a burst. In addition to different bursts we will also denote quiescent
periods as a mode. Until today, neither burst nor modes have clear general definitions. Authors
usually decide ad hoc which patterns observed in a data set are denoted bursts (for example,
based upon a certain number of observed subsequent openings). Another possibility is to rely on
a representation of the data set by a model and define bursts as sojourns in a subset of the model
states [10].

One aim of the study presented here is to provide a statistical method that allows to identify
instantaneous changes of open probability in single-channel data sets. By identifying the locations
where the channel activity seems to switch to a different level of activity we take the most
general point of view on modal gating—we divide data sets in segments that are characterised by
significantly different open probabilities. This allows us to define mode changes in a relatively
objective way—instead of requiring that observing a certain sequence of events constitutes a
burst, we represent all relevant assumptions by specifying priors and likelihood of a Bayesian
statistical model. Thus, for a given data set our method produces a segmentation where each
segment is characterised by its open probability. The sequence of inferred open probabilities
clearly shows if the channel indeed alternates between different levels of activity. If indeed
clear levels of open probabilities can be identified it seems justified to say that the associated
segments are representative for a particular mode. Therefore we define a mode as a recurring
level of activity and we say that a data segment is representative for a mode if the average
open probability within the segment is significantly different than the average open probability of
adjacent segments. All quantities that are inferred by this method—the number of changepoints
for a given data set, their locations, and the open probabilities within segments—are given as
probability distributions. Thus, for each segment we know how uncertain the location of its
boundaries are and we can therefore answer clearly in which mode the channel is at the resolution
of individual data points.

Mode changes have been observed in many ion channels, the earliest example is perhaps from
a classical study of the BK channel [39, 40], later continued by McManus and Magleby [41] and
Rothberg et al. [55]. But modal gating was also found in other Kt channels [7,8,9,12, 16, 62, 67],
C1~ channels [4, 6], Na*t channels [34], various Ca2t channels [14, 15, 35, 38, 68], NMDA [47, 48],
nicotinic receptors [1, 43, 45], and the RyR [19, 54, 69, 70]. In inositol-trisphosphate receptors
(IP3R), modes have been discovered only relatively recently: Ionescu et al. [36] found three levels
of activity—high, intermediate and low—in a data set collected from type I IP3R. Each mode
is associated with a characteristic average open probability Pp which was found to be close to
zero (low), approximately 30 % (intermediate) and approximately 70 % (high activity). This result
is particularly interesting because the algorithm for segmenting a data set into modes presented
by Ionescu et al. [36] (like the algorithm presented here) makes no explicit assumption on the
average open probability within a mode. The fact that all three modes can be observed over a
wide range of ligand concentration led to the hypothesis that the IP3R is primarily regulated by
modal gating: To adjust its behaviour, the IP3R has to switch between three ligand-independent
modes—regulation to an average activity level appropriate for a given ligand concentration is
thus achieved by adjusting the time spent in each of the three modes.

A second goal of this study is to apply our method for analysis of modal gating to the
IP3R data set by Wagner and Yule [66]. We analyse data from type I and type II IP3R at high
inositol-trisphosphate (IP3) and adenosine-trisphosphate (ATP) and several concentrations of
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calcium which allows us to investigate the calcium dependency of modal gating. We apply a—
to our knowledge—new statistical method for detecting mode changes in single-channel data
sets. Previously used approaches are often based on calculating averages of statistical indicators
of channel activity within a “window” of a certain number of data points. One problem with
moving averages is that—depending on the window size—instantaneous jumps are transformed
to gradual transitions so that changepoints cannot be localised very accurately. Also due to
averaging we implicitly define the minimum distance between changepoints as the window size.
Robustness of the results can be improved by varying the window size but it is not clear how to do
this optimally. The algorithm by Ionescu et al. [36] localises changepoints at specific data points
which is an improvement over methods based upon moving averages. Instead of estimating open
probabilities in the neighbourhood of a data point, Ionescu et al. [36] distinguish activity levels
based upon the length of bursts. The first step is a burst analysis [39]—short closings that are
assumed too fast to arise due to ligand bindings are removed from the experimental trace. After
burst analysis, the trace is assumed to consists of “bursts” and “burst-terminating gaps”. Mode
changes are determined in a second step by determining if burst length ¢; or length of burst-
terminating gaps t4 cross previously-defined thresholds 7} and Ty from above or below. This
step assigns each mode change to a specific point in time so that a segmentation of the trace based
upon different characteristic burst durations is obtained. In a third step, segments are classified
by the length of bursts ¢, and burst-terminating gaps ¢4 relative to the thresholds. Long bursts
interspersed with short burst-terminating gaps (t, > Ty, ty < Ty) are regarded as characteristic for
high channel activity whereas short bursts alternating with long burst-terminating gaps (¢, < Tp,
ty > Tg) suggest that the channel is in a mode of low activity. If bursts and burst-terminating gaps
were both short (¢, < Ty, tg < Ty), channel activity was considered intermediate. Segments where
both thresholds were exceeded were only rarely observed—here, Ionescu et al. [36] assumed that
the channel was undergoing a transition from the highly active mode to the inactive mode or vice
versa. Following this procedure, Ionescu et al. [36] are indeed able to localise mode switching at a
data point. However, the locations of changepoints are determined by a set of heuristic rules that
have been carefully tested by Ionescu et al. [36] but ultimately it remains nevertheless unclear
on which basis a changepoint is placed at a specific data point and what the uncertainty of this
location is. Also, this method seems to assume implicitly three different modes of channel activity
defined by the durations ¢; and ¢4 relative to their thresholds T} and Tj.

Changepoint problems, in particular for standard distributions such as binomial distributions
have been studied statistically for a long time: The first references describing inference of a single
change point seem to be Hinkley [28] and Hinkley and Hinkley [29]. A Bayesian approach for
inferring a single changepoint as well as the parameters of binomially-distributed probabilities
was published by Smith [63]. It is straight-forward to generalise these studies to an arbitrary but
fixed number of changepoints. But because we have no a priori information on the number of
changepoints in a trace it is additionally assumed that the exact number k& of changepoints is
unknown. In Sections 2 and 3 we develop a Bayesian framework for the inference of the number
of changepoints k, a vector j of changepoint locations, and a vector p of open probabilities for the
segments defined by j.

The main difficulty of this model is that (since the number of changepoints k is variable) the
dimension of the probability space changes. An important tool for dealing with this problem
is reversible jump Markov chain Monte Carlo (RIMCMC) developed by Green [26]. In this
paper the author proposed a RIMCMC sampler for an unknown number of changepoints in a
Poisson process. We adapt this method for the similar Bernoulli process; the moves of the MCMC
sampler are described in Appendix A. An alternative approach to using MCMC for changepoint
problems is direct sampling from the posterior distribution using the algorithm by Fearnhead
[18]. Although it is, in principle, easier to implement this approach, we were unsuccessful in
achieving sufficient efficiency for handling long single-channel data sets with usually more than
a million of data points.
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In Section 4 we apply the MCMC sampler to IP3R data. Mostly, the observations made in
previously published studies by Ionescu et al. [36] and Siekmann et al. [60] are confirmed.
However, the more solid statistical basis of the method used here justifies a higher degree of
confidence in the results—as previously mentioned, every quantity that is estimated is associated
with a measure of its uncertainty because it is represented as a probability distribution.

In the discussion (Section 5) we give a general interpretation of the physiological role of
modal gating. Although modal gating seems to be common in a wide range of ion channels,
it is often difficult to find a physiological role for this wide-spread phenomenon. Therefore we
suggest that modal gating may be caused by constraints that are imposed by the underlying
molecular architecture of the channel protein. In this interpretation, each level of activity (mode)
corresponds to a conformation of the channel which is associated with a certain level of activity.
Ligand binding can only influence the relative frequency of the modes that the channel is found
in rather than modulate the short-term kinetics of individual openings and closings, see Ionescu
et al. [36]. Thus, mode switching is necessary so that the channel is able to exhibit intermediate
levels of activity by switching between pre-defined ligand-independent kinetics determined by
the modes. This conceptual model is consistent with what is known about modal gating in the
IP3R and a recent study of a bacterial potassium channel (KscA) that combines electrophysiology
with mutation experiments and modelling gives additional support for this hypothesis.

2. Changepoint analysis of a Bernoulli process

We consider a sequence Y of N data points. It is assumed that channel currents at each data point
have been classified as open or closed. For our data set from the inositol-trisphosphate receptor
we classified currents below half of the average open current I as closed and currents above
this threshold as open. We have found this approach for dealing with noise to be sufficient when
we developed a Markov model for the same data set [60, 61]. In the application considered here,
occasional misclassification of events should be even less important because the modes depend on
the frequency of observed open and closed events rather than their exact sequence. Nevertheless,
itwould be possible to combine the method presented in the following with one of many available
more sophisticated methods for idealising channel currents [3, 13, 20, 21, 33, 64, 65]. Thus—after
appropriate treatment of noise in the channel currents—at each data point y(n), forn=1,..., N
we observe binary events 0 or 1 or, in the case of an ion channel, open (O) or closed (C) events. We
assume that at each position n an open event is observed with probability po (n) and that po (n) is
independent of any observations made previously. We introduce the random variable O(n) that
gives the total number of open observations until index n in the trace Y.

Thus, if an ion channel opens with the same open probability pg for the whole sequence of
data points Y, the probability of Y given the probability py is

P(Y |po) = p§ ™) (1 = po)N 7O 1)

Let us now assume that the open probability py jumps to a different value p; at a
changepoint j;. Then the probability of the data Y is given by

P(Y |po, p1,j1) =y’ (1 — po)“°pi* (1 — p1)“*. (22

where so = O(j1), s1 = O(N) — O(j1) denote the number of open observations or “successes”
observed and ug=j1 — O(j1), u1 =N — 51 — [O(N) — O(j1)] stand for the number of closed
observations or “failures” observed in the two segments (before and after the changepoint j1)
of the data.

For a number of k changepoints we generalise (2.2) to

k
P(Y|p,j,J=k) =[]} (1 —pi)". (2.3)
=0
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Here, p and j are the vectors of average open probabilities and changepoint positions and
the condition J = k£ means that the number of changepoints is assumed to be k. The numbers of
successes s; and failures u; are calculated by

8; =0(jit+1) — O(ji), (24)
u; = jiv1 — Ji — [O(ji+1) — O(i)l, (25)
fori=1,..., N,and we define jo =0 and O(jp) =0 as well as ji11 = N.
Based upon the likelihood given in (2.3) our goal is to infer for a given data set Y the positions

of change points j and the “success” probabilities p. We further assume that the number of
changepoints J is unknown a priori.

3. Bayesian inference of changepoints

Following a Bayesian statistics approach, these inference problems lead to studying the
probability distribution P(p, j, J|Y) which can be rewritten according to Bayes’ theorem

P(p,j; JIY) < P(Y|p, ], J) G.1)

X p(J =k =G =1, -, dk))os=k(P = (Do, - - -, Pk)|, B).

7

Here, ‘oc’ indicates that left and right hand side of equation (3.1) are equal up to a
normalising constant. We also assume that given J, the vector of changepoints j and the vector
of probabilities p are independent and moreover, that under the same condition the p; are
independent. The probability distributions p, 77—, and o j—j are named priors and allow us to
incorporate assumptions on the parameters J, j and p. The subscripted J = k for the prior 7 j_
indicates that this prior is conditional on the number J of changepoints, the prior parameters A,
o and § will be explained below.

Before we state the priors (that are chosen analogously to [18, 26]) we would like to mention
that for given locations of changepoints j the probabilities p can be sampled directly if we choose a
conjugate prior [51]. Choosing a beta prior o (pilai, Bi) = B(ay, B;) for each parameter p; € (0,1)
appearing in the likelihood (2.3) ensures that the marginal posteriors for the p; are also distributed
according to a beta distribution:

P(pilj, J,Y) = B(s; + ai, ui + B;). (3.2)

Thus, for given locations j the probabilities p can be sampled directly from (3.2) which
facilitates the design of a Markov chain Monte Carlo (MCMC) sampler described in detail in
Appendix A. Here we complete the description of our Bayesian statistics model by stating the
priors. These priors are discussed in more detail in Section 5.1 of the Supplementary Information
including possible alternative choices.

(a) Prior for the number .J of changepoints

As Green [26] and Fearnhead [18] we assume that the number J of changepoints is distributed
according to a Poisson distribution with mean .

oY
k!
This prior penalises unrealistically high numbers J of changepoints that are much higher
than A while remaining flexible enough to accomodate larger numbers of changepoints. We
chose A=3 used by Fearnhead [18], Green [25, 26] for a very similar application. As in
these publication we condition on k < kmax, we chose kmax = 1000 (we obtained numbers of
changepoints ranging from 20 to more than 600).

p(J=Ek|X)=e (3.3)
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(b) Prior for the distribution of changepoints

Green [26] proposes an elegant prior that ensures that change points are not located too close to
each other by assuming that the j are distributed according to an even-numbered uniform order
statistics. Thus, we obtain

k
mretli= G, d0) = g [ G == ) (3.4)
1=0

N-1
Ck<2k+1>

is the number of combinations of picking 2k + 1 from N — 1 numbers.

where

(c) Prior for open probabilities

As mentioned above we choose o j— (p|a, ) as a product of beta distributions that are conjugate
to the Bernoulli factors appearing in (2.3):

k
o j=k(Pla, B) = [ [ o' (wilei, B:) 3.5)
i=1
where
i (o +8) ai—1 Bi—1
ey ) — . ) — X AT . 1). X
o (pz‘ahﬁz) B(amﬂz) F(O‘i)F(/Bi)pz (1 pz) ) pz€(07 ) (3.6)
and a = (a1,...,a%), B=(B1,--., ,Bk'). All o, B; must be positive. We chose a; = 5; =1 for
i=1,...,k so that the marginal priors ¢* for each p; reduce to the uniform distribution.

4. Results

(a) Changepoints in single-channel data from type | and type Il IP3R

The RJMCMC sampler described in Appendix A was run on data sets from IP3R at high
concentrations of IP3 and ATP (10 uM IP3, 5 mM ATP). These data are part of a comprehensive
study of type I and type II IP3R under various concentrations of IP3, ATP and calcium, more
details can be found in Wagner and Yule [66]. We ran the algorithm for many iterations ranging
from 107 up to 5 - 108 iterations using the convergence plot for the number k of changepoints for
convergence assessment. Because convergence diagnostics for RIMCMC samplers is not a simple
task we were conservative and for many data sets running the sampler for much less iterations
would probably have been sufficient. Another advantage of running many iterations is that a
good idea of alternative segmentations for different numbers of changepoints can be obtained
instead of only attempting to resolve the “most likely” number of changepoints by sufficiently
many samples.

The probability distribution P(p,j, J|Y) approximated by the RIMCMC sampler answers
several questions at once.

(i) The marginal distribution P(J = k|Y") shows how many changepoints are found in the
data Y.
(ii) The marginal distribution P(j|.J =k, Y") gives the locations of the changepoints under the
condition that there are k changepoints.
(iii) From the marginal distribution P(p|J =k,Y’) we obtain the open probabilities within
each of the k + 1 segments.

H
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In the following we will use these probability distributions for answering the following
questions:

(i) Can we confidently claim that the IPR exhibits mode changes? This question will be
answered by examining subsequent components p; and p;+1 in the vector p for a given
number of changepoints k. If p; and p;4; alternate between clearly different levels, for
example, if p; is “low” then p; 1 is “high”, this is taken as evidence for mode switching.

(i) How many distinct modes can be observed? Does the channel simply switch between
“high” and “low” activity (which are both associated with similar open probabilities)?
Or can one or more levels of intermediate activity be found?

(iii) For a certain number of changepoints k, how sure can we be about their locations? This
question can be answered by the marginal distribution of j.

(iv) Using the distribution of differences between subsequent changepoints A; = j;4+1 — j;
we can determine how much time 7; the channel spends in each of the modes found
previously.

(v) The distribution of the sojourn times 7; indicates how variable sojourns in each of the
modes are.

(vi) Finally, the distribution of the number of changepoints J together with the previous
distributions, clearly indicates how much can be inferred about the changepoints for a
given data set. If the number of changepoints J is spread over a considerable range, and
if the locations j are characterised by large standard deviations and/or multi-modality,
this suggests that for these data, changepoints cannot be analysed very well.

Most of these questions cannot be answered confidently or cannot be answered at all by the
heuristic algorithm described by Ionescu et al. [36] or approaches based upon moving averages
like in Siekmann et al. [60].

(b) Does the IPR exhibit mode changes?

For all calcium concentrations, the open probabilities of subsequent segments alternate between
low and high values. Histograms of the open probabilities show that the channel switches
between one inactive mode characterised by an open probability close to zero and an active mode
with an open probability of approximately 70% (Figure 1).

Interestingly, for 1000nM Ca®", type I IP3R shows some evidence for a third mode at
probabilities between 20-30% which has also been observed by Ionescu et al. [36] who reported a
mode of intermediate activity for their type I IP3R data set (Figure 1a). No intermediate activity
is found for type II IP3R data although in general results for both receptor types are very similar.

(c) How frequently does mode switching occur?

A first result that can be gained at the global level is a relationship of average channel activity and
frequency of mode switching. We choose the average open probability pp as a measure of channel
activity and plot it against the number of mode changes per second (Figure 2). For more detail
on the absolute number of mode changes that were inferred for data sets of different lengths, see
Section 6 in the Supplementary Information.

The number of mode changes were calculated by dividing the total number of changepoints
that were inferred for a data set by the number of data points—this yields the number of
changepoints per data point. The number of changepoints per second was then calculated by
dividing by the sampling interval 7 = 0.05 ms. The plot shows that at a high level of activity there
are relatively few mode changes—the channel spends most of the time in the highly active mode
whereas the inactive mode is essentially suppressed. In contrast, for lower open probabilities po
the number of mode changes per second increases up to a factor of four. This shows that even at
low open probabilities the highly active mode is visited for very short intervals which indicates
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Figure 1: Histogram of the mean values of the probabilities p at 1000 nM Ca?™ for type I IP3R
and type II IP3R (10 uM IP3, 5 mM ATP). The distributions are clearly bi-modal with peaks at
open probabilities of about zero and 70%. Also for other concentrations the distribution is clearly
bi-modal. This indicates that the IP3R switches between two modes characterised by low open
probability of nearly 0% and high open probability of 70%. Only for type I IP3R and only at the
calcium concentration shown here, there is some evidence for an intermediate level of activity of

20-30%.
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Figure 2: Average open probabilities po for observed numbers of mode changes per second.

that it is harder to switch off the active mode than the inactive mode. The relationship between
mode changes per second and level of activity is very similar for type I and type II IP3R.
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(d) How uncertain are the locations of changepoints?

For a number k of changepoints the probability distribution P(j|J =k, Y") allows us to explore
where these changepoints are located. If the number of changepoints per second is low, the
positions of the changepoints are usually well-fixed (Figure 3).

20 08 jgs 1=62977.8, 6=0.562
10 ’ 700000 — .
1 07 —
600000 |
0 0.6
Z -10 500000 [
z 0.5 _
2 20 04 Py 2 400000
2 ° g e
3 -30 03 £ 300000
-40 0.2 200000 |
50 101 100000 |
I el .
60 ; ol o 1 L
3000 3100 3200 3300 3400 3500 3600 3700 3800 62976 62977 62978 62979 62980 62981 62982 62983
time [ms] data points
(a) Segmentation, 1000 nM Ca®™ (b) Left-most changepoint from (a)

Figure 3: (a) Part of a segmentation of a single-channel data set. Channel currents are plotted in
red. The changepoint locations are indicated by blue asterisks “*’, their level corresponds to the
open probability in the segment following the changepoint. Bars indicating standard deviations
of the inferred changepoint locations (horizontal direction) and for the open probabilities (vertical
direction) are provided but they are too small to be seen. (b) Probability distribution of the
first changepoint js of the segmentation shown in (a). The changepoint approximately lies at
data point 62,978. For a sampling interval 7 =0.05ms this is consistent with a time point of
roughly 3,150 ms, cf. (a). (For reference to colour, refer to the online version of this article).

As the density of changepoints increases, the distribution of changepoint locations becomes
multi-modal. This indicates that two or more alternative configurations of changepoints are
consistent with the observed data, or, in other words that for a given number of changepoints,
different segmentations of the trace in active and inactive segments are possible.

An example is shown in Figure 4. The changepoint jo; either marks the end of a short segment
of only 60 data points (Figure 4b) or is located at the end of a long segment of about 8,700 data
points. Depending on the two alternative locations, the open probability within the segment
between ja0 and jo1 is either approximately 20% or only 0.2%. There is overwhelming support
for the second location of j2;—only in 300 samples, the short segment with pag ~ 20% is obtained
whereas in more than 2 millions of the samples the long segment with pag =~ 0.2% appeared.

Although there is little support for inserting a short segment of intermediate open probability,
the bimodal distribution of a changepoint introduces bimodality also in the distributions of
subsequent changepoint locations and open probabilities. In the example shown in Figure 4,
placing changepoint ja1 close to joo (Figure 4b) inserts a segment with an open probability of
p20 ~ 20% followed by a segment with a low open probability pa1 close to zero. In contrast, if j21
is located further apart (Figure 4d), the subsequent segment has a high open probability p2; which
means that the distribution P(p21|J = k,Y") is bimodal. Fortunately, it is easy to separate the two
modes of P(p21|J = k,Y) because the open probabilities are concentrated at values close to zero
or close to 70%. This allows us to select the samples that are representative for a long segment
between ja¢ and jo1 by thresholding. Selecting a specific configuration of changepoints enables
us to study sojourn times in the inactive and the active mode.
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Figure 4: Alternative configurations of changepoints are caused by short visit to an intermediate
level of activity. (a) Histogram for the open probability inferred for a short segment between jo¢
and j21. (b) Histogram of the segment length for the segment between jog and j2;. Both
histograms are supported only by a small number of samples. (c) and (d) show open probability
and segment length for the alternative position jo; which results in a long segment with low open
probability. This configuration has overwhelming support over the alternative shown in (a), (b).

(e) What is the distribution of sojourn times in modes?

In the preceding sections we have presented evidence that the IP3R switches between two modes
which we have previously named [60], in analogy to gears of the automatic transmission of cars
the inactive “park” mode and the highly active “drive” mode. We now investigate the distribution
of sojourn times in these two modes. For this purpose we calculate the distributions of differences
of subsequent changepoints A; = j;41 — j; (see Figures 4b, 4d for examples). If p; is close to zero,
A; is considered as the sojourn within the inactive mode and denoted Af ark, whereas, if p; is high.
i.e. approximately 70%, A; is the sojourn in the highly active mode and denoted Afrive. Because
data points are separated by the sampling interval 7 = 0.05 ms, the sojourn times can simply be

park _ ,park
= Az’

calculated by 7; drive _ A?rive

Tand 77" = 7. Sojourn time histograms are constructed from

_park _dri
the mean values 7/ and 781ive,

The results are shown in Figures 5 and 6. Sojourn times in both modes varied over a
wide range so that a logarithmically-spaced histogram was used. Moreover, histograms over a
logarithmic time scale give a representation that is especially suitable if sojourn time distributions
are mixtures of exponential distributions. Logarithmically-spaced histograms of mixtures of
exponential distributions have local maxima at the time constants of the exponentials, see Keener
and Sneyd [37] for an illustrative explanation. It is usually assumed that open and closed time
distributions of ion channels are distributed according to a mixture of exponentials.
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For the results presented here it is unclear if also the distribution of sojourn times in active
and inactive mode are consistent with a mixture of exponentials. Although on visual inspection it
seems that the histograms could arise from one or a mix of a few exponential components, actual
fits to mixtures of exponentials are unsatisfactory (results not shown). However, even data sets
with many mode changes only provide us with at most a few hundred sojourn times in each
mode so that it seems unjustified to dismiss an exponential mixture distribution on this basis.

It is important to note here that, to the best of our knowledge, none of the existing approaches
for the analysis of modal gating is capable of reliably calculating sojourn distributions in different
modes. Estimating the positions of mode changes by moving average is inevitably imprecise
because instantaneous jumps from one level activity to another are transformed to gradual
transitions. In contrast, the algorithm by Ionescu et al. [36] gives changepoint locations at the
resolution of single data points. But due to the heuristic nature of this method it is impossible to
assess the uncertainty of the inferred changepoint locations.

5. Discussion

The statistical analysis of modal gating presented here, shows that the IP3R switches between two
levels of activity that preserve similar characteristics across a wide range of ligand concentrations.
The results indicate that the IP3R is limited to two extreme types of kinetics, thus, in analogy
with the automatic transmission in a car we refer to the switching between these different
levels of activity as “park-drive gating”—the inactive mode is characterised by a low average

open probability p%ark ~ 0% whereas the average probability of the active mode is p%rive ~ 70%.
Intermediate levels of activity can only be produced by “mixing” park and drive mode in a
suitable way. This idea was introduced by Ionescu et al. [36] who proposed modal gating as the
principal regulatory mechanism of the IP3R. If this is indeed the case more generally—and as
mentioned previously, many ion channels seem to exhibit modal gating—this strongly suggests
that modelling of single-channel data which is currently mainly based on Markov models of
the fast time scale of individual openings and closings should be complemented by a thorough
analysis of modal gating as proposed in this paper.

It is tempting to interpret the fact that the IP3R exhibits the same two modes for a wide range
of experimental conditions as the effect of biophysical constraints. These constraints could arise
at the structural level of the channel protein by two different conformations that exhibit the
inactive or the active gating kinetics observed in the data. This idea was raised, for example,
by Naranjo and Brehm [45] in a study of modal gating in the acethylcholine receptor. Such an
interpretation would have important implications for the understanding of the regulation of ion
channels. If modal gating is caused by switching between different conformations this implies
that different ligand concentrations primarily influence how long the channel stays in each of
the available conformations rather than modulate the short-term channel kinetics. Instead the
short-term kinetics is completely determined by the conformation that the channel is in.

Further support for this hypothesis comes from a recent study of a bacterial potassium
channel (KscA). Starting from an extensive electrophysiological study of KscA [8, 9] which
exhibits four different modes (three different types of bursts and very long quiescent periods),
Chakrapani et al. [7] then combined mutation studies, comparison of crystal structures of these
mutants and molecular dynamics simulation for investigating the molecular basis of the different
burst modes. Similar to the studies of IP3R, the authors found that ligand binding (protons in the
case of KscA) modulated the duration and frequency rather than changing the characteristics of
the modes themselves.

Interestingly, substituting one particular site of the wild-type KscA channel protein in most
cases abolishes the long quiescent periods and (depending on the substitution) stabilises one of
the burst modes observed in the wild-type. Crystallographic studies and molecular dynamics
modelling reveal that ion profile and water occupancy around the selectivity filter of the channel
are changed and simulations indicate that mutations lead to stabilisation of one of a few
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Figure 5: Sojourn time in park mode for type I and Type Il IP3R for various calcium concentrations.

alternative conformational states found in the wild-type. The authors conclude that each of
the alternative conformational states is associated with the particular gating behaviour that is
characteristic for the three types of bursts. In the wild-type, the channel switches between these
conformations and shows three types of bursting behaviour as well as long quiescent periods.
Thus (under the assumption that also in the IP3R conformational changes are exhibited at the
kinetic level by modal gating) we come to the conclusion that the IP3R responds to changes in
ligand concentrations by adjusting the time the channel spends in the conformation associated
with the park mode relative to the drive mode. In contrast, changes of ligand concentrations have
little influence on the modulation of the short-term kinetics of openings and closings. This idea
has been realised in a model by Siekmann et al. [60] that represented modal gating of the IP3R by
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two ligand-independent models that were connected by ligand-dependent transition rates.
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Figure 6: Sojourn time in drive mode for type I and type II IP3R for various calcium
concentrations.

The underlying construction principle of the conceptual model described here is opposite to
the classical Monod-Wyman-Changeux (MWC) model [44]. Monod et al. [44] proposed a model
structure where two alternative conformational states of an enzyme are modulated by ligand
binding. Different affinities of the two conformations for a substrate increases the rate of binding
for higher substrate concentration—an effect that is known as positive cooperativity. In this
way the MWC model provides an explanation of positive cooperativity due to the asymmetric
behaviour of two alternative conformations of a protein. It is important to note that transitions
between the two alternative conformational states are independent of substrate concentrations.
The MWC model is a popular structure for ion channel models, for example, an increasingly
detailed model of the BK channel developed by Rothberg and Magleby [56, 57, 58].
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The differences between our proposed model for modal gating in ion channels (ligand-
independent modes whose transitions are regulated by ligand binding) and the classical MWC
model for allosteric kinetics of enzymes (ligand-independent conformational changes whose
behaviour is modulated by ligand binding) arise because of their different scopes. While the
MWC model aims to explain how the rate of binding substrate is increased after binding the
first substrate molecule, our model demonstrates how mode switching could originate from
conformational changes. We make no assumption about the chemical details of ligand binding
that may shape the ligand-dependency of mode switching. Indeed, we believe that this is a
challenging question for future work which possibly may not be answered from single-channel
data alone. Because mode changes are by definition observed on a slow time scale, even in data
recorded over a long time only relatively few events are observed. This makes it hard to describe
modal sojourn time distributions that span several orders of magnitude by a state-based model
which describes ligand binding by mass action kinetics.

A. Reversible jump MCMC (RJMCMC) sampling of changepoints

In the following we will describe the moves of a Metropolis-Hastings sampler [27, 42] for
sampling from the posterior distribution given P(p,j,J) in (3.1). Which move is chosen is
determined by a mixing distribution. In a first step, it was decided with a probability pehanges =
0.5 if the proposal shall alter the number of changepoints, i.e. if the birth or the death move is
chosen. Similarly, provided that an alteration of the number of changepoints J is proposed, the
birth move is carried out with a probability of ppi.y, = 0.5 unless death is not possible (J = 0) or
J = kmax so that the birth move would increase the number of changepoints above kmax. Between
shift and step move the smaller step move was chosen with pstep = 0.9 because it was found that
the sampler usually converged quickly towards a certain configuration of changepoints for which
shift moves usually were not accepted because they propose too large steps.

(a) Shift move

For a given number J = k of changepoints we simply need to propose j’ from the current locations
of changepoints j. As mentioned above the proposal p’ can be (according to (3.2)) generated by
direct sampling. By doing a shift move we simply choose one of the changepoints j;, i =1,..., k,
and place it at a different location ji somewhere in {j; 1 +1,...,5;41 — 1}. Thus, a proposal is
generated in the following steps:

(i) Decide which j; will be shifted by drawing ¢ from the uniform distribution U(1, k).
(ii) Draw a new position j; from U(j;—1 + 1,...,ji+1 — 1).
(iii) Proposals p;_;, p; are generated by sampling from beta distributions:
P i—1sPi g y ping

p{,nNB(S{,n+Oém7u;n+/3m), m:Z_lvl

where s}, and u},, are the successes and failures calculated for the proposed changepoint
position j; and aum = Bm = 1 as stated in Section 3(c).

After a proposal (ji,p;_1,p;) has been generated we have to decide if it is accepted as a
sample from the posterior. For this purpose the acceptance ratio v{(j’,p’), (j,p)} has to be
calculated. Because the number of changepoints remains the same the priors for the number of
changepoints p cancel out. The prior ratio for the location of changepoints is greatly simplified
because only one location j; is moved:

i . . -/

; =1 G —ji—1

Tskfil?tr =izl x T : (A1)
Ji—Ji-1—1 Jiy1—Ji—1

Analogously, also in the likelihood ratio many terms cancel out:
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As usual for Metropolis-Hastings algorithms, the proposal is accepted with probability

a=min{l,r}

where rgpise = rfﬁil?tr . r;“hiﬂ is calculated from (A 1) and (A 2).

(b) Step move

The shift move may sometimes propose too large changes of a changepoint j; that are unlikely
to be accepted. Therefore, we add the step move, a symmetric uniform random walk with a step
size d of a few data points (we usually used 5 data points in each direction), i.e. we draw a new
position j; from U (j; — d, j; + d). Otherwise we proceed as in (a), i.e. we sample new probabilities
pm as described above and accept the proposal according to (A 1) and (A 2).

(c) Birth move

The birth move adds one changepoint, so in the proposal the number J' of changepoints
is increased from k to k + 1. Cases where the dimensionality of the parameter sets changes
must be treated with caution—this is the reason why reversible jump MCMC was originally
developed. In particular, the acceptance ratio for a birth move depends on a corresponding death
move. Therefore, derivation of the acceptance ratio for birth and death move is postponed until
Section (e).

The birth move consists of two steps, first we randomly choose an existing changepoint j;
before which the new changepoint j; is inserted. Then we sample a position j; within
{ji=1,...,Ji} analogously to the shift move described previously.

(i) Draw ¢ from the uniform distribution U (1, k + 1).
(ii) Sample j; as in the shift move (if i = k + 1, sample j;, ; between jj, and jj, 1 = N).
(iii) Sample proposals p}_, p} as in the shift move.

(d) Death move

The death move removes a randomly chosen changepoint.

(i) Sample ¢ from the uniform distribution U(1, k).
(i) In j’, remove jj.
(iii) In p/, replace probabilities p;_; and p; by p; which is sampled from B(s;—1 + sj4+1 +
1, U1+ + Bi1)-

(e) Acceptance ratio for birth & and death move

We derive ry; as first explained in Green [26] by considering a birth move and the corresponding
death move that reverses adding the point j;. For a readable introduction to reversible jump
MCMCM (RIMCMC), see Geyer [22] and Fan and Sisson [17].
First we consider the prior ratio
Jprior _ plk+1) 7=k (')
birth = (k) Tr=k(ld)

Similarly to the shift move many terms cancel out. We only need to consider the ratio

(A3)
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(ph1)* [0 = ph "1 (o) 1 — ]
P [l —pil .
The last component that we need to consider is the proposal ratio between birth and death
move. This accounts for the fact that when adding a new changepoint, its position jZ'- is sampled
from a uniform distribution U(j;—1 + 1,; — 1) (thus j; is sampled with probability 1/(j; —
ji—1 — 2)) whereas we obviously have no choice of the position if we decide to remove j; again
(i-e. here the position is j. with probability 1). This is accounted for by the proposal ratio

L
Thirth = (A4)

Tp'roposal _ 1/(4s — ji—1 —2) - '1 . (A5)
birth 1 (Ji — i1 — 2)
The acceptance ratio for the birth move is calculated by i, = rglrrltc’; . TIISirth . rgirrc:ﬁosal. The

ratio rqeqtn is found by considering a death move which is “balanced” by the corresponding birth
move.
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