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Abstract 

Epitaxial BaTiO3 (BT) thin film of about 400 nm thickness was grown on LaSr0.5Co0.5O3 

(LSCO) coated (001)MgO using pulsed laser deposition. Ferroelectric properties of the BT 

thin film in Pt/BT/LSCO/MgO heterostructure capacitor configuration were investigated. 

Dynamic P-E hysteresis loops at room temperature showed ferroelectric behavior with Ps = 32 

µC/cm², Pr =14 µC/cm² and Ec=65 kV/cm. Static C-V measurements confirmed reversible 

switching with a coercive field Ec = 15 kV/cm. Basing on a model taking into account an 

interface dead-layer we show that the capacitance-voltage “butterfly” loops imply only 25% 

switching of dipoles that inferred from dynamic polarization-field loops (~ 4 and ~16 kV/cm, 

respectively). Dielectric permittivity as a function of temperature revealed a first-order 

ferroelectric-to-paraelectric (FE-PE) phase transition in the BT film characterized by a 

maximum at TC ~130°C. The very large (~126 K at 1 kHz) difference between TC and the 

extrapolated Curie-Weiss temperature T0 is attributed to the dead-layer effects.  
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1. Introduction 

Ferroelectric (FE) behavior, domain structure and phase transition in BT (barium titanate) 

bulk material were initially reported by Wul [1]. Several papers were thereafter reported on 

BT showing the Curie temperature between 120°C and 130°C in the bulk crystal [2,3]. 

Generally speaking BT exhibits a rotation of polarization <P> from [001] to [011] to [111] 

with lowering temperature, but this is a time- and space-averaged <P>, not a static value, so 

the dynamics are more order-disorder than displacive, as first shown by Comes and Lambert 

in 1968-9 [2,4] via diffuse streaks in Laue data. 

Ferroelectric ABO3 perovskite thin films are widely studied experimentally and theoretically 

due to their attractive physical properties attractive for various applications in micro- and 

nano-electronics, photonics, electrocalorics, domain wall electronics, tunable microwave 

devices, memristors, gas sensors etc [5–15]. In recent years, guided by the search for 

environmentally-friendly lead –free materials, BaTiO3 (BT) and its solid solutions have 

attracted much attention [16,17]. Of special interest are epitaxial thin films, because in such 

objects the so-called strain engineering can be used for tailoring their properties [17–22].  

A Landau-Devonshire approach has been used to analyze ferroelastic and electrical behavior 

in epitaxial BT thin films [19,23]. An absence of the lower-temperature structural phase 

transition in BT thin films had been previously reported by Pertsev et al. in 2000 [24] and 

Tennes et al. in 2004 [25], who showed that doping BT by Sr in the perovskite A-site led to 

relaxor behavior, as reported also by Zembilgotov et al. in 2002 [18]. However, the physical 

properties of ferroelectric thin films, in particular the electrical properties, have been known 

strongly dependent on the film thickness, choice of substrate, electrodes and fabrication 

process [26,27]. Many papers reported on the degradation of functional properties of FE thin 

films that can be an obstacle for applications [28,29]. Indeed, reduced tunability and 

permittivity, large coercive fields, small values of remnant polarization and a more diffused 
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ferroelectric phase transition as compared to those in the corresponding bulk materials are 

often evidenced in ferroelectric thin films [30,31]. Considerable experimental and theoretical 

investigations were undertaken to understand the origin of degradation and of some abnormal 

FE properties in thin films, and various models have been discussed to explain this 

degradation [32,33]. However, these phenomena are still not well understood. Many authors 

suggested the existence of an interface layer with passive low permittivity called a “dead 

layer” at the electrode–ferroelectric interfaces [34]. These dead layers act electrically as 

parasitic capacitors in series with the interior of the ferroelectric film. As a result of this 

interfacial capacitance, the suppression of permittivity when the thickness of the films 

decreases (often by several orders of magnitude) may occur, which initially was thought to be 

due to the intrinsic size effect of dielectric polarization [29,35]. However, that interpretation is 

now known to be completely wrong; there are no true size effects down to about 3 nm 

thickness [35,36]. 

In the present work, we report on the structural, ferroelectric and dielectric properties of a 

relaxed ferroelectric BT thin film grown by pulsed laser deposition (PLD). Considering the 

Interface Capacitance Model (ICM), we discuss the interface layer effects on coercive fields, 

permittivity and Curie-Weiss temperature in the Pt/BT/LSCO/MgO heterostructure capacitor. 

By comparison, in bulk BaTiO3 samples, T = Tc-T0 is usually about 10 °C. For the studied 

BT film, an unusual value of Curie-Weiss temperature T0 was found to be equal to 6 °C at 1 

kHz that corresponds to a T = 126 °C; this value is dependent upon the probe frequency, 

which usually is a characteristic of relaxors and can reach below-freezing temperature values 

for low frequencies [37].  
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2. Experimental details 

The target used for PLD technique was a typical dense ceramics obtained from solid state 

reaction method. The BT thin film was grown from this target by PLD using a Lambda Physik 

excimer laser (λ = 248 nm) in a MECA 2000 UHV deposition chamber equipped with a 

furnace especially designed to heat substrates up to high temperatures. The laser beam was 

focused on the rotating target as 2 mm
2
 spot corresponding to a fluency of 2 J/cm

2
. A 100 nm 

LSCO conducting electrode layer was deposited on the (001)MgO substrate at 750 °C at a 

partial oxygen pressure of 0.2 mbar. 

The BT thin film has been deposited under an oxygen pressure of 0.1 mbar at 750°C. The film 

thickness (~400 nm) was measured, based on X-ray Laue oscillations that were observed from 

BT ultra-thin films. The surface quality of the LSCO and BT layers was monitored using 

reflection high-energy electron diffraction (RHEED). 

X-ray diffraction measurements were performed using a Siemens D5000 diffractometer with a 

monochromatic CuKα radiation. The in-plane measurements were performed using a 4-circles 

D8 Discover diffractometer. Dielectric measurements were carried out by the means of a 

Solartron SI-1260 spectrometer in the frequency range between 10
2
 and 10

6
 Hz in the 

conventional metal-dielectric-metal configuration using LSCO layer as a bottom electrode 

and sputtered platinum as a top circular electrodes (0.5 mm in diameter). 

The temperature was controlled using a Linkam TS-93 hot stage that allows a temperature 

stability of ± 0.1 K. The P-E hysteresis loops measurements were performed at a frequency of 

10 kHz with a classical Tower-Sawyer circuit using a Tektronix TDS-3032B oscilloscope, 

and ac triangular voltage source. Raman spectra were recorded from BT film excited with the 

polarized light of an Ar
+
 laser (λ =514.5nm) and analyzed using a single spectrometer 

(JobinYvon Model T64000 ) equipped with a charge coupled device. Polarized Raman spectra 

were recorded in both normal and side-view backscattering geometries using a microprobe 
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device that allows the incident light to be focused on the sample as a spot of about 1 µm in 

diameter. The BT film sample was precisely aligned with respect to the crystallographic axis 

of the MgO substrate: Z//[001]MgO, Y//[010]MgO, and X//[100]MgO. The polarized Raman 

spectra presented here were recorded in parallel (Y(ZZ)Y̅ and Y(XX)Y̅) and crossed (Y(XZ)Y̅ 

and Z(XY)Z ̅) geometries in which the incident light is polarized in parallel and perpendicular 

to the scattered light polarization, respectively.  

3. X-ray diffraction and Raman spectroscopy studies 

X-ray diffraction pattern obtained from BT/LSCO/(001)MgO thin film (Fig.1(a)) showed a 

single phase characterized by the first and second order diffraction peaks for both BT and 

LSCO layers with no parasitic phases. The BT film was single phase and well oriented since 

only one series of peaks was observed within the detection limits of our instrument. The full 

width at half maximum (FWHM) value calculated for the (200) reflection of BT thin film was 

0.12°. This value, is only three times larger than that obtained for (002)MgO substrate, and is 

coherent with the crystalline ordering. Moreover, the rocking curve recorded on (200)BT peak 

presented in the inset of Fig.1(a) shows a FWHM value of 0.7° which is close to that of MgO 

substrate (0.5°). This result confirms the good crystalline quality of BT thin film without any 

significant mosaicity. Furthermore, to confirm the epitaxial growth of BT thin film, we used 

an in-plane Schulz reflection method [38] with a 4-circle diffractometer. An off-axis scan was 

performed on the (113)BT line and is presented in Fig.1(b); it shows a regular 90° spacing in 

a total  scan range of 0-360°. The presence of four symmetric peaks indicates the cube-on-

cube epitaxial growth of the BT layer and confirms the in-plane alignment of BT film and 

MgO substrate. From Bragg law we have determined the out-of-plane lattice parameter of BT 

film that was found to be 4.010 Å, which is between the a- and c-BT-bulk lattice parameters. 
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To confirm the BT layer orientation we have used Raman spectroscopy which is a more 

sensitive method to confirm the a- or c-axis orientations of the film basing on the Raman 

selection rules. Figure 2 displays Room temperature polarized Raman spectra of BT film in 

normal and side-view backscattering geometries. The spectra recorded in parallel (Y(ZZ)Y̅ 

and Y(XX)Y̅) geometries are identical but different from that recorded in perpendicular 

(Y(XZ)Y̅ and Z(XY)Z̅) geometries which proves the excellent single crystal quality of the BT 

film. According to the Raman selection rules, for a tetragonal ferroelectric BT (point group 

C4v) with polar axis along Z (c-axis), no Raman-active modes are allowed in the spectra 

corresponding to Z(XY)Z̅ geometry. The E modes are only allowed for αzx and αzy Raman 

activity tensor components while the A1 and B1 modes are allowed simultaneously for the 

αxx and αyy. The αzz component of the Raman tensor involves A1 phonons exclusively. The 

Raman spectrum obtained for our BT film in the normal backscattering geometry Z(XY)Z̅ 

contains E modes and is similar to that recorded in side-view backscattering Y(XZ)Y̅ geometry 

(Fig.2). Note that the observed intensity difference between the two spectra is due to the 

analyzed volume which is much larger in the side-view backscattering geometry. In addition, 

the non-polar B1 mode observed at 306 cm
-1

 in  Y(ZZ)Y̅ geometry should not be observed if 

the film contains only c-domains. These features mean that the film cannot have tetragonal c-

domain symmetry and imply that the polar axis is parallel to the plane of the substrate. [39–

41] 

4. P-E and C-V measurements at room temperature 

Dynamic P-E response of BT thin film was recorded with a classical Tower-Sawyer circuit, 

and the results are reported in Fig.3. This figure shows a clear ferroelectric character with an 

ideal hysteresis loop, which demonstrates good ferroelectric behavior with a saturated 

polarization 2Ps = 64 µC/cm², remnant polarization 2Pr = 28 µC/cm² and coercive field 2EC = 
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130 kV/cm. The obtained values are in good agreement with those reported by Shimuta et al. 

[42] and Choudhury et al. [43]. In Fig.3 we present also the switching current for BT film 

characterized by a maximal value of 2.80 µA that corresponds to EC.  

Additional C-V measurements were performed for better understanding of the switching 

mechanism of dipoles and the results are presented in Fig.4. These experiments were 

performed in the dc-mode to highlight the ferroelectric response of the easily reversible 

dipoles [44] in BT thin film. Figure 4 confirms the good ferroelectric properties of the studied 

BT film by the electric bias dependence of real dielectric permittivity r(E) curve and the 

integrated easily reversible polarization curve deduced from these data, using the relation: 

Prev = (1/S) C(V)dV   (1) 

where S is the electrode surface, C(V) is the measured capacitance as a function of voltage, 

and  is the integral in the voltage range (from –Vm  to  Vm), where Vm is the maximum voltage 

value. 

The dielectric permittivity r' was calculated using the relation: 

r' = C d/(0 S),    (2) 

where d is the thickness of the film and 𝜀0 is the permittivity of vacuum. High permittivity of 

about 1300 is obtained at EC=20 kV/cm in the C-V measurements (Fig.4). The obtained value 

2Prs = 1 µC/cm² for the remnant polarization in a static mode (easily reversible dipole 

response) is small, and its contribution to the total Pr can be neglected. This value was 

reported in the literature for PZT thin films to be of about one-third of the Pr values in P-E 

dynamic recording [44]. Recall that the tunability  = ((0) - (E))/(0) value calculated for 

the BT thin film was 57% when the applied field is E=100 kV/cm, indicating that dipoles can 

switch without much constraint. That means also that BT thin film could be used for tunable 

microwave applications, since it presents high permittivity, low loss factor, good P-E response 

and tunability. However, high coercive field value obtained for BT film compared to BT bulk 
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material argues in favor of the presence of dead layers at interfaces, which are studied in the 

following section.  

5. Temperature and frequency dependence of dielectric permittivity  

Dielectric permittivity versus temperature measurements were performed on a 

Pt/BT/LSCO/(001)MgO heterostructure thin film in a cylindrical capacitance shape having a 

thickness of 400 nm and electrode surfaces of 0.025 mm².  

Temperature dependence of the real dielectric permittivity and of the loss factor measured on 

heating at different frequencies are shown in Fig. 5. This figure shows a diffuse dielectric 

anomaly around 132 °C with a large dielectric permittivity peak value of 1700 at a frequency 

of 100 Hz. This behavior confirms a relaxed state of the studied BT thin film. Indeed, a higher 

value of FE-PE phase transition temperature (TC) as compared to bulk BT is usually reported 

for a strained BT thin films deposited by PLD on SrTiO3 (ST) substrates [45]. Trithaveesak et 

al. [46] also reported that coating the ST substrate by a 50 nm conducting SrRuO3 (SRO) 

electrode have led to a FE-PE phase transition temperature close to that of BT bulk material.  

In our case the presence of the LSCO electrode layer appears to be a source of partial 

relaxation of epitaxial strain imposed by the MgO substrate, which leads to a TC value very 

close to that of the BT bulk material (120-130°C). Furthermore, the thermal hysteresis width 

of the permittivity-temperature curve is 15°C, as shown in the inset of Fig.5 which is 

characteristic for the first-order phase transition. However, the Curie-Weiss temperature T0 

deduced from the Curie-Weiss law shifted to low temperatures and depended on frequency. 

Namely, T0 varies from -11°C to 8°C when the signal frequency increases from 100 Hz to 10 

kHz. Thus a large gap exists between the temperature of dielectric anomaly TC and the Curie-

Weiss temperature T0. The frequency dependence is however not the same for capacitance 

C(V,T,f) curves and for polarization hysteresis P(V,T,f) curves. 
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The results obtained at different frequencies are summarized in Table 1. The abnormal 

temperature gap T=TC-T0 is larger at low frequencies. The presence of dielectric dispersion 

and the diffuse FE-PE phase transition can probably be attributed to the presence of oxygen 

vacancies responsible for space charge and/or to the presence of residual weak constraints 

related to PLD epitaxial growth. Both these factors are known to produce a relaxor-like 

dielectric behavior in thin films [37]. In addition, we observe in Fig. 5 a frequency dispersion 

of permittivity values; while the TC value is the same for all frequencies hence not displaying 

a relaxor-like behavior. Therefore, to explain the dead layer effect, we use in this paper a 

simplified interface capacitance model method taking into account the effects of the interfaces 

between the layers in the Pt/BT/LSCO heterostructure and we compare our results with those 

obtained for similar compounds previously [47,48]. According to this model a frequency 

dispersion of permittivity values, especially at high frequencies may be attributed, at least 

partially, to a comparatively high resistance of the LSCO electrode [48]. Although the 

ferroelectric hysteresis loops in our BT thin film are quite good, the Curie-Weiss temperature 

extrapolated from dielectric measurements seems to depend strongly on frequency and it is 

shifted to low temperatures, far below TC. This behavior is abnormal, that is why we focus our 

study on the phase transition behavior in this thin film, using an interface capacitance model.  

Indeed, BT thin film should be considered in our case as heterostructure consisting of a series-

connected substrate-interface-BT thin film, except that in our case the material presents no 

substantial relaxor effects. We studied the influence of the I/dI ratio (where dI and I are the 

thickness and the permittivity of the interface layer, respectively) on the dielectric behavior of 

the film and we describe completely the effects of the dielectric response perturbation in a 

self-consistent way. We have not neglected the value of I/dI, but we separated out its 

influence on the dielectric properties of the thin film itself, assuming that I/dI is temperature 

independent.  
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6. Series interface capacitance model 

Our main question concerns the EC value which seems to be much larger (EC = 65 kV/cm), 

than that reported for a bulk BT single crystal (~1 kV/cm) [49]. Let us recall that theoretical 

approach on the coercive field of BaTiO3 single-domain crystals was previously proposed by 

Janovec in 1958 [50]. However, such a great increases of EC with decreasing thickness is 

known for most ferroelectrics and was described for almost 50 years via the Kay-Dunn model 

[35]. 

This measured EC value can be attributed to the effects of the interface capacitance, since the 

stress effects are neglected, because the values of TC, Pr and the real part of dielectric 

permittivity (r'), to be normal. As was already mentioned above, the gap between TC and T0 

is very large, though we deal with a relaxed and epitaxial BT thin film. These considerations 

guided us to focus our investigation on the role of interface layer capacitance in the 

ferroelectric response of the studied BT thin film. 

The effects of a dead layer were taken into account in the P-E and C-V responses of the thin 

film considered as a heterostructure. This investigation can be used for every grown thin film 

to highlight the effective contribution of the thin film to the overall ferroelectric response. BT 

heterostructure was modeled as a series-connected tri-layer each with its own capacitance. 

Calling respectively, CH, CI and CF the capacitance of the heterostructure, interface layer and 

BT ferroelectric layer, we can express the total capacitance as: 

1/CH = 1/CI + 1/CF ,     (3) 

where each element is assumed to be a planar capacitance, 

C = 0rS/d      (4) 

in which S is the electrode area; d, the layer thickness; 0, vacuum permittivity; and r, relative 

permittivity of each layer.  

This gives 
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dH/H= dF/F+ dI/I      (5) 

where 𝑑𝐻, 𝑑𝐹 and 𝑑𝐼 are the thickness of the heterostructure, of the BT layer and of the 

interface layer, respectively; and dH = dI + dF  dF, because the interfaces thickness dI  dF. 

Hence, the equation (5) could be expressed as reported by Tyunina et al. [48]: 

1/H  1/F+ dI/(I dH) = 1/F + (1/dH)(dI/I)  (6) 

Previous studies of epitaxial thin films of different ferroelectrics grown on MgO substrates 

with LSCO bottom electrodes and with Pt top electrodes have shown that I/dI ratio can be 

considered temperature-independent at least within the -200 to 250 °C temperature range [48]. 

However, I/dI ratio depends on frequency. It is worth to note that we varied the I/dI value in 

order to obtain a T = TC-T0 close to that observed in BT bulk materials. The Curie-Weiss 

temperature obtained from equation (6) varied substantially as a function of I/dI and 

accordingly T=TC-T0  values varied  from a very large gap (at the lowest T0) to a small gap 

(at T0 close to TC). In Fig.6 we show the experimental 'r(T) and 1/'r(T) curves measured at 1 

kHz and fitted by Curie-Weiss law (Fig.6(a)) and the similar dependences calculated in the 

frame of the Interface Capacitance Model using the tested values I/dI = 4, 5 and 6 nm
-1

 

(Figs.6(b-d)). It was found out that for I/dI > 6 nm
-1

 the T exceeds 30°C which is much 

larger than T values observed for BT bulk (Fig.6(b)). For I/dI < 4 nm
-1

 the value of T0 is 

higher than TC leading to negative T values and the permittivity maximum becomes much 

higher than those ever observed for BT single crystals (Fig.6(d)). The realistic simulation of 

I/dI was finally considered in the range from 4 to 6 nm
-1

. The best value of I/dI was found to 

be about 5 nm
-1

 that corresponds to T= 10°C and T0 = 122°C, as in the case of bulk BT.  

When taking into account the Maxwell equations of continuity at the interfaces, we can write 

F EnF = I EnI for normal projection of applied electric field, and then : 

FVF/dF=IVI/dI     (7) 
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where VI is a voltage applied to the interface layer and VF is a voltage applied to the BT layer. 

We assume that VH = VI + VF is the voltage applied to the heterostructure. 

From relation (7) we deduced the effective voltage (VF) applied to the ferroelectric layer as a 

function of VH, the voltage applied to the heterostructure:   

VF=VH/[(F/dF)(I/dI) + 1]    (8)  

This expression in the case of I/dI = 5 nm
-1

 permits us to calculate the circuit characteristic 

values in P-E and C-V measurements for the effective value of the voltage applied to the BT 

layer in this heterostructure. The coercive fields obtained in P-E and C-V measurements were 

estimated to be ~ 16 kV/cm and ~ 4 kV/cm, respectively. These results show that only about 

the quarter of the applied field value drops across the proper BT ferroelectric layer while the 

other 75% drops across the interface (dead layer) in this heterostructure. 

7. Conclusion 

Epitaxial BT thin film was grown on (001)MgO substrate coated with 100 nm LSCO 

conducting layer using pulsed laser deposition. The relaxed BT film presents a dielectric 

anomaly at TC =132°C, as in the bulk BT material, with a dielectric permittivity maximum of 

1700 at 100 Hz. Dielectric P-E and C-V measurements were performed to characterize the 

ferroelectric behavior of the BT thin film.  An abnormal gap between TC and extrapolated 

Curie-Weiss temperature T0 exceeding 126 K at 1 kHz was revealed. This gap depends upon 

frequency and is attributed to an interfacial passive dead layer with permittivity I and 

thickness dI in this heterostructure. Using an interface capacitance model we highlight the 

contribution of this dead layer to the ferroelectric response of the heterostructure. The best-fit 

value of Curie-Weiss temperature (T0=122°C ) is obtained for the I/dI ratio of about 5 nm
-1

. 

The effective values of the remnant polarization Pr and coercive field Ec imply that only 25% 

of the applied electric field actually drops across the ferroelectric film. 
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Figure and table captions 

 

Fig. 1: (a) X-ray diffraction pattern  recorded on BT thin film showing (h00) orientations out-

of-the substrate plan view and (b) its scan showing an epitaxial growth and regular tailoring in 

(113) direction. The inset in Fig.1(a) shows a rocking curve recorded on (200) BT peak. 

 

Fig.2 : Room temperature Raman spectra of BT film recorded in parallel (Y(ZZ)Y̅ and 

Y(XX)Y̅) and crossed (Y(XZ)Y̅ and Z(XY)Z̅) light polarization geometries. 

 

Fig.3: P-E hysteresis loop and integrated switching current recorded for BT thin film in a 

dynamic mode using a Sawyer -Tower circuit. 

 

Fig.4: r' -E butterfly curve recorded for BT thin film in a static mode and its corresponding 

free reversible polarization.  

 

Fig.5: Temperature dependencies of the real part of permittivity 'r  and loss factor for BT thin 

film measured at several frequencies in the course of heating . The inset shows thermal 

hysteresis of the  'r(T) curve confirming first order character of phase transition in the film 

studied. 

 

Fig.6: Experimental 'r(T) and 1/'r(T) curves measured at 1 kHz and fitted by Curie-Weiss 

law (panel (a)) and similar dependencies calculated in the frame of the Interface Capacitance 

Model using different values of the I/dI ratio (panels (b-d)). 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Curie-Weiss temperature, temperature gap and Curie constant depicted from Curie-

Weiss law. 
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Figures 

 

 

 

       
 

 

Fig. 1: (a) X-ray diffraction pattern  recorded on BT thin film showing (h00) orientations 

out-of-the substrate plan view and (b) its scan showing an epitaxial growth 

and regular tailoring in (113) direction. The inset in Fig.1(a) shows a rocking curve recorded 

on (200) BT peak. 

 

 

 
 

Fig.2 : Room temperature Raman spectra of BT film recorded in parallel (Y(ZZ)Y̅ and 

Y(XX)Y̅) and crossed (Y(XZ)Y̅ and Z(XY)Z̅) light polarization geometries. 
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Fig.3: P-E hysteresis loop and integrated switching current recorded for BT thin film 

in a dynamic mode using a Sawyer -Tower circuit. 

 

 

 
 

Fig.4: r' -E butterfly curve recorded for BT thin film 

in a static mode and its corresponding free reversible polarization.  
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Fig.5: Temperature dependencies of the real part of permittivity 'r  and loss factor for BT thin 

film measured at several frequencies in the course of heating . The inset shows thermal 

hysteresis of the  'r(T) curve confirming first order character of phase transition in the film 

studied. 
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Fig.6: Experimental 'r(T) and 1/'r(T) curves measured at 1 kHz and fitted by Curie-Weiss 

law (panel (a)) and similar dependencies calculated in the frame of the Interface Capacitance 

Model using different values of the I/dI ratio (panels (b-d)). 
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Table 

 

 

Table 1: Curie-Weiss temperature, temperature gap and Curie constant depicted from Curie-

Weiss law. 

 

Frequency T0 (°C) T=TC-T0 (°C)  C× 105 (K) 
100 Hz -11 143 2.70 
200 Hz -3 135 2.46 
1 kHz 6 126 2.23 
10 kHz 8 124 2.11 
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Graphical abstract 
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Highlights 

 

 Epitaxial BaTiO3 (BT) thin film of about 400 nm thickness was grown on (001)MgO 

coated LaSr0.5Co0.5O3 (LSCO) by PLD techniques 

 Fitted to a Curie-Weiss law, the calculated T0 revealed an abnormal value, attributed 

to the dead-layer effects in ferroelectric response in BT film 

 The effective ferroelectric characteristics Pr and Ec values imply that only 25% of the 

applied field actually drops across the ferroelectric film 
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