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Abstract 

Recently, transition metal compounds (TMCs) have been employed as 

high-performance electrode materials for lithium ion batteries (LIBs) and 

supercapacitors (SCs) owing to their high specific capacities, high electrical 

conductivity, and high chemical and thermal stability. While the characterization of 

electrochemical properties of TMC anodes is well developed, new challenges arise in 

understanding the structure-property relationships. Transmission electron microscopy 

(TEM) is a powerful tool for studying microstructural characteristics. With TEM and 

related techniques, fundamental understanding of how the microstructures affect the 

properties of the TMC nanostructured anodes can be improved. In this article, the 

application of TEM in characterization of some typical TMC anode materials 

optimized through structural engineering, elemental doping, surface modification, 

defect-control engineering, morphological control, etc. is reviewed. Emphasis is given 

on analyzing the microstructures, including surface structures, various defects, local 
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chemical compositions and valence states of transition metals, aimed at illustrating a 

structure-property relationship. The contribution and future development of the TEM 

techniques to elucidation of the electrochemical properties of the TMC anodes are 

highlighted. 

1.  Introduction 

The rapid growth of global population and economy urgently requires alternative 

and sustainable sources of energy. As the electrical energy can be converted from 

various forms of energies such as solar energy, wind, tidal and geothermal energy, etc, 

the ability to store electrical energy in a high-efficiency way is the treasure sought by 

scientists and engineers in the hope of meeting the desires of green power source and 

sustainable development in the realm of new energies [1, 2]. Lithium-ion batteries 

(LIBs) and supercapacitors (SCs) are two major electrical energy storage devices [3] 

that will meet the future demand. LIBs have a leading role in energy storage device 

for a variety of applications such as portable electronic equipment, electric vehicles, 

aircrafts and smart electrical grids as well as new energy storage infrastructures, 

because of their high operational voltage, high-energy density and long cycle life as 

compared to lead-acid, Ni-Cd and Ni-MH batteries. In spite of the great success in the 

past two decades, the development of LIBs has reached to a bottleneck recently [4]. 

SCs, also known as electrochemical capacitors, can provide a bridging function 

connecting conventional capacitors and rechargeable batteries. SCs can be classified 

as electric double layer capacitors (EDLC) and pseudocapacitors [5]. EDLCs store 

charges through absorption/desorption of ions to form electric double layers, while 

pseudocapacitors involving Faradaic redox reactions exhibit a much higher energy 

density [6-8]. 

To fulfill the future requirements, energy storage devices with high power, high 

energy density, and long cycling stability are highly valued. Electrode materials are 

the fundamental key components for energy storage devices that largely determine the 
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electrochemical performance of energy storage devices [9]. In general, electrode 

materials can be classified into three categories including carbon-based materials, 

metal compounds and conducting polymers. Recently, on the other hand, transition 

metal compounds (TMCs) have attracted great interest as they can offer a multitude of 

electrochemical device opportunities in LIBs and SCs, because of higher theoretical 

capacity, safety, sustainability, environmental benignity in operation and relatively 

high electronic conductivity as well as potentially low cost [10, 11]. Most of the 

developed TMCs such as metal oxides/hydroxides, metal nitrides, and metal sulfides 

are often used as anode materials in LIBs and SCs.  

The properties of anode materials are largely related to their chemical 

composition, crystallographic structure, surface characteristics, structural defects, 

electronic structures as well as to a delicate interplay among these factors [12]. With 

respect to improving the electrochemical performance of TMC anodes, 

nanostructuring, surface engineering, introducing defects and constructing hybrid 

structures are the major effective strategies. These structural modifications often 

provide a large surface area, unique surface and interface structures, more 

electroactive sites, good electron transport kinetics, hierarchical porous channels and 

short ionic diffusion distances, resulting in both fast kinetics and high 

charge/discharge capacities [13]. In this regard, elucidating the detailed microstructure 

of TMC anodes can help us to explore the structural-property relationships, clarify the 

mechanisms of the enhancement of the electrochemical properties, and thus facilitate 

structural optimization of the energy materials oriented for different applications. 

TEM is a powerful tool for directly imaging the microstructural characteristics of 

nanostructured materials. In general, conventional TEM techniques, including 

bright-field (BF) and dark-field (DF) imaging, select area electron diffraction (SAED), 

high resolution TEM (HRTEM) and energy dispersive X-ray spectroscopy (EDS), 

provide information of particle size and morphology, crystal structure, as well as local 

chemical composition. Over the past ten years, TEM has evolved into a full analytical 

tool with a sub-angstrom resolution, which allows direct visualization of atomic 

columns. For example, atomic arrangements in the structural defect sites can be well 
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resolved using aberration corrected scanning TEM (STEM) or HRTEM. In addition, 

when coupled with electron energy loss spectroscopy (EELS) and/or EDS, TEM 

provides the opportunities to obtain electronic structure and elemental distribution 

information at atomic scale [14]. Nowadays, the state-of-the-art TEM achieves a 

resolution of about 50 pm and is still extending its functions, which brings new 

imaging possibilities.  

To date, many transition metal oxides and nitrides have been employed as 

high-performance electrode materials for LIBs and SCs because of their capability of 

storing lithium through a conversion mechanism. With the help of advanced TEM 

techniques, the origin of the properties of these anode materials encoded in their 

microstructures can be elucidated. Several review articles covering such subjects have 

been published [9, 15-19]. To illustrate a property-structure relationship, the 

importance of obtaining high resolution images and spectra is obvious. Nevertheless, 

it is equally important to correctly extract and interpret the information coded in the 

image and spectrum data. Hence, the purpose of this review will be on analyzing the 

structural features of a few selected TMC anode materials and understanding their 

structure-related electrochemical performances. First we will introduce the recent 

progress of TEM characterization methodologies and their capabilities on 

investigating electrode materials. Then, the application of different TEM approaches 

toward the TMC anode materials optimized by various strategies will be described. 

The main focus will be paid on the structural characteristics including morphologies, 

surface characteristics, interface structures, crystal defects, chemical composition and 

electronic structures, which may affect their properties. We hope that our review can 

provide a fundamental understanding of the structural characteristics of TMC anodes 

and their electrochemical response, and thus offering a guideline for possible future 

optimization of their properties.  
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2.  Methodology 

2.1 HRTEM 

TEM imaging utilizes the information contained in the electron waves exiting 

from the sample to form an image. In general, by interacting with a specimen, both 

the amplitude and phase of the incident electrons can be modulated. The modulated 

electrons carrying with their amplitudes and phases are translated into image contrast 

by the image formation system [20]. Amplitude contrast results from the amplitude 

modulation caused by variations in mass-thickness or interference within a crystal 

[21]. Phase contrast stems from the interaction of the incident electrons with a phase 

object that introduced a small phase shift to the electron exit-wave. The interference 

of the electron waves different in phase contributes to the formation of phase contrast 

image [22]. HRTEM imaging is mainly based on phase contrast, which is sensitive to 

the atom distribution in the specimen and allows crystal structural imaging at an 

atomic resolution. To obtain 2D HRTEM images, one often needs to tilt the sample to 

an on-axis orientation so that the incident beam coincide with a crystallographic axis, 

enabling the diffraction of various crystal planes and interference between transmitted 

beam and diffracted beams. Meanwhile, a corresponding diffraction pattern encoding 

diffracted amplitudes can be obtained [23-25]. The phase preserved in HRTEM 

images can be combined with the amplitude contained in electron diffraction patterns 

to discover the atomic structural features [26], although, in comparison with X-ray 

and neutron diffraction methods, the atomic positions in crystals determined by 

HRTEM are not so accurate. On the other hand, due to a strong interaction between a 

high energy electron beam and a solid specimen, atomic scattering amplitudes for 

electrons are about 104 to105 times as large as they are for X-ray and neutrons. Only 

very small amount of sample are needed to yield meaningful HRTEM images and 

selected area electron diffraction (SAED) patterns. Consequently, nanocrystallites and 

local structures at sub-nanometer scale in particles, e.g. individual defects, can be 
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imaged. 

With regard to the investigation of energy material, HRTEM can provide 

valuable information about the internal structure of the electrode materials such as 

crystallographic orientations, defects, surface and interface structures, which are 

closely related to the crystal growth mechanisms and the possible process of 

electrochemical reactions. For example, Shao-Horn et al. [27] reported the 

visualization of atomic columns in LiCoO2 electrode using focal series HRTEM 

images, which can be applied in determining the ordering of lithium and vacancies in 

transition metal oxides. Liu et al. [28] revealed the dynamic lithiation process at the 

surface of single crystal silicon with atomic resolution. Recently, it has been shown 

that the cation and oxygen deficiency in transitional metal oxides, such as manganese 

oxides, titanium oxides, vanadium oxides, iron oxides and tin oxides, can be 

confirmed by using HRTEM [29-34]. However, it should be noted that one may run 

the risk of error in correlating HRTEM image to the atomic structures of specimens, 

since the contrast in HRTEM images changes dramatically with specimen thickness 

and defocus, owing to the so-called multiple scattering effect, and is also strongly 

dependent on the resolution of the microscopy [35, 36]. 

 

2.2 HRSTEM 

Using a finely focused electron probe to scan across a defined region of specimen, 

signals in STEM imaging are generated by the elastic scattering between the incident 

electron beam and the sample. The electron scattering angles vary according to the 

sample characteristics such as structure, atomic number and composition. By adapting 

the suitable camera length and convergence angle, the rim of the scattered electrons 

can reach to specific annular detectors [37]. In this way, elements with different 

atomic numbers contained in the sample can be distinguished by detecting the 

intensity of scattered electrons hitting the annular detector. Therefore, STEM imaging 

can provide directly interpretable incoherent contrast reflecting atomic numbers, 
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which is contrary to HRTEM imaging that the contrast is sensitive to both of the 

defocus value of imaging forming lens and of the sample thickness. The annular 

detectors can be cataloged according to their collection angles. Annular dark field 

(ADF) detector, positioned around the central bright field detector, is used to gather 

electrons scattered at angles in the range of 10-50 mrad, aiming at detecting heavy 

elements. HAADF-STEM imaging is based on large angle Rutherford scattering 

(larger than 50–60 mrad) [38, 39] of fast electrons. The intensity of the projected 

image is approximately proportional to the square of the atomic number of the 

element contained in the sample, known as Z-contrast imaging [40]. Areas with high 

intensity in a HAADF-STEM projection of a nanocrystal represent a region with a 

higher average atomic number [41]. As a result, the HAADF technique is most 

sensitive to heavy elements, and relative chemical information can also be obtained 

from HAADF-STEM images. However, both ADF and HAADF STEM imaging 

exclude the electrons scattered by light elements [39]. Recently, the newly developed 

annular bright field (ABF) detector that positioned within the illumination cone of 

focused electron beam permits direct visualization of light elements such as oxygen 

and nitrogen atomic columns as well as heavy atoms at the same time [42, 43]. 

Coupling with different annular detectors, STEM imaging plays a crucial role in the 

study of crystal and crystal defects, as well as the imaging of individual atoms. For 

example, atomic columns of heavy elemental dopants and light elemental atoms, such 

as In-doped ZnO [44], N-doped graphene [45], Eu, Si co-doped AlN [46], etc., can be 

well resolved using STEM mode. Applications of HRSTEM on energy materials over 

the past decade have mainly involved visualization of atom sites in cathode materials, 

e.g. LiCoO2 [47], LiMn2O4 [48] and LiFePO4 [49, 50]. Furthermore, recent reports on 

anode materials including Li4Ti5O12 [51], FeF2 [52] and SnO [53] have demonstrated 

that STEM imaging can reveal electrochemical lithium storage mechanisms in atomic 

scale.  
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2.3 EDS and EELS 

Apart from basic imaging techniques, other element-specific techniques, such as 

EDS, electron energy loss spectrum (EELS) and energy filtered TEM (EFTEM) are 

also powerful tools for clarifying the chemical structure, chemical bonding and 

valence state as well as chemical environment of the TMC anode materials. Both EDS 

and EELS are based on the inelastic scattering of fast electrons with atoms in a 

material [54]. During the scattering process, a fast electron transfers energy ∆E to 

excite an electron to an unoccupied state. The lost energy ∆E of the fast electron can 

be determined through an EELS spectrometer and then be used to generate EFTEM 

images. After exciting the inner shell electrons, the outer shell electrons are de-excited 

by emitting characteristic (X-ray) photons, which can be detected by an EDS detector. 

Consequently, using EELS spectrometer and EDS detector, the energy loss electrons 

and X-rays yielded by the interaction between electron beam and the probed species 

enable qualitative and quantitative element analysis [55].  

EDS is often combined with STEM that acquires signals one at a time, which 

allows line profiles or elemental mapping from a specific line or a region of interest in 

the specimen. This technique is particularly suitable for heavy elements with high 

fluorescence yield [56]. With the development of aberration corrected STEM that 

improves the spatial resolution and sensitivity in STEM techniques to sub-Ångstrom 

scale , it has been demonstrated that chemical imaging at atomic scale can be obtained 

[57-61].  

EFTEM permits analysis of a wider range of elemental distribution, in particular 

for light elements because the elemental maps obtained by selecting core-loss 

ionization edges at specific energies provide higher geometrical signal collection 

efficiency, better chemical sensitivity and energy resolution as compared to EDS [62]. 

Spatial resolution of better than 1 nm and detection limit of less than a monolayer of 

elements are readily attainable in EFTEM [63, 64]. In order to give quantitative 

images of the distribution of a specific element in EFTEM, the background generated 

by plural-scattering should be calculated and then subtracted to leave the edge 
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intensity. Such background removal procedure is more complicated in comparison 

with the intense peaks and low background level in EDS.  

EELS can be utilized to obtain information on the composition, valence state, 

chemical bonding information and electronic structures of solid state materials [65]. 

When combined with STEM, site-specific measurements of local compositions and 

electronic structure can be obtained by EELS. Spatial resolution down to single atom 

scale is attainable by spectrum imaging [66]. EELS plays a unique role in studying the 

charge storage process as both chemical and bonding information of the electrode 

materials can be obtained. Recent STEM-EELS investigations on graphene [67], 

single crystal Si [28], BP [68], Fe2O3 [69, 70], and α-MoO3 [71] have demonstrated its 

capability in revealing the electrochemical lithiation process and the conversion 

reaction mechanisms. It should be noted that since EELS is an analytical technique 

based on inelastic scattering of fast electrons, multiple scattering of the inelastic 

signal restricts the electronic structural analysis to a specimen thickness less than 70 

nm for most materials [72]. 

 

3.  Application of HRTEM and HRSTEM 

3.1 Oxygen deficient Fe2O3 nanorods 

Hematite (α-Fe2O3) holds great promise as a negative electrode for asymmetric 

supercapacitors (ASCs) because of its large theoretical specific capacitance and 

suitable working window in negative potential [73, 74]. However, pure hematite 

materials are of limited application potential due to the low conductivity and power 

density [33, 75]. Oxygen vacancies in α-Fe2O3 can serve as shallow donors, and 

introducing oxygen vacancies into α-Fe2O3 can improve its donor density and surface 

properties, thus enhancing the electrochemical performance of the materials [33]. 

Hence, investigation on the oxygen-deficient structure provides a fundamental 
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understanding on the relationship between defect chemistry and the electrochemical 

properties of α-Fe2O3.  

Several TEM studies have shown that oxygen deficiency generated an ordering 

superlattice structure in α-Fe2O3. For example, Cvelbar et al. [76] reported the 

formation of a modulated structure of α-Fe2O3 induced by oxygen vacancies. HRTEM 

and corresponding FFT showed a superlattice structural feature with ordering of the 

oxygen-vacancy planes. Using HRSTEM imaging, Lee et al. [77] found a periodic 

contract caused by vacancy-ordering planes in oxygen deficiencies α-Fe2O3 nanowires. 

Similarly, experimental and simulated HRTEM investigation revealed a long-range 

oxygen-vacancy ordering planes in α-Fe2O3 nanowires and nanobelts [78, 79]. The 

occurrence of these superstructures could be explained by the formation of 

oxygen-vacancy-ordered planes. Such oxygen vacancies results in the p-type 

conductivity of α-Fe2O3 [78]. 

In other studies, stacking faults and twin defects were found in the synthesized 

Fe2O3 nanostructures, in which no oxygen-vacancy-ordering was observed. This 

might be ascribed to the increase of oxygen vacancies density and their migration that 

destroy the modulated structure [77, 80]. Recently, Lu et al. [33] reported the planar 

defect microstructure of oxygen-deficient α-Fe2O3 nanorods and their electrochemical 

properties as anode for SCs. The morphology of α-Fe2O3 nanorods obtained through 

thermal decomposition of β-FeOOH under a N2 atmosphere (denoted as N-Fe2O3) was 

studied by BF TEM. (as shown Fig. 1). The porous nanorod is composed of a bundle 

of nanowires about 8 nm in diameter, indicating that the nanorod is polycrystalline. 

The corresponding SAED pattern (the inset of Fig. 1a) that looks like a diffraction 

pattern of single crystal suggests the crystals in the rod are well orientated. In other 

words, the “single crystal”-like diffraction pattern could be explained by the 

overlapping SAED patterns originated from individual single crystalline nanowires 

with approximately the same orientation. The Fourier filtered reconstructed HRTEM 

image (as shown in Fig. 1c) clearly shows the zigzag arrangements of the lattice 

fringes, indicating the presence of planar defects (stacking faults) perpendicular to the 

(113) planes. In addition, the intensity profile (Fig. 1e) of the defect region in Fig. 1d 
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revealed the uneven d-spacing of the (100) planes. The observed lattice distortions 

and the variation of the (100) d-spacing could possibly be related to the oxygen 

vacancy defect sites caused by the oxygen deficient environment during the synthesis 

process [77]. Furthermore, the presence of Fe2+ species were detected by X-ray 

photoelectron spectroscopy (XPS), which suggests that oxygen vacancies were 

formed in N-Fe2O3 [33]. Therefore, it can be speculated that the observed planar 

defects could be attributed to the oxygen vacancies induced by thermal treatment 

under a N2 atmosphere. These oxygen deficient α-Fe2O3 nanorods exhibited enhanced 

capacitance and cycling stability, which is possibly due to the formation of oxygen 

vacancies that serve as shallow donors [33]. Electrochemical impedance experiments 

were further conducted by Lu et al. [33], which confirmed the enhancement of the 

donor density in the N-Fe2O3 as compared with pure Fe2O3. 
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Figure 1. TEM investigation of N-Fe2O3 nanorods. (a) Bright field image and the corresponding 

SAED pattern (the inset). (b) HRTEM image. (c) Enlarged HRTEM image showing defects. The 

zig-zag arrangement of the lattice fringes indicated by the red lines can be ascribed to the planar 

defects (stacking faults). The red arrow shows the dislocation defects. (d) HRTEM image of the 

defect structure, showing the contrast variation induced by the defects. (e) Intensity profile of the 

red square region, indicating the uneven d-spacing of the N-Fe2O3 defect structure. (Reproduced 

with permission of [33])  

3.2 Polyhedral Fe3O4 nanoparticles 

Fe3O4 has been considered as a promising anode material for LIBs because of its 

high theoretical capacities (924 mA h g-1), low-cost and environmental benignity [81, 

82]. Its structure is cubic with the unit cell parameter, a = 0.839 nm, space group 
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Fd3m. Nanosized Fe3O4 crystals with well-defined shapes have attracted great 

attention because of the size and surface effects [3, 83], as well as the shape effect. 

Table 1 shows the first discharge capacity of Fe3O4 anode materials with different 

morphologies. As the shape, that determines the surface termination and surface 

atomic arrangement, is crucial to the electrochemical properties [84, 85], it is 

necessary to acquire information on the crystal morphology of Fe3O4 nanoparticles 

(NPs).  

 

Table 1 The specific capacity of Fe3O4 anode differ in morphology 

Morphology Current 

density 

First discharge 

capacity 

Reference 

Fe3O4 nanoparticle clusters 0.1 A g-1 850 mA h g-1 [86] 

Fe3O4 hollow nanoparticle 

aggregates 

0.1 A g-1 800 mA h g-1 [87] 

Fe3O4 nanocrystals 0.2 C 1200 mA h g-1 [88] 

Fe3O4 rhombic dodecahedra 0.2 C 1147 mA h g-1 [89] 

Fe3O4 submicrospheres 0.1 A g-1 910 mA h g-1 [90] 

Grapecluster-like Fe3O4@C/carbon 

nanotube nanostructures 

0.1 A g-1 926 mA h g-1 [91] 

Commercial Fe3O4 nanoparticles 0.1 A g-1 790 mA h g-1 [92] 

hierarchical Fe3O4 

microspheres/graphene 

0.2 A g-1 1336 mA h g-1  [93] 

Fe3O4 polyhedral nanoparticles  0.1 A g-1 1067 mA h g-1 [94] 

 

To date, a variety of TEM techniques have been utilized to obtain the 3D 

morphological features of nanocrystal with size less than 100 nm. The routine 

characterization techniques include BF-TEM and electron diffraction. The shape and 

the type of exposed facets of nanocrystals can be identified by a combined analysis of 

the interplane angles between the facets, TEM images and electron diffraction 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

15 

 

patterns of the crystals. For example, α-Fe2O3 nanocrystals with hexagonal bipyramid 

shape and rhombohedral shape were identified by measuring the angles between each 

two surface planes in BF image and indexing the corresponding SAED pattern [95]. 

Another approach for examining 3D morphologies is DF-TEM imaging. Čaplovičová 

et al. [96] developed a weak beam dark field technique to characterize the 3D shape 

of TiO2 nanocrystals. The thickness changes depicted in the weak beam dark field 

images revealed that the anatase crystals consist of tetragonal bypyramidal 

morphology. Furthermore, the shape and the exposed surface planes can be estimated 

on the base of projected two-dimensional HRTEM images. Stroppa et al. [97] 

evaluated the three dimensional morphology of Sb doped SnO2 nanocrystals by 

combined use of experimental HRTEM image, multislice simulated HRTEM images, 

and Wulff construction as well as surface energy ab initio calculations. The 

approaches mentioned above are based on the principle of crystallographic analysis of 

a series of 2D projections and with the assumption that the surface structure is not 

reconstructed. An alternative technique to identify the 3D morphology is electron 

tomography, which enables the reconstruction of 3D shape from 2D projections 

through a mathematical algorithm. Xu et al. [98] reported the 3D morphology 

reconstruction of octahedral CeO2 nanocrystals using TEM tomography BF tilt series 

from –50° to +70° at a 5° angular increment. However, the missing wedge artifacts 

have been considered as one of the most important challenges in the field of electron 

tomography [54]. 

Recent reports have shown the characterization of the 3D morphology and 

electrochemical properties of Fe3O4 NPs by utilizing electron crystallography. For 

example, Zheng et al. [99] determined the truncated octahedral shape of Fe3O4 NPs 

around 12 nm based on the [100], [101] and [111] projected HRTEM images. Xu et al. 

[89] performed a geometrical analysis for Fe3O4 nanocrystals using HRTEM and 

electron diffraction, revealing that the rhombic dodecahedral shaped crystals were 

enclosed by highly active {110} planes. These crystals have shown superior 

electrochemical properties, which can be ascribed to the higher surface energy. 
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Similarly, Cao et al. [88] reported Fe3O4 nano-cubes that delivered an initial discharge 

capacity of 1200 mA h g -1 at 0.2 C. 

Recently, we demonstrated the morphological characterization of Fe3O4 NPs 

around 12 nm [94]. The surface terminations and the shape were estimated by electron 

crystallography. It should be noted that it is difficult to perform orientation adjustment 

due to the finite size and sample drift. However, careful control of the TEM 

conditions and a wide observation up to 900 individual NPs with different view 

directions allow us to examine the particle shape and surface terminations. Projected 

images of the Fe3O4 particles along the [100], [110] and [111] zone axes of the cubic 

unit cell are displayed in Fig. 2(a1), (b1) and (c1) respectively. Fourier filtering was 

employed to extract the lattice fringe information. Surface terminations were 

determined while different crystal facets were parallel to the viewing direction. It 

should be noted that a single HRTEM image is a 2D projection of a 3D particle. It is 

still questionable whether the observed smooth surface is a profile image of a facet or 

an image of an edge of the crystal [100]. Examination of multiple HRTEM images 

along different zone axes by rotating the crystal can overcome this problem.  

 

 
Figure 2. HRTEM images and geometrical models of polyhedral Fe3O4 nanoparticles viewed 

along (a1) [100], (b1) [110] and (c1) [111] zone axes. Panel (a2, b2, c2) are the corresponding Fast 

Fourier Transform (FFT) patterns. Panel (a3, b3, c3) are the corresponding projected shapes of the 

3D structural model. (Reproduced with permission of [94]) 

 

Based on the crystallographic data obtained from different projections, an 

idealized geometrical structure of 26-facet rhombicuboctahedron that consists of 6 
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{100}, 12 {110} and 8 {111} facets was proposed (as shown in Fig. 2a3-c3). There 

are 24 identical vertices and 52 edges on each rhombicuboctahedron, offering 

low-coordinated atoms that can have a strong impact on the chemical activity. 

Particles with truncated octahedron morphology were also identified by imaging the 

surface facets in profile, as shown in Fig. 3.  

 

 
Figure 3. HRTEM images of truncated octahedral Fe3O4 nanoparticles projected along (a) [110], 

(b) [100], and (c) [110] orientations. (d) Geometric models of the truncated octahedron enclosed 

with {100} and {111} facets. (Reproduced with permission of [94]) 

 

According to the morphological features and the growth rates of different 

crystallographic orientations, a possible growth mechanism of the NPs was proposed. 

Fig. 4 illustrated the shape transformation of the polyhedral Fe3O4 NPs. Firstly, the 

Fe3O4 nuclei tend to form an octahedron bound by the most stable {111} planes. Later, 

glycol (PEG) that acts as a capping agent absorbs on the high energy {100} planes, 

resulting in a 14-facet truncated octahedral shape. With increasing reaction time, the 

particle would grow further into a 26-facet polyhedron as a result of the slow growth 

of both {100} and {110} planes. Therefore, the final shape of the Fe3O4 NPs is a 

mixture of series of 14-facet truncated octahedra and 26-facet polyhedra. 

Galvanostatic charge-discharge measurements showed that the NPs delivered a high 

initial discharge capacity of 1067 mA h g-1 [94], which could be attribute to their 
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small size and abundant exposure of edges and corners in the multi-faceted polyhedral 

structures, offering low-coordinated atoms that act as active sites for lithium storage.  

 

 
Figure 4. Schematic illustration of the proposed growth mechanism that lead to the formation of 

truncated octahedral and rhombicuboctahedral Fe3O4 nanoparticles. {110}, {111} and {100} 

facets are coloured yellow, red and blue, respectively. (Reproduced with permission of [94]) 

 

3.3 Defects in TiO2 

TiO2 is an inexpensive and electrochemically stable semiconductor. However, as 

an electrode material for SCs, TiO2 suffers from relatively low electrical conductivity 

and poor electrochemical activity [101]. Recent reports demonstrated that introducing 

defects in TiO2 can address these limits and thus improve specific capacitance and 

stability of TiO2 materials [102, 103]. The detailed microstructural investigation is 

critical to understand how the defect structure influences the electrical conductivity 

and electrochemical activity of TiO2. The defects characterization is a typical problem 

solved by TEM. Fröschl et al. [104] carried out HRTEM studies on defective TiO2 

nanorods before and after cycling. The aberration-corrected high-resolution TEM 

image revealed hillocks, terraces and surface corrugations as well as lattice bending, 

which offer openings to Li diffusion channels and thus facilitating the reversible Li 

incorporation. Chen et al. [105] presented HRTEM analysis of the surface 
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hydrogenated TiO2 nanocrystals. A thin layer of hydrogenated disordered surface on 

the crystalline TiO2 electrode was discovered by HRTEM. Similarly, Qiu et al. [106] 

investigated the microstructure of hydrogenated rutile TiO2 nanoparticles. Fourier 

filtered HRTEM images indicated the hydrogenation induced crystal defects such as 

dislocation lines and grain boundaries, which can play an important role in Li-ion 

diffusion efficiency. It was found that these hydrogenated TiO2 crystals can facilitate 

the charge transfer process and capacity retention. 

Another example of characterizing hydrogenated TiO2 was presented by Lu [102]. 

In the study, HRTEM and HAADF-STEM results visually demonstrated the presence 

of dislocation defects in the hydrogen heat treated TiO2 (denoted as H- TiO2). 

 

 
Figure 5. (a) Bright field image, (b) SAED pattern, (c) HRTEM image and (d) HAADF-STEM 

image after Fourier filtered reconstruction of the H-TiO2 nanowire. 

 

 

BF TEM image (Fig. 5a) shows the rod-like structure of TiO2. The corresponding 

SAED pattern as shown in Fig. 5b can be indexed to the rutile phase TiO2 single 

crystal structure (JCPDS No. 65-0192) with high crystallinity. However, the shape 

and intensity of diffraction spots indicate that it is an imperfect crystal. The streaks in 

the SAED pattern (as indicated by yellow arrows) reveal a high density of lattice 

defects in the structure. HRTEM image (Fig. 5c) collected at the top of nanowires 

edge (red square region) shows the lattice fringes of (100) and (011) planes of the 

rutile structure, suggesting that TiO2 grew along the [100] direction and maintained 

the same phase after hydrogen treatment. Moreover, HRTEM analysis indicated the 
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characteristics of defects. The uneven d-spacing and distortions of the lattice fringes 

can be clearly observed. Domains with different image contrast can also be identified. 

These findings suggest the existence of high density defects in the structure. For 

qualitative study of the crystal defects, HAADF-STEM imaging and Fourier filtering 

were performed. Fig. 5d shows an inverse Fourier filtered transform image viewing 

along the [01�1] direction. As the bright spots correspond to the atomic columns of Ti, 

the defect sites can be clearly identified. In addition, the distribution of atomic 

displacements in the defect core (as shown by red arrows) can be discerned, 

confirming the presence of dislocation defects. Based on the TEM analysis, it was 

found that hydrogenation treatment generated a high density of dislocation defects. 

Combined with XPS studies that identified the formation of Ti3+ ions [102], it is 

speculated that the dislocation defects could possibly be attributed to the oxygen 

vacancies.  

 

3.4 S-doped Bi2Te3  

Tuning the electronic structure of Bi2Te3 through introducing dopants represents 

an effective approach to further enhance their physical-chemical properties [107]. 

Recently, it was demonstrated that S-doped Bi2Se3 crystals exhibited enhanced 

electrochemical performance as anode for lithium-ion batteries. It is believed that the 

sulfur dopants can improve the electrical conductivity [108]. The effect of doping is 

well known, but the crystal structure after doping and the distributions of the dopants 

are objects of many intensive studies.  

Z-contrast imaging technique is a powerful tool for the characterization of doped 

microstructures. Signals in Z-contrast image is proportional to about the square of the 

average atomic number of the probed sample volume. Shibata et al. [109] 

demonstrated the atomic-scale observation of yttrium-doped grain boundary in 

alumina using aberration-corrected Z-contrast STEM. As shown in Fig. 5, the doped 
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Y atomic columns are clearly imaged with very strong contrast and form a 

monoatomic layer structure in the core of the boundary. Z-contrast imaging was 

utilized to investigate the microstructure of Bi2Te3(Se3) compounds such as Bi2Te3 

[110], Bi2Se3 [111], Mn-doped Bi2Te3 [112] and Bi2Te2.7Se0.3 [113]. Although 

quintuple layer consisting five alternating Bi and Te(Se) atomic layers can be well 

resolved, the distribution of dopant atoms needs to be further clarified.  

 

 

 

Figure 6. Z-contrast STEM images of the Y-doped grain boundary observed from two orthogonal 

directions parallel to the interface plane. (Reproduced with permission of [98]) 

 

In our recent study, HAADF-STEM imaging was employed to investigate the 

distribution of S dopants in Bi2Te3 [107]. Contrast intensity analysis was used to 

estimate the preferential occupation sites of dopants. For the analysis of location and 

distribution of S dopants in Bi2Te3, the [100] zone axis of Bi2Te3 is selected and 

aligned accurately as in this orientation Bi and Te atomic columns can be viewed 

separately. Fig. 7a shows a Z-contrast STEM image viewed along the [100] direction. 

Brighter contrast corresponds to the atomic columns of Bi, while relatively weaker 
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contrast represents the atomic columns of Te. Intensity line profiles of S-doped Bi2Te3 

and simulated image based on undoped-Bi2Te3 were compared. For pure Bi2Te3, peak 

intensities of every Te atomic columns are uniform as is shown in the simulation 

profile (Fig. 7d). By contrast, three Te columns exhibit different intensities in the 

experimental intensity profile (Fig. 7c). As the weaker intensity of Te1 columns can 

be mainly attributed to their lower average Z compared with bare Te columns, such 

relatively weak contrast indicates that S dopants partially replace Te atoms in the Te1 

columns. This is in common with the results obtained by Dycus et al. [113] in which it 

is determined that Se dopants in Bi2Te3 preferentially occupy Te1 sites. 

 

 

Figure 7. (a) FFT filtered HAADF-STEM image of S-doped Bi2Te3. (b) Simulated 

HAADF-STEM image of undoped-Bi2Te3. (c) Intensity profile of FFT filtered STEM image of 

S-doped Bi2Te3 along the red arrow. (d) Intensity profile of the undoped-Bi2Te3 image along the 

yellow arrow. (e) Unit cell structure model of Bi2Te3. Te1 refers to the Te atomic columns between 

Bi columns, while Te2 and Te3 columns are neighbored on the van der Waals gap (Reproduced 

with permission of [107]) 

 

 

To further evaluate the distribution of S dopants, estimations of the intensity 

profiles in a number of regions of interest (ROI) were performed. The result (as 

shown in Fig. 8b) shows that the contrast of all Te1 columns is weaker than that of 

Te2 and Te3 columns, suggesting that S atoms preferentially substitute Te in the Te1 

sites. Besides, the uneven intensities in Te2 and Te3 columns suggest that S dopants 
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should be randomly distributed in such Te sites. Intensity profile analysis reveals that 

S prefers to occupy the Te1 sites until it is completely substituted, which is in 

agreement with previously reported results [113, 114]. In summary, the intensity 

variation of the Te column in HAADF-STEM images can be explained by the partial 

and uneven substitution of S. Te columns with least contrast intensity correspond to 

the preferential occupation sites of S atoms. Although S atoms do not have sufficient 

contrast to be seen in the image owning to the low Z, the sulfur-containing columns 

are visible as weaker contrast compared with pure Te columns. 

 

 

Figure 8. (a) STEM image of S-doped Bi2Te3. Regions of interest (ROI) for contrast intensity 

analysis are marked as “a-f”. (b) Intensity profiles of the ROI in (a). Red arrows show the analysis 

direction of intensity profiles. (Reproduced with permission of [107]) 

 

4.  Application of EELS and elemental 

mapping 

4.1 Microstructural evolution of TiO2 and TiN  

During the charge-discharge cycles, electrochemical charge storage reactions 

occur at surface or in a thin-layer region of active materials (several tens of 
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nanometers from the surface) [3]. Therefore, the understanding of the 

charge-discharge mechanisms and the electrochemical reaction between TMC 

electrodes and electrolyte largely relies on their surface structural characteristics, 

especially the surface composition, active sites, oxidation states and elemental 

distributions [115]. Elemental mapping and EELS analysis are now widely used for 

the analysis of these surface and interface related issues. 

TiO2 is a promising alternative anode to carbonaceous materials in LIBs, as it 

can provide superior safety, chemical stability and non-toxicity. Gao et al. [116] 

reported a new electrochemical reaction mechanism by observing the lithiation 

process of TiO2 nanotube. HRTEM revealed the nano-islands Li2Ti2O4 crystal with 

cubic structure was formed at the surface layer of TiO2 nanotube during the lithiation. 

EELS analysis showed that the lithiation started with the oxidation state of Ti4+ 

reduced to Ti3+, resulting in the formation of amorphous LixTiO2 intercalation 

compound. The further intercalation of Li ions in TiO2 nanotubes stimulated an 

amorphous to crystalline phase transformation. This phase transformation was found 

to be associated with the local inhomogeneity in Li distribution, which was revealed 

by STEM-EELS elemental mapping. Based on in situ chemical and structural 

analyses, the authors proposed a new reaction mechanism for the lithiation behavior 

of amorphous TiO2 nanotubes.  

TiN holds great promise as an electrode material for SCs due to its superior 

electrical conductivity (4000 ~ 55500 S/cm) and mechanical stability [117, 118]. 

However, previous studies found that TiN electrode performed in alkaline electrolyte 

solution suffered from substantial capacitance loss (28% retention of initial 

capacitance after 400 cycles), while the underlying degradation mechanism remains 

unclear [119, 120]. Chemical identification for the TiN electrode after cycling test can 

help to understand the origin of the instability of TiN nanowires. Here, we 

demonstrated the spectrum imaging investigation to reveal the mechanism causing the 

capacitance loss of TiN. In addition, the difference between EELS and EDS spectrum 

imaging results are compared and discussed.  

Fig. 9a shows a HAADF-STEM image of TiN nanowires after 3000 cycles. 
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Nanowires with rough surface can be observed. STEM-EDS mapping was performed 

and the spectrum image pixels were summed to produce the spectra (as shown in Fig. 

9b) that shows the characteristic N Kα (392 eV), O Kα (523 eV) and Ti Kα (4508 eV) 

peaks. Additionally, STEM-EDS elemental mapping (as shonw in Fig. 9c-e) illustrates 

that not only Ti and N, but also O are uniformly distributed in the nanowires. The 

presence of O implies that the instability of TiN electrode may be due to the formation 

of oxides during cycling. Nevertheless, it should be noted that in EDS mapping the 

elemental distribution is generated by integrating the peak intensity with a given 

width of integration window. For the best element detectability, the integration width 

for the peak of interest should be 1.2 times the full-width-at-half-maximum (FWHM) 

[121]. In this case, the integration energy windows for N Kα peak and Ti Lα peak 

(456 eV) can contribute to the integrated intensity of the nearby O Kα peak, which 

may produce artifacts that the O element map displayed as homogeneously distributed. 

Although we set a mapping window from a region near the N Kα peak containing no 

element X-ray peak and subtract the map to remove background contribution, the 

resultant elemental map still cannot provide further spatial distribution details.  

 

 

Figure 9. (a) HAADF-STEM image of a representative TiN nanowire. (b) Summed spectrum 

corresponding to (a). (c-e) STEM-EDS elemental maps of Ti, O and N, respectively. 

In order to accurately identify the chemical composition and elemental 
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distribution, STEM-EELS analysis were carried out. STEM-EELS can collect and 

storage an entire spectrum at every pixel to generate a data set, which can later 

produce elemental maps at a given energy and construct spectra from a selected image 

region. Through spectrum-image data processing, the distributions of Ti, N and O in a 

TiN nanowire are obtained (as shown in Fig. 10a). It can be seen that the surface of 

the nanowires are enriched with O. In addition, it is clearly in the color-mixed map 

that pink regions contain both Ti and N, whereas both Ti and O are collocated in 

surface, indicating the formation of oxide shells. Fig. 10b shows a summed spectrum 

from a surface region of the TiN nanowire, in which the characteristic N-K edge, 

Ti-L2,3 edges and O-K edge can be identified.  

 

 

Figure 10. (a) STEM-EELS elemental map of TiN nanorod, showing the distribution of Ti, N, and 

O. (b) Summed spectrum extracted from the spectrum image pixels. 

 

Furthermore, to compare the valence state of Ti in surface and core region, 

spectrum data from the surface and inner part of the nanowire (as shown in Fig. 11a) 

were extracted and further processed by power-law background subtraction and 
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second derivation. In the second derivative spectrum (as shown in Fig. 11e and Fig. 

11f), the onset of N-K edge can be fixed to 401 eV. Thus, the chemical shifts of Ti-L2,3 

white lines can be identified.  

 

 

Figure 11. (a) HAADF image, (b) Summed spectrum extracted from the surface region of TiN 

nanorod, (c, d) EELS spectra extracted from the surface (blue lines) and inner region (red lines), 

showing the N-K edge and the Ti-L2,3 edges, respectively. (e, f) Second derivative spectra 

corresponding to (c) and (d), respectively.  

 

 

Comparing with the inner region, there is a chemical shift of 0.4 eV to higher 

energies in the spectra extracted from the surface of H-TiO2, suggesting a higher 

oxidation state. This result indicates the formation of Ti4+ in the surface as a result of 

oxidation after cycling. Therefore, EELS analysis revealed that the instability of TiN 
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electrode should be due to the formation of the electrochemically less active TiO2 

layer on TiN surface [117, 118]. In summary, the mechanism causing the capacitance 

loss for the TiN nanowires electrode was revealed. STEM-EELS has been 

demonstrated to be a technique which can be very reliable in forms of both mapping 

and spectroscopy data. On the contrary, STEM-EDS is easier to generate elemental 

distribution maps which can be made without prior knowledge of specimen 

composition. However, some experimental conditions such as sample thickness, peak 

overlap, background processing, detector counting rates and dead times can induce 

erratic fluctuations which may lead to misinterpreted results [62]. 

 

4.2 Carbon coated TiN 

Surface coating has been proven to be important and efficient in suppressing the 

interfacial side reactions, alleviating the decomposition of the electrolyte, improving 

ionic and electronic conductivities and buffering the volume change upon cycling 

[122]. Elemental mapping has been conducted for characterizing the chemical 

distribution of many coated structures, for example, TiN–BaTiO3 core–shell particles 

[123], MnO2/TiN nanotube coaxial arrays [124], TiN–porous carbon [125], TiN@Si 

core–shell nanorods [126], TiO2–C/MnO2 core-shell nanowires [127] and so on. 

These anode materials exhibited improved cycling and rate performance, which can 

be ascribed to the homogeneously distributed surface layers with high conductivity 

and stability. However, while using STEM-EDS mapping, care should be taken to 

specimens containing N and Ti, because the N Kα peak (392 eV) and Ti Lα peak (456 

eV) were so close that the resultant map could be questionable. On the other hand, the 

spatial distribution of Ti and N can be well differentiated by EELS through detecting 

the ionization edges of Ti L-edge (485 eV) and N-K edge (401 eV). 

Fig. 12 shows an example of identifying the elemental distribution of carbon 

coated TiN nanowire using EFTEM imaging. A three-window method was employed 

by selecting the core-loss ionization edges of C-K edge at 284 eV, N-K edge at 401 
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eV and Ti-L2,3 edge at 485 eV [128]. The width of the energy windows ∆E of carbon, 

nitrogen and titanium was set to be 10 eV. Fig. 12(c-e) shows the C-K, Ti-L2,3 and 

N-K core-loss images. It can be seen that the nanorods are of TiN core-C shell type. 

The thickness of the outer carbon layer is about 1 ~ 2 nm, which is in consistent with 

the HRTEM result. EFTEM analysis evidenced a continuous carbon enriched layers 

on the surface of TiN nanowires, which could stabilize the electrochemically active 

TiN nanoawire arrays electrode without sacrificing their performances [129]. 

 

 

Figure 12. (a) SEM image, showing the size and morphology of TiN nanowires that were grown 

on carbon fibers. (b) HRTEM image of TiN@C, showing the carbon layer with thickness of 1.5 

nm, (c-e) EFTEM image obtained by a three windows method, showing the elemental distribution 

of Ti, N and C, respectively. (Reproduced with permission of [129]) 

 

4.3 MnO2-x nanorods 

MnO2 is an attractive pseudocapacitive material with high theoretical specific 

capacitance [130]. However, its poor electrical conductivity (10−5 -10−6 S cm−1) 

severely restricts its practical application as high-performance electrode material for 

SCs. Hydrogenation treatment is a major approach to enhance the intrinsic 

conductivity of transition metal oxides [102, 131]. To better understand the effect of 

hydrogenation treatment, it is important to study how the valence state of Mn is 
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modified in the hydrogen treated structure.  

In the EELS core-loss spectrum, the integral intensity ratio of the L3 (2p3/2 → 3d) 

and L2 (2P1/2 → 3d) excitation peaks is sensitive to the change in the valence states of 

transition metal cations [132-135]. Therefore, the oxidation states of transition metal 

cations can be identified by measuring the integrated intensities of L2,3 edges. In 

addition, the electron-energy-loss near-edge structures (ELNES) of the O-K edge are 

related to the electronic states in the unoccupied conduction band in the case of 

transition metal oxides, which can also be used to obtain the information about the 

valence state of transition metal cations. 

One such example is the EELS analysis for the hydrogenation induced mixed 

valence MnO2-x nanorod as demonstrated by Zhai et al.[136]. EELS experiment was 

conducted at an energy range containing the Mn-L2,3 and the O-K edges, with an 

energy resolution of 0.9 eV. The background was subtracted by a power-law fitting in 

the pre-edge region of the spectrum. The oxidation state of Mn ions were evaluated 

according to the intensity ratio of Mn-L2,3 edges and the EELS fine structure of O-K 

edges. The TEM and EELS instrument was firstly calibrated in both TEM-diffraction 

mode and STEM mode using standard MnO2 and Mn3O4 samples so as to compare 

with the literature reported values [132, 133, 137, 138]. Fig. 13 shows a typical EELS 

spectra of the untreated MnO2 nanorods and hydrogenated MnO2 (denoted as 

H-MnO2) nanorods acquired in TEM-diffraction mode. The dominant sharp peaks 

observed in the EELS spectra are the L3 and L2 ionization edges of Mn. The L3/L2 

integral intensity ratio of the untreated MnO2 nanorods was calculated to be 2.2, 

which can be related to the oxidation state of Mn4+ [139]. The L3/L2 integral intensity 

ratio of the H-MnO2 was calculated to be 3.2, suggesting that not only Mn4+ but also 

Mn2+ and Mn3+ should exist in the sample. Besides, the ELNES of O-K edge can be 

used to analysis the valence state of Mn since the 3d and 4s states of Mn hybridized 

with O 2p orbitals [140]. As compared with MnO2, the relative intensity between the 

prepeak around 530 eV (labelled as peak a) and the second peak at 5-10 eV above 

threshold (labelled as peak b) in the H-MnO2 spectrum is smaller than that in the 
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MnO2 spectrum. Since the intensity of the prepeak is related to the occupancy of the 

Mn 3d orbitals, the reduced intensity of prepeak in H-MnO2 suggests a reduction of 

the oxidation state of Mn. This result further indicated that the H-MnO2 should be a 

mixed valence compound [141, 142].  

Furthermore, the valence state of Mn in the surface and central part of the 

nanorod were analyzed in STEM mode. STEM-EELS analysis was applied to five 

hydrogen treated MnO2 nanorods, and a high reproducibility of the spectra features 

was found. The EELS spectra from the surface of H-MnO2 nanorods (Fig. 14b) 

showed that the L3/L2 intensity ratio was 3.1, indicating that there are Mn2+, Mn3+ and 

Mn4+ cations in the surface of H-MnO2 NRs. Meanwhile, the L3/L2 intensity ratio of 

the central part of H-MnO2 nanorods, which combined the core and surface 

information of the rods, was calculated to be 2.8. This suggests that more Mn4+ 

existed in the central part of the nanorod. All these clear differences in EELS spectra 

demonstrated a variation of the valence state of the Mn ions. Based on TEM results, 

new structure Mn3O4 (other than normal MnO2) can be identified within surface of 

nanorod, indicating the hydrogenation induced surface reduction of MnO2. The 

superior conductivity and capacitive performance of H-MnO2 were confirmed by 

cyclic voltammetry, charge-discharge measurements and electrochemical impedance 

spectroscopy [136]. According to the above results, the coexistence of multivalent Mn 

and the surface charge storage play an important role in accelerating the kinetics of 

the surface redox reactions as well as electronic and ionic transport properties, and 

thus enhancing its electrochemical performances.  
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Figure 13. EELS spectra of untreated MnO2 nanorods and H-MnO2 nanorods. 

 

 
Figure 14. (a) HAADF-STEM image of the H-MnO2 nanorod. (b) EELS spectra from the surface 

and central part of the H-MnO2 nanorod, showing the intensity of Mn-L2,3 edges. 

 

4.4 V6013 

Mixed-valence vanadium oxides are promising electrode materials for 

pseudocapacitors [143]. The incorporation of dopants to vanadium oxides can 

introduce multivalent vanadium cations into the structure and thus improve the 

capacitive performance. Characterizing the doping elements is one of the most 
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significant challenges in TEM.  

Several reports showed the TEM investigation on the structural characteristics of 

the doped vanadium oxides. Using selected area electron diffraction analysis, Lee et 

al. [144] demonstrated the inhomogeneous doping of VO2 nanowires with W. Zhao et 

al. [145] compared the morphology of V2O5/TiO2 nanoparticle before and after sulfur 

doping. BF TEM showed that the S-doped V2O5/TiO2 nanoparticles were more 

uniform in morphology and less agglomerated than the undoped sample. 

Asayesh-Ardakani et al. [146] reported the aberration corrected HRSTEM imaging of 

W doped V1-xO2 nanorod. The substitution of W with V atoms in the crystal structure 

was confirmed by atomic resolution HAADF image. EDS elemental mapping further 

revealed the homogeneous dispersion of W in the nanowire.  

Zhai et al. [147] demonstrated an example of investigating the microstructures 

and chemical composition of S-doped V6O13 nanowires via HRTEM, STEM-EDS and 

EFTEM mapping. Fig. 15a shows a HRTEM image of the S-doped V6O13 nanowire. 

However, this lattice resolved HRTEM image does not provide evidences for sulfur 

dopants in V6O13. Another example also showed that HRTEM do not usually reflect 

the doping effects. Ishiwata et al. [148] conducted HRTEM analysis for Cr and Ti 

doped V2O3 nanocrystals, in which doping induced defects were not observed. 

Therefore, elemental mapping is desired to obtain the chemical information of the 

doped vanadium oxides. STEM-EDS was employed to identify the distribution of the 

S dopants. The sulfur elemental map (Fig. 15b) defined clearly the spatial distribution 

of S in an individual nanowire, which confirmed that sulfur is uniformly distributed. 

Due to the fact that the V Lα peak (510 eV) and O Kα-peak (523 eV) are overlapped, 

the resultant O Kα signals may be false and invalidate the elemental distribution map. 

Therefore, it is still necessary to employ EFTEM imaging to confirm the elemental 

distribution of S-doped V6O13.  

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

34 

 

 

Figure 15. (a) Lattice resolved HRTEM image collected at the edge of a S-doped V6O13 nanowire. 

(b) HAADF-STEM image of S-doped V6O13 nanowires and the STEM-EDS mapping of V, O and 

S obtained from the selective area in the dashed box. (Reproduced with permission of [147]) 

 

 

Fig. 16 shows that V, O and S are homogeneously distributed in the nanowires, 

which are in consistent with the STEM-EDS results. Chemical composition studied by 

TEM successfully confirmed the introduction of sulfur dopants in the V6O13 

nanowires. Combined with electrochemical analysis, it is found that sulfur-doping 

reduces the charge-transfer resistance and increase the ion diffusion coefficient [147]. 

 

 

Figure 16. (a) TEM image of S-doped V6O13 nanowires, (b-d) EFTEM image obtained by 

three-window method using V-L2,3 ,O-K and S-K edges, respectively. 
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5.  Conclusion and outlook 

TiO2, TiN, MnO2, V6O3, α-Fe2O3, Fe3O4 and Bi2Te3 have been extensively 

investigated as anodes for LIBs and SCs. Various strategies, including morphological 

control, surface modification, defect-control engineering, elemental doping, etc., have 

been developed to improve the performance of these anode materials. As research on 

boosting the electrochemical properties of anode materials through structural 

engineering continues, the ability to image and characterize the microstructural 

features of the structurally modified anode materials has become increasingly 

important. TEM has been proven to be quite useful and powerful in the investigation 

on TMC nanostructured anodes. The advanced TEM allows us to determine the 

structure of a complex surface and interface, to detect dopant atoms in the lattice, to 

measure the surface valence state and generate chemical composition distribution 

maps. In this review, we summarize the contributions of the TEM techniques to 

understand the electrochemical properties of TMC anodes, with emphasis on 

analyzing and interpreting the structural information coded in image and spectrum 

data. 

The most standard procedures for microstructure investigation, including BF, 

SAED and HRTEM, provide crystallographic information, lattice structures and even 

three dimension morphological description of nanoparticles, offering opportunities for 

the examination of their facet-dependent electrochemical properties. Also, 

morphological analysis based on SAED and HRTEM can offer insights into the shape 

evolution and growth mechanisms of nanocrystals.  

Besides the routine applications of morphologies and lattice structure 

characterization, one of the most outstanding contributions of TEM on developing 

TMC anodes is to observe the structural changes in nano- or even atomic-scale in 

defect-control engineering. For instance, the identification of defect structures 

obtained by thermal treatment under H2 or N2 atmosphere has verified the capability 
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of offering valuable information about the lattice distortions by HRTEM imaging. 

Moreover, advanced TEM techniques like HAADF-STEM has demonstrated the 

ability to detect and characterize not only the atomic arrangements in the structural 

defect sites, but also the distribution of dopants in the atomic columns, all of which 

being closely associated with charge carrier concentration, conductivities, and 

transport properties in TMC anodes. 

Additionally, it has been shown that the elemental mapping by means of 

STEM-EDS and EFTEM provides considerably better chemical information when 

probing a complex structure. However, the use of more than one technique should be 

applied in order to validate the elemental maps. Also, background signals should be 

carefully subtracted in order to get complementary results, especially for elements 

with low concentrations. Apart from imaging techniques such as HRTEM and 

chemical mapping, EELS spectroscopic analysis plays a crucial role in understanding 

the behavior of TMC anode because it can provide reliable valence state detection on 

one hand, and better chemical sensitivity on the other. In particular, EELS shows great 

advantages in revealing the possible chemical process in the charge-discharge cycles 

by offering the opportunity to monitor the valence state of transition metal elements.  

The successful structural analyses of morphologies, surface characteristics, 

interface structures, crystal defects, atomic distributions, chemical composition and 

valence states as well as electronic structures have demonstrated that TEM can make a 

significant contribution to understand the charge-discharge mechanisms, to elucidate 

the origin of the superior properties and to explore the structure-properties 

relationships. Nevertheless, concerning the accurate investigation on the structural 

features of TMC anodes, special attention should be paid on sample preparation, 

particular imaging conditions and image contrast analysis to avoid the 

over-interpretation of the TEM data. All of the examples mentioned above are highly 

dependent on the competent operational skills and knowledge on data interpretation 

and analysis. Still, TEM is considered as one of the most powerful tools for the 

determination of complex structures. While combining the state-of-the-art 

monochromized and Cs-corrected TEM/STEM with in-situ techniques, the 
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micro-mechanisms for the superior electrochemical properties of TMC anodes are 

continuing to be further uncovered, and the achievement of high performance novel 

anodes is expected.  

 

Acknowledgements 

This work was preliminarily supported by the National Key Research Program of 

China (2016YFA0202604), the Natural Science Foundation of China (21476271), 

NSFC-RGC (21461162003) and Natural Science Foundation (2014KTSCX004 and 

2014A030308012) of Guangdong Province, China. 

 

Appendix Abbreviations 

ABF    annular bright field  

ADF    annular dark field 

ASCs    asymmetric supercapacitors  

BF     bright-field 

DF     dark-field  

EDS    energy dispersive X-ray spectroscopy  

EDLC    electric double layer capacitors  

EELS    electron energy loss spectroscopy  

EFTEM    energy filtered TEM  

ELNES    electron-energy-loss near-edge structures  

FWHM    full-width-at-half-maximum  

HAADF    high angle annular dark field  

HRTEM    high resolution transmission electron microscopy  

LIBs     lithium-ion batteries  

NPs     nanoparticles  
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PEG    polyethylene glycol  

SAED     select area electron diffraction,  

SCs       supercapacitors  

SEM      scanning electron microcopy  

STEM     scanning transmission electron microscopy 

TEM    transmission electron microscopy 

TMC    transition metal compound 

XPS     X-ray photoelectron spectroscopy  
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High lights 

- Analyzing structural characteristics of transition metal compound anode by TEM 

- Vacancy defect structures and dopant distributions were investigated by 

HR(S)TEM. 

- Valence state of transition metal elements was analyzed by EELS 

- Chemical information of complex structures was obtained by elemental mapping. 


