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Abstract: Many vital interdependent cellular functions including proteostasis, lipogenesis and
Ca2+ homeostasis are executed by the endoplasmic reticulum (ER). Exogenous
insults can impair ER performance, this must be rapidly corrected or cell death will
ensue. Protective adaptations can boost the functional capacity of the ER and forms
the basis of the unfolded protein response (UPR). Activated in response to the
accumulation of misfolded proteins, the UPR can halt protein translation while
increasing protein-handling chaperones and the degradation of erroneous proteins via
a conserved three-tier molecular cascade. However, prolonged activation of the UPR
can result in the maladaptation of the system, resulting in the activation of inflammatory
and apoptotic effectors. Recently, UPR and its involvement in neurodegenerative
disease has attracted much interest, and numerous potentially "drugable" points of
crosstalk are now emerging.
Here, we summarise the functions of ER and UPR, and highlight evidence for its
potential role in the pathogenesis of Alzheimer's disease (AD), before discussing
several key targets with therapeutic potential.
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Reviewer Comments: 

 

Reviewer #1: This submission BP-17-20 describes the intrinsic machinery which helps the cell during 

pathological events to expel abnormally folded proteins. One such proteinopathy is Alzheimer's 

disease, in which multiple proteins are processed and aggregated into clumps which the cell has to 

expel. A further corollary of this processing anomaly is the induction of inflammatory reactions. All 

these mechanisms provide potential targets for disease-modifying treatments of neurodegenerative 

diseases. 

As the answer of the cell to abnormally folded proteins, the UPR provides a protective mechanism 

for the endoplasmic reticulum and aids in the destruction of proteinaceous aggregates. It comprises 

three semi-independent cellular pathways, which the authors have summarised in Fig. 1. Important 

not only in the context of AD is the observation that all proteinopathies are sensitive to UPR as a 

disease-related mechanism. So understanding the mechanist underpinnings for one disease will 

likely be directly translatable to the other. For AD, there is now an established link between UPR and 

amyloid/tau pathology. 

The authors describe in great detail, how the cellular cascades interlink and how crosstalk can be 

established once any single or multiple UPR pathways are activated. Chronic activation of UPR is 

likely a reaction to any stressor which is present continuously. It follows that selective acute 

activation of the UPR is protective to the cell, but long-lasting UPR activity likely ends in apoptosis. 

Therefore, suppression of UPR (and possibly its specific components) provides a novel molecular 

target for disease treatment. Proof of efficacy of PERK or elF2 blockers is provided by lowered 

amyloid levels and reduced tau phosphorylation, and many interactive processes (Calcium 

homeostasis; glutamate toxicity, etc.) are presented. This also includes early evidence for the 

beneficial effects of UPR suppression on cognition and behaviour in general. 

 

While this is a welcome addition to the overall collection of papers on dementia for this issue, there 

are several issues here: 

 

1. The manuscript could be improved in its language and I below list some of the spelling mistakes I 

found. 

 

2. On page 4, abbreviations in paragraph 2: The abbreviation DGP is introduced as diacylglycerol 

phosphate. Later, DGP is combined with other terms which are not related to diacylglycerol and this 

is confusing.  

Response: 

 In order to avoid confusion abbreviations relating to DGP have been removed. 

 

3. Page 8, end of section 2.1.1. It would be quite instructive if some additional work on PERK and JNK 

in the context of memory formation/Learning could be added here. Specifically, I am thinking of the 

work of Zhu S et al., 2016, Plos One; and Ounallah-Saad et al in JNeuroscience. Both papers report 

on the cognitive benefits of a lowering of PERK by either genetic or pharmacological means. 

 

Response to Reviewers



Reply 

We thank the reviewer for drawing our attention to the recent work of Zhu et al. On page 8, we had 

already discussed the findings of Ounallah-Saad et al, but have now modified the paragraph to read 

as follows: 

“Interestingly, despite the superior performance of genetically deficient PERK mice in 

behavioural tasks that require protein synthesis for learning , such mice demonstrated 

reduced working memory in several tasks known to be independent of protein synthesis. 

The latter may indicate an additional role of PERK in the regulation Ca2+ dynamics (Zhu et al., 

2016)”. 

 

4. Section 2.1.3: Recently Zhang Y et al. (Neurosci Res. 41 : 2517- 2016) provided evidence that 

inhibition of ATF-6 can recover deficits in spatial learning in rats. While this is not direct evidence for 

a potentially protective role of suppressing UPR against AD pathology, it provides indirect support 

for a putative treatment against the chronic expression of ATF-6 and I would think this could be 

added to the section. 

Reply 

We have now added a commentary on this interesting finding.  Page 11 now reads: 

“Nevertheless, at least in Parkinson’s disease, the activation of ATF-6 has been shown to be 

protective in association with an increased expression of the ERAD machinery (Egawa et al., 

2011) yet the deposition of α-synuclein may inhibit ATF-6 activation and ER-Golgi trafficking 

(Credle et al., 2015). Despite this protective role, recent work suggests that administration 

of taurine, may protect aged rats from isoflurane-induced hippocampal apoptosis via the 

reduction of CHOP in an ATF-6 dependent manor (Zhang et al., 2016b). These contradictory 

findings, highly the need for increased research into the role of ATF-6 in AD and it’s 

pathology.” 

 

 5. Page 19, second paragraph: FDA approval for Memantine (Namenda) is for moderate-to-severe 

AD, not as stated by the authors for mild-to-moderate AD. Please correct. 

Reply 

This has been amended 

 

 

 

 



6. Page 19, last paragraph: the authors describe the efficiency of 'Dimebon' on mitochondrial 

function. However, Dimebon is the trade name and to be consistent with the previous paragraph, I 

suggest that the authors replace it with the compound name - Latrepirdine. 

Reply 

This has been amended 

 

7. Table 1: The table could be referenced better in the main text as it contains information for 

multiple sections, but is only cited on page 15. 

Reply 

Reference to the table is now provided page 15, 16, 18 and 19 at relevant points. 

 

Please correct: (elements to be added are underlined) 

- Page 3, line of last paragraph (1.2 Protein Folding): it should read … post-translational modification 

….. 

- Page 4, 7 from bottom: delete ultimately 

- Page 5, line 2: should read …one aspect has consequences….. 

- Page 5, line 18, end of line. Delete one …in in … 

- Page 5, last line. End sentence after Ogata et al. 

- Page 6, line 7 should read: … and hence a promising ….. 

- Page 8, line 5 from bottom should read: ….separated by an intronic….. 

- Page 9, line 9: please add to …not only acts as a protein chaperone ….. 

- Page 9, line 11, please delete as indicated: …accordance with the UPR…. 

- Page 9, line 14: it should read …secretases … 

- Page 10, line 2: overserved - not correct 

- Page 10, Line 9: ..variety of growth factor deprivations … - makes no sense. 

- Page 10, line 15 from bottom: …JNK activation, in particular …. been linked with the age-dep….. - 

please add. 

- Page 10, line 10 from bottom: …the association of JNK activation …. - please add. 

- Page 12, line 11: sustained pathological environment - is this correct? 

- Page 12, line 15, end of sentence: … as well as apoptosis. - is this correct (I do not understand). 

- Page 13, line 2: …compromise of ER physiology …. 

- Page 13, line 15 from bottom: …stress led to an similar … - please delete. 

- Page 14, line 9 from bottom: These include … - delete s 

- Page 14, last line: … the outcome for molecular ER stress pathways remains unreported. This 

sentence makes no sense to me. Please reword. 

- Page 15, 7: …in systemic disease models .. - delete s in diseases! 

- Page 15, line 16: … rather than … 

- Page 16, line 10: please correct to .. Tg2576 mice … 

- Page 16, line 13: … but not their maintenance. Makes no sense, please rephrase. 

- Page 16, line 10 from bottom: please correct author name to: Guthrie et al 

- Page 16, line 8 from bottom: … tauopathy models and …. 

- Page 16, line 2 from bottom: … limited the drug's therapeutic … 



- Page 17, line 14: … whilst actually …. 

- Page 18, line 16 from bottom: .. injected with 18ibrillary…. - please correct. 

- Page 19, line 18: excitotoxicity. 

 

Reply 

 These changes have been made and can be found highlighted in the text. 

 

 

Reviewer #2: 

This is an interesting review about the unfolded protein response in AD, and the prospective 

pathways of the unfolded protein response. This all leads to putative therapeutic targets to slow 

down the progression of AD. It is a timely review, and the selected papers (although it is not made 

clear which selection procedure was followed) seem adequate in most cases. The underlying 

mechanisms are well described, with substantial detail. As a consequence, though, the authors do 

not show much mercy to readers less familiar to the many interactions and players in this area. 

Nevertheless just enough concluding sentences and brief summaries are given to keep the review 

readable. In addition, the figure is of great help, nicely depicting the main players and interactions. 

All together this is a nice and valuable review. I have only some minor issues listed below. 

 

1) End page 5: it is a long sentence; better to split it up.  

Reply 

Sentence has now been broken into two to read:  

“In concert, all three arms of UPR also act to promote the expression/activation of pro-inflammatory 

mediators via the transcription factor activating protein-1 (AP-1) and nuclear factor κB (NF-κB;  Garg 

et al., 2012).  Inflammatory cells recruited to the damaged tissues may act as further contributors to 

cellular dysfunction and apoptosis.” 

 

2) Not all abbreviations are introduced in the text (for example BIP), although they are listed in the 

legend of figure 1. Please check carefully. 

 

Reply 

The manuscript has check for these omissions. 

 

3) There are many typo's in the manuscript, like "within in the Chinese population” (p9), "mutation 

have been" (p10), table instead of Table, Berridge 2009 = Berridge 2010, etc etc. Please check 

carefully! 

Reply 

The manuscript has been checked and typos corrected. 



 

4) page 18: "AD rats". Please rephrase as these rats do not have AD 

Reply 

“AD rats” has been rephrased to a “rat model of AD” 

 

5) Please explain what ibrillary means (ibrillaryAB1-42), as I assume not all readers will know.  

Reply 

We apologises for the confusion on this point, this is a result of a typo and should read fibrillary, the 

manuscript has been amended accordingly 

 

6) Berridge 2010 is not the correct citation for the calcium hypothesis of AD. Please rephrase 

(reviewed in Berridge 2010) or cite the original papers here. 

Reply 

We have amended this to read “reviewed in Berridge, 2010” 

 

7) A brief statement on how the cited papers were selected (selection criteria) would be 

appreciated. 

In addition to key papers (largely reviews) that introduce the broader topic, we have selected papers 

that offer novel aspects of UPR’s role, either functionally or as drug targets. 

 

 



Figure Click here to download Figure Figure 1.tif 
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Drug Mode of action In vitro outcomes In vivo outcomes References 

Endogenous chaperone promoters  

BIX 
Increase in BIP, GRP94 
and calreticulin  

 Chemically induced UPR - Reduced caspase activation 
and apoptotic cell death  

Cerebral artery occlusion and  chemical induced 
retinal damage -Reduced CHOP and XBP-1 
expression and neuronal death.   

Inokuchi et al., 2009 
Kudo et al., 2007 
Oida et al., 2008+2010 

MS275 HDAC Inhibition 
Diminished ERSRE 
repression  

Increased BIP expression 
 

N.R. Baumeister et al., 2009 
Trichostain A 

Valproic acid Increased BIP expression Increased BIP expression in rat cortex Wang et al., 1999 

Proteostasis promoters 

PBA 

Undetermined.  
Likely indirect  
promotion of protein 
chaperone handling 

Aβ treatment -Decreased BIP and CHOP expression, JNK 
activation and p-tau.* 

Tau 35 mice -Decreased p-tau and synaptic loss.                                                                                      
AD mice - Age dependent reduction in plaque load, 
GSK3β activation and p-tau and maintained 
synaptic integrity. Improved cognitive 
performance.  

Bondulich et al., 2016 
Cuadrado-Tejedor et al., 2013. 
Ricobaraza et al., 2009+2012 
Wiley et al., 2011 
Zhang et al., 2016 

TUDCA 

Chemically induced UPR -Reduced apoptotic cell death.                                                   
Aβ treatment - Diminished spine loss, pro-apoptotic BAX 
expression, p-tau and JNK and caspase activation. 
Reduced apoptotic cell death.* 

AD  mice -Reduced plaque deposition,  GSK3β 
activation, p-tau, inflammation and maintained 
synaptic integrity . Improved cognitive 
performance. 

Dionísio et al., 2015 
Lo et al., 2013 
Nunes et al., 2012 
Ramalho et al. 
2004+2006+2013 
Sola et al., 2003 
Viana et al., 2010 

JNK inhibitors 

D-JNKI 1  Substrate site  N.R. 
AD mice - Decreased plaque load and Aβ  
oligomers. Improved synaptic plasticity and 
cognitive performance. 

Sclip et al., 2011 

Ginsenoside Rg1 
Gensing extract -
prominent JNK 
inhibition 

N.R. 
AD rat -Decreased BIP, GRP94 and IRE-1 expression 
and caspase activation. Reduced plaque and tau 
load.  

Mu et al., 2015 

SP600125 ATP site  
Aβ treatment- Reduced Bcl-X and Bcl-W pro-apoptotic 
factors and cytokine release and cell death.*                                                                                                
FAD gene expression - Protective against H2O2 challenge    

Aβ treatment- maintained Bcl2 expression and 
mitochondrial biogensis, reduced BAX expression 
and caspase activation.                                
AD mice - Decreased plaque load, p-tau and 
inflammation. Improved cognitive performance. 

Bamji-Mirza et al., 2014 
Mahamnadi et al., 2016 
Mahmoudreza et al., 2011 
Marques et al., 2003 
Xu et al., 2015 
Yao et al.,2005 
Yenki et al., 2013 
Zhou et al., 2015 

  

Table



PERK / eIF2α pathway inhibitors 

GSK2606414 PERK inhibitor-ATP site 
Chemically induced UPR - Decreased p-eIF2α and 
release of pro-inflammatory cytokines.                      
2DG Torpor model –Decreased p- eIF2α and p-tau. 

 rTg4510 tau mice - Decreased p-PERK, p- eIF2α, 
ATF-4 expression, GSK3β activation, p-tau and 
neuronal loss. 

Guthrie et al., 2016 
Radford et al., 2015 
Van der Harg et al., 2014 

ISRIB 
Inhibitor of 
downstream eIF2α 
pathways 

Chemically induced UPR- Reduced ATF4, CHOP and 
GADD34 expression, maintained protein synthesis but 
increased apoptosis. 

Prion inoculated mice - Unaltered p-eIF2α, 
reduced ATF4 expression, degeneration, protein 
synthesis recovery and increased survival. 

Halliday et al., 2015 
Sidrauski et al., 2013 

GSK3 Inhibitors 

Lithium Undetermined  

Chemically induced UPR -Increased BIP and anti-
apoptotic Bcl2 expression. Decreased CHOP expression 
and caspase activation and cell death.*  

AD mice – Decreased plaque load, reduced APP full 
length and CTFs and p-APP and p-Tau. Reduced 
astrocyte activation and maintained synaptic 
markers. Improved cognitive performance. 

Avrahami et al., 2013 
Chen et al., 2004 
Hiroi et al., 2005 
Hu et al., 2009 
Meares et al., 2011 
Rockenstein et al., 2007 
Song et al., 2002 
Serenó et al., 2009 
Takadera et al., 2006 
Toledo and Inestrosa, 2010 
Ly et al., 2012 

L803-mts 
Substrate  site  

AD mice – Decreased plaque load.  Improved 
cognitive performance 

TDZD 
Non-ATP site  

AD mice – reduced plaque load, p-tau and gliosis, 
Improved cognitive performance. 

BIO 

ATP site  

Aβ treatment – reduced p-tau, p-JNK, caspase 
activation, gliosis and neurodegeneration.   
AD mice- Reduced Aβ, reduced BACE1 expression, 
reduced NF- κB 

CHIR99021 

Paullone derivatives 

SB216763 

Ca2+ modulators 

Dantrolene RYR antagonist 
Amyloidogenic oligomer treatment - Decreased BIP 
expression and caspase activation.  

Cerebral artery occlusion model -Decreased p- 
PERK and p-eIF2α, and infarct volume.   
AD mouse model - Decreased Aβ production and 
plaque load.  Improved cognitive performance. 

Li et al., 2005     
Oulès et al., 2012 
Teixeira et al., 2006                   

 

Table 1: UPR-targeting pharmacological agents.  Drug categories are listed based on the primary mode of action, and major outcomes reported in vitro and in vivo. 

Phosphorylation is indicated by a “p-“ prefix . Where drugs have been evaluated for protective abilities in disease models / or cellular stress the description is given in bold. * 

denotes where in vitro studies have been conducted in primary neuronal cultures as oppose to cell lines.  Abbreviations: Aβ = beta amyloid, AD= Alzheimer’s disease,  ATF-4 = 

Activating transcription factor 4, ATP= adenosine triphosphate, BACE1= β secretase,  BAX= Bcl2 associated X, Bcl = B-cell lymphoma, BIO= 6-bromoindirubin-3′-oxime, BIP = 

binding immunoglobulin protein, BIX= BIP inducer X, CHOP= CCAAT enhancer binding protein homologous protein, eIF2α = eukaryotic initiation factor 2α kinase, ERSRE= 

endoplasmic reticulum stress response element, GADD34 = growth arrest and DNA damage inducible protein 34, GRP94 = glucose regulated protein 94 , GSK3β, Glycogen 

syntheses kinase 3β, HDAC = histone deacetylates, IRE-1 = inositol-requiring enzyme 1, ISRIB = integrated stress response inhibitor, JNK= Jun-N-Kinase, NF-κB= Nuclear factor κB,  

N.R. = not reported, PBA= 4-phenyl butyric acid, PERK = PRK-like ER kinase , RYR = ryanodine receptor, TDZD= thiadiazolidinone,  TUDCA = tauroursodeoxycholic acid, UPR= 

Unfolded Protein Response, XBP-1 = Xbox protein 1 and 2DG = 2-deoxy-D-glucose. 
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Abstract  

Many vital interdependent cellular functions including proteostasis, lipogenesis and Ca2+ 

homeostasis are executed by the endoplasmic reticulum (ER). Exogenous insults can impair 

ER performance:, this must be rapidly corrected or cell death will ensue. Protective 

adaptations can boost the functional capacity of the ER and forms the basis of the unfolded 

protein response (UPR). Activated in response to the accumulation of misfolded proteins, the 

UPR can halt protein translation while increasing protein-handling chaperones and the 

degradation of erroneous proteins via a conserved three-tier molecular cascade. However, 

prolonged activation of the UPR can result in the maladaptation of the system, resulting in 

the activation of inflammatory and apoptotic effectors. Recently, UPR and its involvement in 

neurodegenerative disease has attracted much interest, and numerous potentially 

“drugable” points of crosstalk are now emerging.  

Here, we summarise the functions of ER and UPR, and highlight evidence for its potential role 

in the pathogenesis of Alzheimer’s disease (AD), before discussing several key targets with 

therapeutic potential.  

Keywords: Amyloid, Alzheimer’s disease, apoptosis, endoplasmic reticulum, ER stress, tau, 

neurodegeneration, homeostasis, proteostasis, drug discovery. 
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1. The endoplasmic reticulum and its role in age-related disease  

The endoplasmic reticulum (ER) is central to an array of cellular processes, including protein 

translation and modification (Schwarz and Blower, 2016), lipogenesis (Fagone and Jackowski 

et al., 2009) and Ca2+ homeostasis (Berridge et al., 2003); the disturbance of such functions is 

implicated in a wide range of disease processes. Here, we briefly summarise aspects of ER 

stress associated with neurodegenerative processes. 

1.1. Ca2+ homeostasis 

The ER (in concert with mitochondria) is the cellular organelle responsible for Ca2+ 

homeostasis, and maintains a high Ca2+ gradient (0.1mM ER lumen vs 10nm cytoplasmic; 

Moore et al., 1975). This gradient is crucial particularly for excitable cells such as neurons, as 

it forms the basis for intra- and inter-cellular communication, and must be maintained despite 

the high associated energy demand. ER stores are regulated by the Sarco/endoplasmic Ca2+ 

ATPase pump (SERCA ATPase),; which scavenges passive Ca2+ leaks and recaptures Ca2+ 

released by inositol triphosphate (IP3) signalling, or via Ca2+ induced Ca2+ release due to 

ryanodine receptor (RyR) stimulation (Berridge et al., 2003).  

Both ionotropic and metabotropic signalling can trigger Ca2+ release from ER stores, which in 

turn causes extracellular Ca2+ influx via the activation of store store-operated Ca2+ channels 

(SOCC:; Koss et al., 2009, & 2013), ensuring refilling of ER stores refilling, strengthening Ca2+ 

dependent signalling as well as activating distinct signalling pathways (Bobe et al., 2011, Zou 

et al., 2011;  and Selvaraj et al., 2012). The importance of Ca2+ homeostasis and excitotoxicity 

in neurodegenerative diseases has been acknowledged for many years; respective reviews on 

the topic have been published previously (see for example Berridge, 2010).  

 

1.2. Protein folding 

The ER is the cellular centre for post-translational modification of newly synthesised proteins 

leading to the adoption of the correct tertiary structure. Those mRNA sequences containing 

an ER recognition sequence encode proteins destined for either membrane integration or 

secretion, and contain a sequence recognition particle (SRP). The SRP-guided translocation 

process feeds polypetides into the ER via a highly conserved heterotrimeric transmembrane 

protein channel translocon complex. Once inside, proteins undergo sequential post-

translational modifications via e.g. N-linked glycosylation, signal peptide cleavage, disulphide 

bond formation, pro-isomerization and oligomerization, each of which prompt, facilitate and 

stabilise proper protein folding. Critical to this process are numerous ER ER-resident protein 

chaperones, including members of the heat shock protein (HSP) family, BIP (binding 

immunoglobulin protein) and GRP94 (glucose regulated protein 94), as well as carbohydrate-

selective chaperones such as cCalnexin and  Ccalreticulin (Schwarz and Blower, 2016). Many 

of these chaperones are multifaceted i.e. they carry out a variety of functions dependent on 

their interaction with adaptor proteins and the hydrolysis of ATP. For example, the protein-

Formatted: Font: Bold, Not Italic

Formatted: Indent: Left:  0.25",  No bullets or numbering

Formatted: Indent: Left:  0.5",  No bullets or numbering
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binding chaperone BIP requires nucleotide exchange factors  such as Sil1 to regulate activity-

dependent substrate binding whilst the association of ER J-domain protein (ERDJ) family 

members assists in localising a variety of different substrates and thus exerts a degree of 

functional control. Such functions include the association of BIP’s association with the 

translocon pore that  recruits emerging polypeptides into the ER lumen, whilst also preventing 

ionic flow mediated by ERDJ1/2. Additionally, the binding of unfolded proteins via ERDJ 3/6 

and ERDJ 4/5 promotes binding of BIP’s binding to misfolded proteins and hence their 

subsequent degradation (Braakman and Hebert, 2013). Only successfully chaperoned 

proteins are correctly presented for enzymatic modification and ultimately available for 

transport to the Golgi apparatus.    

1.3. Lipid biosynthesis 

In concert with its roles in protein translation, the ER is the main site for lipid synthesis. High 

levels of glycerol-3-phosphate, O-aclytransferase and 1-acyl-sn-glycerol-3-phosphate O-

acyltransferase, needed for the production of diacyl-glycerol phosphate, are present in the 

ER, alongside phosphatidic acid phosphatase enzymes which convert diacyl-glycerol 

phosphate  to diacylglycerol, the basis of all phospholipids. As such the ER is the primary site 

for production of most gylcerophospholipids, phosphatidylcholine and 

phosphatidylethanolamine, and also the storage of lipids in the form of triacylglycerol (Fagone 

and Jackowski et al., 2009). In contrast to the self-contained production of 

gylcerophospholipids, the production of ceramide-containing sphingolipids is only initiated in 

the ER, which generates ceramides prior to trafficking to the Golgi apparatus where 

sphingolipid synthesis is completed (Futerman and Riezman, 2005).  

 

1.4.  Cross-talk between ER functions 

 A number of studies have demonstrated a high degree of interdependence of ER functions: 

Many protein chaperones that ensure proper protein folding, such as calrecticulin and 

calnexin, not only bind Ca2+ t, thus regulating both basal ER Ca2+ and releasable Ca2+, but also 

limit SOCC activation (Fasolato et al., 1998). Reciprocally, ER Ca2+ oscillations modulate 

chaperone interactions with target proteins, which enable protein folding (Corbett et al., 

1999,). Similarly, balanced lipogenesis, which requires properly folded enzymes, is essential 

for SERCA ATPase modulation. Moreover, lipogenesis itself is regulated by ER luminal Ca2+ (Fu 

et al, 2011). This complementary balance of ER functionality and  integrity is exemplified by 

the three principle means of inducing ER stress: Tunicamycintunicamycin, an inhibitor of N-

link protein glycosylation (Agouni et al., 2011;  and Bassik and Kampmann, 2011 ), 

Thapisgarginthapisgargin, an irreversible inhibitor of the SERCA ATPase pump which induces 

ER Ca2+ store depletion (Rogers et al., 1995;,  Koss et al., 2009,  + 2013), and palmitic acid, a 

saturated fatty acid that in, which integrates into the ER membrane and causes a stress 

response independent of luminal protein folding (Volmer et al., 2013). 

Formatted: Indent: Left:  0.5",  No bullets or numbering
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The inter-dependence between ER regulatory pathways has wide-ranging implications, as 

modifications or disruptions of one aspect has consequences on others. During aging, 

essential protein chaperones such as calnexin and BIP (Brown and Naidoo,  2012), together 

with SOCC (Vanterpool et al., 2005;  Zhao et al., 2008; Brotto, 2011) and SERCA ATPase activity 

(Toescu and Verkhratsky, 2000; Puzianowska-Kuznicka and Kuznicki, 2009), are 

downregulated, lowering ER Ca2+ levels whilst raising cytoplasmic Ca2+ levels, thus priming the 

aged ER for dysfunction. This predisposition of ER to malfunction may be further exacerbated 

by numerous environmental stresses, such as toxic metals, infections, thermal stress and 

hypoxia (Kitamura, 2013), and shows obvious links between neurodegenerative disease and 

metabolic conditions, such as Type 2 diabetes and obesity (T2D, Chakrabarti et al., 2011).  

2. The Unfolded Protein Response (UPR) 

During impaired ER function, the UPR cascade is activated, initially as a physiological adaptive 

response to ER stress, which is initiated when the demand for protein translation exceeds the 

ER’s protein folding capacity of the ER, and hence is caused either by inefficiencies in the ER 

machinery or by excessive protein demand. Errors within the folding process lead to an 

accumulation of mis/unfolded proteins, resulting in the sequestration of BIP, removing the 

inhibitory influence of the chaperone over key ER resident initiators of UPR, which in turn 

activate the stress response.  

An adaptive UPR promotes cell survival via three convergent pathways (see Figure 1) that lead 

to:  

1) The inhibition of general protein synthesis, promoting only the translation of key stress 

genes, via PKR-like ER kinase (PERK) )-mediated phosphorylation of eukaryotic initiation factor 

2α (eIF2α), and thus selective translation of key transcription factors such as Activating 

Transcription Factor 4 (ATF-4).  

2) Increased expression of ER ER-folding proteins via downstream signalling regulated by 

Activating Transcription Factor 6 (ATF-6) and by inositol-requiring enzyme 1 (IRE1).  

3) Increased protein degradation to remove misfolded proteins, via the up regulation of the 

endoplasmic reticulumER- associated protein degradation (ERAD) machinery, via IRE1.  

 

The ultimate function of acute UPR is to enhance the ER’s capacity of the ER for protein 

folding, i.e. once the production capacity meets demand and misfolded proteins are removed, 

UPR is deactivated and normal proteostasis resumed (Chakrabarti et al., 2011).  However, 

under conditions of chronic cellular stress a sustained UPR activation ultimately results in 

maladaptation and enters a pathological phase. This is signalled via the activation of Jun-N-

Kinase (JNK), downstream of IRE1, and the selective translation of the pro-apoptotic mediator 

CCAAT enhancer binding protein homologous protein (CHOP), promoted by ATF-4 and ATF-6 

(Fig. 1). These secondary UPR mediators converge upon the B-cell lymphoma-2 (Bcl2) protein 

family, hence differentially regulating their activity to induce autophagy and/or apoptosis 

(Bassik et al., 2004; Ogata et al., 2006). The former predicts cell survival by assisting in the 

degradation of misfolded proteins, whilst the latter results in cell death via caspase activation. 
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In concert, all three UPR arms also act to promote the expression/activation of pro-

inflammatory mediators via the transcription factor activating protein-1 (AP-1) and nuclear 

factor κB (NF-κB:;  Garg et al., 2012).  Inflammatory cells recruited to the damaged tissues may 

further contribute to cellular dysfunction and apoptosis.  

Many connections between UPR and traditional AD pathology have recently emerged. This 

has led to the suggestion that it UPR may be a central pathological pathway, and hence offer 

promising therapeutic targets for a range of neurodegenerative diseases (for an overview, see 

Figure 1).  

2.1. UPR and Neurodegeneration 

Neurodegenerative disorders are also classed as ‘proteinopathies’, immediately recognising 

the central relevance of ER- and UPR-related functions. Moreover, the vast majority of 

neurodegenerative cases are idiopathic, which suggest a major impact of age, environment, 

and lifestyle factors. Over the last decade or so, a number of post-mortem investigations have 

identified elevated UPR markers as present in the tissue most severely affected as a result of 

many neurodegenerative diseases, including AD (Hoozemans et al., 2005, 2009), tauopathies 

(Nijholt et al., 2012), Parkinson’s disease (Hoozemans et al., 2007), Lewy body dementia (Baek 

et al., 2016) and amyotrophic lateral sclerosis (ALS:; Atkin et al., 2008; for a recent overview, 

see Scheper and Hoozemans, 2015).  

Specific to AD, investigations have centred on the hippocampus, and demonstrated an 

increase in several key markers of UPR, such as BIP, phosphorylated (p-)PERK, p-IRE and p-

eIF2α (Hoozemans et al., 2005, +  2009; Unterberger et al., 2006). Immunohistological 

investigations frequently report a close association of elevated UPR markers and neurons 

containing pre-tangle phospho-tau pathology. The correlation between the presence of tau 

pathology and ER stress is further corroborated by neuropathological investigations into 

tauopathy cases (Nijholt et al., 2012) and from mixed-dementia cases where tau as well as α-

synuclein may cause an additive burden (Baek et al., 2016). Despite this evidence, there are 

several studies which failed to find conclusive evidence for the induction of UPR across 

affected brain regions. Notably, a decline in total and phosphorylated PERK and eIF2α has 

been detected despite the upregulation of downstream mediators such as ATF-4, CHOP and 

the pro-apoptotic Bcl2 associated X (BAX) protein (de la Monte et al., 2012). Overall, the 

evidence appears weaker in temporal and frontal cortices than the robust detection of these 

UPR mediators in the hippocampus (see de la Monte et al, 2012;, Baek et al., 2016). Critically, 

it must be considered that many negative findings stem from lysed tissues and thus prominent 

activation of signalling cascades restricted to specific neuronal populations may be masked. 

Equally, given that these principle activators of UPR are dependent on protein 

phosphorylation, post-mortem dephosphorylation of substrates must be considered as a 

factor.  

2.1.1. PERK  
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The most widely studied arm of the UPR response is the PERK- eIF2α axis. This key component 

is central to and overlapping with the ‘integrated stress response (ISR)’, which is triggered by 

a wide range of cellular stressors. eIF2α phosphorylation regulates protein translation, cell 

survival and apoptosis via stress-responsive kinases. So far, these kinases comprise PERK, 

protein kinase double-stranded RNA-dependent (PKR), general control non-depressible-2 

(GCN2) and Heme-regulated inhibitor (HRI). All are regulated by dimerization and 

autophosphorylation;, however, signal specificity specificities arise due to each kinase having 

differing sensitivity to varying cellular stressors, differential subcellular locations and 

additional substrates beyond eIF2α. Whilst HRI is restricted to cells of the erythroid cell linage 

and reactive to iron deficiency, PERK, PKR and GCN2 are widely expressed and prominent 

within the CNS. PERK is the principle kinase for eIF2α phosphorylation in response to ER stress, 

yet PKR activation also occurs in response to inflammatory, oxidative and ER stress as well as 

viral infection. Similarly, GCN2 demonstrates overlapping activation stimuli and responds 

towards viral infection, amino-acid and glucose depletion, as well as UV irradiation (Donnelly 

et al., 2013).  

The rate-limiting step in de-novo protein synthesis is translational initiation via presentation 

of Met-tRNAMet by eIF2 complex to the ribosomes. This association of Met-tRNAMET with eIF2 

is regulated by the binding of GTP, which, after hydrolysis to GDP, requires replacement with 

GTP by the nucleotide exchange factor eIF2B. The phosphorylation of eIF2α at Ser51 induced 

by ISR kinases effectively inhibits the association of eIF2B, preventing GTP exchange. Thus, 

the levels of eIF2α bound to GTP required for the presentation of Met-tRNAMET fall, effectively 

preventing ribosomes from initiating translation (reviewed in Donnelly et al., 2013). Even 

though overall translation is heavily reduced as a consequence, translation of mRNA with 

inhibitory upstream open reading frames (ORF) is paradoxically increased, as altered 

ribosomal engagement can bypass this region, promoting their translation. It is by this 

mechanism that ER stress and thus eIF2α phosphorylation can lead to increased expression 

of activating transcription factors such as ATF-4 and consequently CHOP (Vattem and Wek, 

2004 and Palam et al., 2011).  

Of notable relevance for AD is the enhanced expression of ATF-4 and CHOP, but also β-

secretase (BACE1), all derived from mRNA mRNA-containing inhibitory ORFs (Lammich et al., 

2004; Zhou and Song, 2006). As BACE1 is the rate-limiting secretase for the cleavage of 

amyloid precursor protein (APP), several studies have demonstrated that eIF2α 

phosphorylation, induced either by PERK (O’Connor et al., 2008) or PKR (Mouton-Liger et al., 

2012), can ultimately facilitate BACE expression and thus β-amyloid (Aβ) production. Recent 

work suggests a further mechanism of eIF2α phosphorylation to modulate Aβ production, as 

ATF-4 regulates both BACE1 as well as α-secretase / ADAM10 (Reinhardt et al., 2014). 

However, the overall impact of such regulations remains to be fully determined.  

In addition to the modulation of Aβ production, the PERK-eIF2α axis is critically involved in 

the regulation of synaptic plasticity, and thus mechanisms involved in memory formation, 
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likely via direct actions as opposed to actions downstream from amyloid β (Aβ) production. 

Protein translation is required for memory formation, and recent evidence has highlighted 

eIF2α as the limiting factor. Hence, the prolonged phosphorylation of eIF2α could essentially 

deny neurons the de-novo proteins required for structural adaptations such as synaptic 

remodelling, essential for learning and memory. Indeed, wild-type mice treated acutely with 

a p-eIF2α inhibitor (ISRIB, see below for more details) demonstrated enhanced memory 

performance in both hippocampus-dependent and -independent learning tasks (Sidrauski et 

al., 2013), and the transient inhibition of PERK was associated with enhanced cortex-

dependent taste learning (Ounallah-Saad et al., 2014).    Interestingly, despite the superior 

performance of genetically deficient PERK mice in behavioural tasks that require protein 

synthesis for learning, such mice demonstrated reduced working memory in several tasks 

known to be independent of protein synthesis. The latter may indicate an additional role of 

PERK in the regulation Ca2+ dynamics (Zhu et al., 2016). Nevertheless, the regulation of protein 

synthesis dependent memory via p-eIF2α is likely to be multifaceted, as ATF-4 (aka CREB-2) is 

widely accepted to be a repressor of cAMP-responsive element (CREB) )-mediated gene 

expression, required for the conversion of short- to long-term memory (Kida and Serita, 

2014).  Although a variety of consequences for memory and long-term potentiation have been 

observed following inhibition of each of the eIF2α kinases (Trinh and Klann, 2013), Aβ- 

mediated inhibition of LTP in hippocampal slices was dependent on PERK. Conversely, the 

deletion of PERK prevented the elevation of p-eIF2α levels, inhibition of protein translation 

as well asand memory deficits in a variety of behavioural paradigms, in a familial AD (APPswe/ 

PS1ΔE9) mouse model (Ma et al., 2013). Similar results have been observed in 5xFAD mice 

where PERK but not GCN2 haplo-insuffciency blocked the age-dependent increase in BACE1 

expression, alongside memory deficits and cholinergic degeneration (Devi and Ohno, 2013 + 

2014).   

Evidence for the activation of PERK in response to exogenous Aβ is weak, as only aggregated, 

fibrillar Aβ and not oligomeric Aβ increased PERK phosphorylation (Lee et al., 2010). On the 

other hand, accumulation of pathological tau reportedly resulted in PERK activation 

(Abisambra et al., 2013; Radford et al., 2015). Hence, Aβ may act indirectly via tau pathology, 

or alternatively via inflammatory stressors such as Tumour Necrosis Factor α (TNFα), which 

activates PKR and hence the p-eIF2α mediated inhibition of protein translation. This would 

also result in the activation of the additional arms of UPR (Lourenco et al., 2013; Clarke et al., 

2015). 

 

2.1.2 IRE1 

Distinct from the PERK axis of the UPR, IRE1 IRE1-mediated pathways are also closely 

associated with AD pathology. IRE1 is a trans-ER-membrane protein containing both 

endoribonuclease and serine/theronine kinase domains within the cytoplasmic domain 

(Tirasophon et al., 1998). Once unbound from BIP, IRE1 oligomerises and autophosphorylates, 
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which activates IRE1’s the endoribonuclease domain of IRE1 and generates X-box-protein-1 

(XBP-1) mRNA (Yoshida et al., 2001). At rest, XBP-1 mRNA exists in an unspliced form (XBP-

1u), i.e. the DNA-binding domain and the activation domain are separated by an intronic 

sequence. The translation of XBP-1u mRNA results in a protein deficient for gene activation, 

which is rapidly degraded. In contrast, upon activation of IRE1’s nuclease activity, the intronic 

sequence of XBP-1u is excised, inducing a frame shift which allows for full translation of XBP-

1s, a competent transcription factor (Yoshida et al., 2007). 

Although a degree of cell type type-specific gene activation has been reported, approximately 

~95 core genes are upregulated as a result of XBP-1 splicing, these which include ER co-

chaperones for BIP, ERDJ4 as well as P58IPK and modestly BIP itself, but also calrecticulin and 

calnexin, as well as components of ERAD such as ER degradation-enhancing α mannosidase-

like protein, but also core UPR mediators such as PERK, ATF-4 and XBP-1 (Lee et al., 2003; 

Acosta-Alvear et al., 2007).  Together, this profile likely enhances the protein protein-folding 

capacity of the ER and facilitates protein clearance. It may also provide a feedback loop to 

modulate the ongoing UPR by increasing key UPR mediators, but also via the elevation of 

P58IPK w, which not only acts as a protein chaperone but is also associated with the inhibition 

of eIF2α kinases, PERK and PKR (Yan et al., 2002; van Huizen et al., 2003).  

The activation of IRE1 is acutely associated with cell survival, yet during sustained ER stress is 

linked with apoptosis. In addition to classic ER stress stress-related transcription, a number of 

AD-relevant gene transcripts may also be regulated, for example the γ-secretase components 

presenilin 1 (PS1) and Nicastrin nicastrin as well as APP trafficking proteins and the tau kinase 

cyclin dependent kinase 5 (Acosta-Alvear et al., 2007). However, such observations were 

based on the ectopic expression of XBP-1s in muscle and secretory cells. In contrast, 

overexpression of XBP-1 in cells of a neuronal lineage strongly enhanced the expression of 

ADAM10, which was recapitulated following pharmacological induction of UPR (Reinhardt et 

al., 2014). 

Across the spectrum of neurodegenerative conditions, the involvement of XBP-1 appears 

inconsistent. In vitro evidence has suggested strong activation by both α-synuclein and Aβ 

oligomers, yet XBP-1 appears relatively insensitive to other toxic aggregates, e.g. prion 

protein or the familial British dementia amyloid protein (Castillo-Carranza et al., 2012). In 

mouse models of ALS (Hetz et al., 2009) and Huntington’s disease (Vidal et al., 2012), the 

genetic removal of XBP-1  protected against the onset of disease, while increasing XBP-1 

expression appeared protective against Aβ toxicity in cultured neurons (Casas-Tinto et al., 

2011). This protective potential is supported by observations in both the 5xFAD and an 

APP/PS1 AD mouse model, where early, pre-symptomatic upregulation of spliced XPB-1 

coincided with an increased ADAM10 expression, followed by a late stage collapse of XBP-1 

associated with disease progression (Reinhardt et al., 2014). Again, post mortem data report 

either an increase of IRE1 mediated activation of XBP-1 (Lee et al., 2010), or conversely a 
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decrease of spliced XBP-1 mRNA levels despite a prevalence of increased IRE1 activation 

(Reinhardt et al., 2014).  

Together, the data imply that prolonged UPR signalling may lead to XBP-1 downregulation. 

Certainly, downregulation of XBP-1 would mimic the mechanistic consequences of the XBP-

1116C/G  polymorphism, which disrupts the XBP-1 binding motif and results in lower level of 

transcription (Kakiuchi et al., 2003). This has recently been identified as an AD risk gene within 

the Chinese population (Liu et al., 2013). Similarly, a disruption of XBP-1 signalling may also 

affect the cellular pathology of familial AD, where PS1 mutations have been observed to 

downregulate IRE1 signalling (Katayama et al., 1999 and 2001).  

With respect to Aβ-mediated toxicity, the nuclease activity of IRE1 may appear 

neuroprotective. H, however, IRE1 also interacts with numerous additional substrates via its 

kinase domain, including TNF associated factor 2 (TRAF2) leading to the activation of the well-

established stress activated JUN N-terminal kinase, JNK (Urano et al., 2000). Additional 

connections between IRE1 and JNK comprise numerous cellular stimuli capable of JNK 

activation, including inflammatory signalling via TNFα and interleukin-1 (IL-1), oxidative 

stress, UV irradiation and growth factor deprivations (Cui et al., 2007). Various stimuli engage 

mitogen activated kinase kinase kinases (MAPKKK) which in turn targets MAPK kinases, 

specifically MAKK4 and MAKK7, ultimately phosphorylating JNK. This induces nuclear 

responses (including the canonical c-Jun substrate and nuclear hormone receptors) as well as 

several cytoplasmic changes in ubiquitination-mediated protein degradation, insulin receptor 

substrate 1 and Bcl2 proteins (Bogoyevitch and Kobe, 2006) and pro-inflammatory AP-1 (Garg 

et al., 2012, see below). JNK signalling undoubtedly plays important physiological roles, e.g. 

in brain development, synaptic plasticity and neuronal regeneration, but prolonged activation 

of JNK is prominently associated with apoptosis (Mehan et al., 2011). 

In addition, JNK is capable of phosphorylating tau (Reynolds et al., 1997; Anderton et al., 

2001), but also targets a number of substrates relevant for the Aβ cascade. Upstream from 

the Aβ, APP is an effective substrate of JNK and its phosphorylation at Thr668 effectively 

promotes amyloidogenic cleavage (Standen et al., 2001, and Sclip et al., 2011), potentially via 

modulation of intracellular APP trafficking (Triaca et al., 2016). Downstream signalling links 

JNK with apoptotic pathways, likely via the modulation of apoptotic Bcl2 proteins (Troy et al., 

2001). Consequently, elevated JNK activation, in particular of the p54 forms, has been linked 

with the age-dependent production of Aβ in murine APP/PS1 (Shoji et al., 2000; Savage et al., 

2002), but also in FTD models (Allen et al., 2002). As oligomeric Aβ may trigger tau hyper-

phosphorylation in a JNK dependent manner (Ma et al., 2009; Zhang et al., 2016aa), JNK 

emerges as a potential link and common denominator for stress responses activated by both 

Aβ and tau pathologies. Post-mortem studies further support the this association,   of with 

progression of tau pathology in human AD, i.e. high cytoplasmic levels are found in 

neurofibrillary tangle-s  bearing neurons, but also in a substantial number of tau-positive 
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neurons without mature aggregates (Pei et al., 2001; Lagalwar et al., 2006). Corresponding 

findings have also been observed in cases of human FTD (Lagalwar et al., 2007). 

Recently, IRE1 has also been linked to the activation of another principle tau kinase, glycogen 

synthase 3β (GSK3β:; Kim et al., 2015). At least in peripheral tissues the

activation of GSK3β by IRE1 has been observed, alongside changes in pro-inflammatory 

cytokines, IL-1 and XBP-1 splicing, leading to a reduction in TNFα (Kim et al., 2015). In neuronal 

cell lines a similar increase in GSK3 activity has also been reported following pharmacological 

UPR induction, yet this shift in activation was attributed to the selective degradation of 

inhibited GSK3 as opposed to enhanced tyrosine phosphorylation, in accordance with post-

mortem investigation (Nijholt et al., 2013).  

GSK3β has demonstrated a striking efficiency in phosphorylating tau and a close association 

with AD pathology (Maqbool et al., 2016). Contributions specifically linked with UPR were 

identified in neuronal cell lines and primary hippocampal neurons (but not fibroblasts or 

astrocytes), where GSK3 activation appeared to contribute to UPR UPR-induced apoptosis, 

either by caspase-3 activation induced by CHOP (Meares et al., 2011) and/or the regulation 

of key ER ER-resident proteins, γ-taxilin and α nascent polypeptide-associated complex 

subunit, two proteins which are downregulated in AD (Hotokezaka et al., 2015). In an APP/PS1 

mouse model, GSK3β activation appeared to facilitate UPR UPR-mediated cell death following 

a series of sub-threshold hypoxic events, as well as exacerbating tau phosphorylation (Wang 

et al., 2013).    

Therefore, both JNK and GSK3β provide mechanistic links between key AD pathologies and 

UPR.  

2.1.3. ATF-6 

The third arm of UPR involves ATF-6, an ER ER-resident transmembrane protein. It is inactive 

in the BIP-bound form, but following the loss of BIP association is trafficked to the Golgi 

apparatus, where proteolysis (via site 1 and 2 proteases) activates the protein and enables 

nuclear transcription of key ER proteins, including chaperones (e.g. BIP, GRP94 and 

Calreticulin) and ERAD components (Shen et al., 2002). ATF-6 also regulates enzymes for 

disulphide-bond formation related to the Ca2+ homeostasis, including SERCA2 gene (Okada et 

al., 2002).  Notability, there is some functional redundancy with XBP-1 in relation to BIP and 

other protein chaperones and ERAD proteins (Lee et al., 2003, Yamamoto et al., 2004), but 

also with ATF-4 in relation to the expression of CHOP (Okada et al., 2002). The ATF-6 pathway 

is arguably the least investigated in relation to neurodegeneration, with few studies 

conducted to establish its role in human diseases or engagement of pathological cascades. 

Nevertheless, at least in Parkinson’s disease, the activation of ATF-6 has been shown to be 

protective, in association with an increased expression of the ERAD machinery (Egawa et al., 

2011) yet the deposition of α-synuclein may inhibit ATF-6 activation and ER-Golgi trafficking 

(Credle et al., 2015). Despite this protective role, recent work suggests that administration of 
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taurine, may protect aged rats from isoflurane-induced hippocampal apoptosis via the 

reduction of CHOP in an ATF-6 dependent manor (Zhang et al., 2016bb). These contradictory 

findings, highlightly the need for increased research into the role of ATF-6 in AD and it’s 

pathology. 

 

 

3. Secondary AD pathologies 

 

Beyond the primary AD pathologies and their implications for neuronal plasticity, UPR likely 

plays an additional role in other degenerative processes. ER stress is closely associated with 

autophagy, inflammation and Ca2+ dyshomeostasis, each of which is implicated in the 

exacerbation of AD. 

 

3.1 UPR & Autophagy  

Macroautophagy is heavily implicated in the clearance of toxic protein species, including tau 

and Aβ (Kim et al., 2011; Salminen et al., 2013), yet in AD, key autophagic proteins such as 

Beclin-1 are progressively reduced, sequestered or cleaved, which correlates with cognitive 

decline (Pickford et al., 2008, Jaeger et al., 2010; Ma et al., 2010). Despite the protective role 

of autophagy as an outcome of UPR, deregulated autophagic processes in AD may facilitate 

disease progression and favour apoptosis. Outcomes are dependent on the balance, 

expression and activity of key Bcl2 proteins, controlled by CHOP (Galehdar et al., 2010) and 

JNK phosphorylation (Bassik et al. 2004), respectively, which modulate autophagy via 

interactions with Beclin-1 (Pattingre et al., 2005, Maiuri et al., 2007; Luo et al., 2012).  

3.2. UPR & Inflammation 

Neuroinflammation is mediated by multi-protein inflammasomes against exogenous 

pathogens and metabolic by-products and involves pro-inflammatory caspases which activate 

cytokines (e.g. IL-1β, IL-18, and IL-33). At present, the nucleotide-binding oligomerization 

domain-like receptor family, pyrin domain-containing-3 (NLRP3) is the best characterized 

inflammasome in AD (Pennisi et al., 2016). Cytokine- and chemokine-expressing microglia 

surround Aβ plaques; and overall levels of these pro-inflammatory agents are elevated in AD 

brain tissue (Akiyama et al., 2000). The recruitment of activated glia via pro-inflammatory 

agents is regulated by AP-1 and NF-κB (Glass et al., 2010). Of interest here is that PERK and 

IRE1 converge to promote the activation of these transcription factors: PERK via the eIF2α- 

mediated downregulation of the NK-κB inhibitor IκB (Jiang et al., 2003) and IRE1 via the 

promotion of IκB degradation and activation of AP-1 via JNK phosphorylation (Hu et al., 2006; 
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Kaneko et al., 2003). Thus, UPR activation has the potential to exacerbate pro-inflammatory 

signalling and ultimately immune-driven cellular damage and neuronal death.  

 

 

3.3 UPR, Ca2+ homeostasis and mitochondrial function 

Cellular dysfunctions and impaired homeostatic UPR has wide-ranging consequences on 

protein translation, but also affects other aspects of cellular physiology such as Ca2+ 

homeostasis and mitochondrial ATP production. UPR UPR-mediated adaptations have a clear 

potential to compromise ER physiology and Ca2+ homeostasis, for example via altered IP3 

receptor activation (Nutt et al., 2002), Ca2+ binding protein chaperones, such as calreticulin, 

and  as well as regulatory enzymes, including various kinases and phosphatases such as PTP1B 

(Agouni et al., 2011), which we have identified as a key regulator of SOCC (Koss et al., 2013). 

Consequently, altered Ca2+ buffering can increase ER luminal Ca2+ uptake, facilitate agonist-

mediated Ca2+ release, affect ER-mitochondria tethering and Ca2+ exchange, and suppress 

SOCC. These changes are key hallmarks of excitotoxicity and lead to enhanced tau 

phosphorylation, as reported for example after experimental depletion of ER Ca2+ stores 

(Hartigan and Johnson., 1999). ER stress-induced Ca2+ dysregulation, as well as changes in Bcl2 

proteins (Adams and Cory, 1998) can disrupt mitochondrial activity, leading to the collapse of 

ATP production and apoptotic processes (Vannuvel et al., 2013). Recently, “mitochondrial 

association membranes” (MAM) have emerged as substrates for ER-mitochondria 

interactions. MAM are specialised areas for lipid metabolism and Ca2+ transfer (Paillusson et 

al., 2016) but also for Aβ production (Schreiner et al., 2015). Interestingly, several key ER 

chaperones, including BIP, calreticulin and calnexin are enriched in MAM (Hayashi et al., 

2009). MAMs are reportedly decreased in ALS, Parkinson’s disease, and as well as TDP-43 

variants of fronto-temporal dementia (Paillusson et al., 2016), but evidence from post-

mortem studies as well as rodent AD models suggest an actual increase in ER-mitochondria 

associations (Hedskog et al., 2013). Similar findings have been reported in fibroblasts isolated 

from both sporadic and familial AD cases (Area-Gomez et al., 2012), and nanomolar Aβ 

concentrations also appeared to promote ER-mitochondria associations as well as Ca2+ 

transfer in neuronal cultures (Hedskog et al., 2013). Additionally, chemically induced ER stress 

led to similar changes, but these were followed by a collapse of ATP production and apoptotic 

activation followed (Bravo et al., 2011; Vannuvel et al., 2013). Clearly, these studies imply that 

mitochondrial pathology and disrupted Ca2+ handling lay lie downstream of the UPR.   

4. Emerging therapeutic targets  

The cellular cascades engaged by UPR activation offer numerous molecular sites and 

pathways for pharmacological intervention. However, the diverse signalling components 

involved and their upstream / downstream pathways paint a complex picture that presents 

challenges, as a complete mechanistic understanding is at present missing.  
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4.1. Chaperones  

A key concern when therapeutically targeting UPR components is that the ER stress response 

is, at least acutely, protective and essential for normal cellular physiology, and therefore 

caution must be taken when targeting this cascade. One potential strategy is to promote 

chaperones in support of the capacity of the ER’s capacity for protein handling (proteostasis) 

and prevent the induction of chronic UPR, instead of attempting selective downstream 

inhibition.  

In line with this strategy several avenues have been explored in models of neurodegeneration 

(see Table 1). However, many compounds exert a range of cellular actions, which makes 

interpretation of data difficult. Of note, a recent review suggests that a clearer distinction 

should be made between genuine endogenous chaperons (such as HSPs)  and other chemical 

chaperones and ‘proteostasis promoters’, as the actions of the latter compounds are likely 

indirect (Vega et al., 2016).  

4.1.1. ER chaperones 

Drugs promoting the expression of ER ER-specific HSP chaperones may offer a mode of 

intervention, but limited candidate molecules are available at present. To date, only one such 

drug has been identified, i.e. BIP inducer X (BIX), identified via a high throughput BIP reporter 

assay. BIX (1-(-3,4-dihyrdoxy-phenyl)-2-thiocyanate-ethanone) induces a transient increase in 

BIP expression at low micromolar concentrations, as well as modest increases in GRP94, 

calreticulin, but and also CHOP (Kudo et al., 2008). The induction of these ER stress 

components is observed in the absence of PERK or IRE1 activation, yet appears dependent on 

ATF-6 signalling. It protects against chemically induced ER stress and resultant apoptosis, as 

well as the cerebral infarcts, where notably an overall decrease in CHOP expression was 

observed (Kudo et al., 2008; Oida et al., 2008). These results have been largely confirmed in 

response to NMDA and Tunicamycin tunicamycin-induced retinal damage (Inokuchi et al., 

2009).  Although in vivo data indicate a narrow therapeutic window in relation to vessel 

occlusion occlusion-induced cerebral infarct (effective at 3hr but not 6hr post insult:; Oida et 

al., 2010), such limitations may not be of concern when dealing with a progressive 

neurodegenerative disorder. There are at present no reports on the potential of BIX ’s 

potential to perturb the neuropathology or cognitive decline associated with dementia, 

although the genetic overexpression of BIP has proven protective in models of Parkinson’s 

disease (Gorbatyuk et al., 2012).  

Several other compounds show potential to induce increased BIP expression, which appears 

linked to the inhibition of histone deacetylates (HDAC). These include the pan-HDAC inhibitor 

Trichostatin trichostatin A and the class I I-specific HDAC inhibitor MS275 (Baumeister et al., 

2009), but also the mood-stabilising drug valproic acid, which also promotes BIP expression 

dependent on HDAC inhibition (Wang et al., 1999; Shi et al., 2007). Mechanistically, these 

drugs appear to inhibit the endogenous repression of HDAC upon the ER stress response 
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element (ERSRE), in turn promoting BIP expression. Although numerous HDAC inhibitors have 

been tested in AD models in vivo, and beneficial outcomes reported, i.e. successful 

modification of neuropathology and preservation of cognition (Yang et al., 2014; Bang et al., 

2015; Klein et al., 2015), the modulation of ER stress pathways in these models remains to be 

determined. 

 

 

4.1.2. Proteostasis promoters  

Two well-described compounds in this category are tauroursodeoxycholic acid (TUDCA), a 

taurinated form of the endogenous bile acid ursodeoxycholic acid (UDCA), and 4-phenyl 

butyric acid (PBA). These have long been part of health supplements and traditional 

medicines, and are currently used for e.g. liver and muscle support, or urea cycle disorders, 

respectively. They are well established protectants against excess UPR, either when induced 

pharmacologically (Malo et al., 2010; +  2013) or in systemic disease models, such as T2D 

(Ӧzcan et al., 2006).  

Although commonly referred to as chemical chaperones, it remains unclear if these two 

principle compounds behave as such. TUDCA has demonstrated only limited inhibition of 

protein aggregation. It acted primarily indirectly to enhance the properties of endogenous 

chaperones, e.g. by facilitating anti-aggregate capabilities of α-crystallin in retinal lens 

extracts (Song et al., 2011). Equally, TUDCA failed to alter the aggregation of synthetic Aβ1-42, 

despite inhibiting apoptosis induced by similar Aβ application to endothelial cells (Viana et al., 

2009). Given the nature of aggregation assays, these findings are in line with the potential of 

TUDCA to moderate endogenous protein handling rather that direct interaction with the 

aggregating proteins, though the exact mechanisms remain to be determined. Somewhat 

more robustly, PBA directly inhibits aggregation when tested against α-lactalbumin and 

bovine serum albumin (Kubota et al., 2006). However, lacking evidence for its ability to inhibit 

Aβ or indeed tau aggregation, it remains plausible that PBA may regulate AD AD-relevant 

protein aggregation, or indeed more generally AD pathology more generally, by other means 

(see below).  

Despite this uncertainty, both TUDCA and PBA have been well established as neuroprotective 

agents against synthetic Aβ and in APP/PS1 PS1-expressing cell lines and primary cultures 

(Ramalho et al., 2006; Dionisio et al., 2015;  and Zhang et al., 2016a6a). Although most studies 

have not specifically investigated alterations in the ER stress machinery, neuroprotection can 

rather consistently be attributed to the blocking of mitochondria-dependent apoptotic 

pathways via Bcl2 proteins, the reduction of several caspases and the inhibition of JNK 

signalling cascades, at least when tested in vitro (for examples and details, see Table 1).  This 

is consistent with the involvement of mitochondria in Aβ-induced apoptosis and the recent 
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finding that PBA reduces the expression of CHOP and BIP, as well as tau phosphorylation 

following Aβ oligomer treatment of PC12 and primary neuronal cultures (Zhang et al., 2016aa). 

In accordance with the in vitro work, several groups have identified an effective reduction in 

Aβ load, restoration of cognitive function and a preservation of neuronal integrity in AD 

mouse models following various treatment regimes with TUDCA or PBA (see Table 1). Best 

outcomes were often achieved following pre-symptomatic treatment. Long-term treatments 

commonly perturbed Aβ plaque deposition, reduced GSK3β activation along with tau 

phosphorylation, and increased glutamatergic receptor subunit expression as well as 

maintained maintaining synaptic integrity (Wiley et al., 2011; Ricobaraza et al., 2012). Similar 

findings have recently also been reported in an FTD model that expresses an aggregate-prone 

tau fragment (Bondulich et al., 2016). In many studies, the amelioration of AD-relevant 

neuropathology occurred alongside improvements in cognition. Shorter treatments given 

post-symptomatically also improved cognition and reduced tau phosphorylation, while Aβ 

profiles were inconsistent. An effective decrease of cortical Aβ plaques following a 6 months 

TUDCA treatment of APP/PS1 mice was reported when given prior to plaque deposition 

(Nunes et al., 2012; Lo et al., 2013) yet when given following frontal plaque formation failed 

to diminish the load and only reduced the late-stage hippocampal plaque pathology (Dionísio 

et al., 2015). Similarly, treatment of aged Tg2576 mice with PBA did not reduce plaque load 

and even Aβ production, yet cognition and synaptic integrity improved alongside a decreased 

tau phosphorylation (Ricobaraza et al., 2009).  

Therefore, proteostasis promoters may fail to aid plaque clearance and only prevent plaque 

formation. This is also supported by the reduced neuronal loss observed in hAPPWT 

overexpressing mice in the absence of plaques and Aβ over-production (Cuadrado-Tejedor et 

al., 2013), which is indicative of alternative mechanisms of action such as the noted HDAC 

inhibition activity (Kubota et al., 2006). However, comparative studies with PBA and other 

HDAC inhibitors that do not affect the ER’s chaperone system have demonstrated PBA’s 

selective effects of PBA, both for ER-stress induced neuronal toxicity in vitro (Mimori et al., 

2013) and in AD models (Cuadrado-Tejedor et al., 2013).  

4.2. PERK & eIF2α inhibitors 

Despite the evidence provided by genetic manipulation of PERK or its immediate downstream 

substrate eIF2α in models of AD, there are surprisingly few studies utilising pharmacological 

inhibitors of PERK (See Table 1). Two such compounds are GSK2606414 (Axten et al., 2012) 

and the inhibitor of the downstream targets of eIF2α, the so called ‘integrated stress response 

inhibitor’ ISRIB (Sidrauski et al., 2013).  In vitro, GSK2606414 was effective at inhibiting UPR- 

mediated tau phosphorylation in SH-SY5Y cells (Van der Harg et al., 2014) and has 

demonstrated a dose-dependent inhibition of  p-eIF2α activation without altered CHOP or 

ATF-4 levels in isolated astrocytes, leading to a decrease in the expression of pro-

inflammatory cytokines (Guthrie et al., 2016). Currently, there are no reports of this 

neuroprotective potential of GSK2606414 following either AD gene expression or Aβ 
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challenge.  GSK2606414 has only been tested in prion and tauopathy models and although a 

promising reduction of neuronal loss, decreased tau phosphorylation and GSK3β expression 

was were reported, cognitive performance was not assessed (Radford et al., 2015). Upon its 

initial use in vivo, GSK2606414 showed impressive neuroprotective properties, drastically 

reducing any neurodegeneration in response to prion protein inoculation and substantially 

reducing attrition rates. However, systemic inhibition of PERK caused pancreatic toxicity, 

leading to weight loss and high attrition rates, which has severely limited the drug’s 

therapeutic potential (Moreno et al., 2013). More recently, a follow up study using ISRIB, 

which appears devoid of pancreatic toxicity, achieved similar degrees of neuroprotection 

against prion protein inoculation. ISRIB reportedly acts via an as yet unresolved mechanism 

that inhibits downstream signalling of eIF2α, partially restoring protein translation without 

altering eIF2α phosphorylation levels (Halliday et al., 2015). Although examination of 

pancreatic tissue has demonstrated no signs of toxicity or tissue loss, significant weight loss 

was still apparent, the cause of which remains to be determined.  Currently, no reports have 

emerged on the use of ISRIB within AD or FTD models. 

  

4.3. IRE1 modulators 

Few small molecule modulators of IRE1 have been developed thus far. The best characterised 

is 4-methylumbelliferone 8-carbaldehyde (4µ8C), which targets and inhibits the 

endoribonuclease function of IRE1 (Cross et al., 2012), in a similar manner to STF-083010 

(Papandreou et al., 2011);, hence, such drugs fail to address the  potentially diminished XBP-

1 splicing in AD. Equally, several other compounds identified as IRE1α modulators block XBP-

1 splicing whilst actually increasing IRE1 kinase activation and thus autophosphorylation 

(Volkmann et al., 2011). Thus, the dual functional domains of IRE1 in AD and the apparently 

divergent kinase activation (increased) and endoribonuclease function (reduced) means that 

pharmacological targeting of this enzyme is at present problematic. 

Despite these issues, some progress towards pharmacological manipulations specific for one 

functional domain of IRE1 have been made. A comparative study of novel compounds related 

to PBA (see above) has demonstrated potent inhibition of both kinase and endoribonuclease 

functions of IRE1 and as well as the ATF-6 pathway, which may be independent from HDAC 

(Zhang et al., 2013). However, further structural refinement may be needed to offer specific 

inhibition of the IRE1’s kinase function of IRE1, as some analogues favoured the inhibition of 

JNK over XBP-1 splicing (Zhang et al., 2013). Indeed, genetic manipulation of the IRE1 kinase 

domain can produce a kinase-dead IRE1 variant, which still maintained intact RNase 

functionality (Rubio et al, 2011). This work essentially demonstrated that the two functional 

domains can operate in isolation, and thus the selective targeting of each is theoretically 

possibly. Targeting the RNase domain whilst inhibiting / blocking the kinase activity may be 

possible, although no such reports exist for mammalian cells (Korennykh et al., 2009; 

Wiseman et al., 2010). Also, the activation of the IRE1 kinase domain may be required for UPR 
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deactivation;, therefore, kinase-dead IRE1 variants may be more vulnerable to ER stress.  

Nevertheless, several small molecule activators of IRE1 RNase activity have now been 

developed, but cell toxicity remains an issue (Mendez et al., 2015). Interestingly, a significant 

reduction in toxicity could be achieved by co-administration of the PERK inhibitor 

GSK2606414. 

Ultimately, the complexity of targeting IRE1 directly suggests that selective inhibition of 

downstream effector kinases involved in the propagation of the apoptotic cascade may be a 

more promising approach to interrupt chronic UPR and establish protection. 

 

4.4 JNK 

In comparison to many of the other UPR UPR=related targets, there have been more thorough 

investigations into the development of effective JNK inhibitors and characterisation of the 

resulting neuroprotective outcomes in multiple models of AD and other neurodegenerative 

disease (see Table 1). An excellent review has recently been published covering the subject 

extensively (Yarza et al., 2016). Here, particular attention will be given to the direct ATP-

competitive inhibitor SP600125, which has been investigated in relation to UPR and AD 

neurodegeneration. 

SP600125 has relatively high specificity for JNK1-3 over other related kinases (Han et al., 

2001). A number of studies have demonstrated substantial neuroprotection with SP600125 

towards Aβ mediated apoptosis in vitro (Yao et al., 2005; Bamji-Mirza et al., 2014; Xu et al., 

2015). SP600125 when given prior to or in combination with oligomeric Aβ mediated a 

number of UPR relevant signalling pathways, such as the inhibition of Aβ mediated 

suppression of anti-apoptotic Bcl2 proteins Bcl-XI and Bcl-W (Yao et al., 2005) as well as the 

prevention of a key downstream apoptotic effector of CHOP, GADD43 (Xu et al., 2015). Similar 

protective effects have been observed in vivo following acute application of SP600125, e.g. in 

rats intra-hippocampally injected with fibrillary Aβ1-42 (Ramin et al., 2011; Yenki et al., 2013; 

Mahammadi et al., 2016). These studies report preservation of cognitive abilities alongside a 

lower pro-apoptotic expression ratio between Bcl2 and BAX, decreased caspase expression 

and reduction of autophagic markers. Unfortunately, no direct quantification of the principale 

activators of UPR, nor its modulation by JNK inhibition, was reported. Similarly, promising 

effects have been described following chronic SP600125 treatment or the application of  the 

D-JNKI1 JNKI1-inhibiting peptide in AD mouse models, but a direct investigation of UPR 

aspects remain unexplored (Sclip et al., 2011; Zhou et al,. 2015). However, the treatment of 

a rat model of AD with the ginsenoside Rg1, an extract known to inhibit JNK (Zhang et al., 

2015), led to reduced AD pathology and apoptosis via the down-regulation of IRE1 (Mu et al., 

2015).    
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4.5 Other ER / UPR relevant therapeutics: GSK3 inhibitors & Ca2+ stabilisers 

The central role of GSK3 in tau phosphorylation and Aβ production and its involvement in 

both sporadic and familial cases originally led to the GSK3 hypothesis of AD (Hooper et al., 

2008). A range of inhibitors (natural, inorganic metal ions, organo-synthetic, and peptide-like) 

are available and have been probed in models of AD (reviewed in: King et al., 2015, see Table 

1). Lithium is arguably the best-studied inhibitor, and despite its questionable specificity, was 

recently acknowledged as offering dementia protection in adults treated for bipolar disorders 

(Gerhard et al., 2015). Indeed, lithium, but also the synthetic inhibitors, alsteropaullone, 1-

azakenpaullone, SB216763 and TDZD-8 as well as the GSK3-specific inhibitor peptide L803-

mts, inhibits ER stress stress-mediated apoptosis in several neuronal models of 

neurodegeneration (Song et al., 2002; Chen et al., 2004; Hiroi et al., 2005; Takadera et al., 

2006). Mechanistically, the protective effect of GSK3β inhibition would appear to be 

downstream of UPR induction, reducing CHOP expression independent of ATF-4, and leading 

to a reduction in caspase 3 activation and subsequent apoptosis (Meares et al., 2011). 

Notably, the inhibition of GSK3β, may also promote neuronal survival via the increased 

expression of anti-apoptotic Bcl2 proteins and BIP (Hiroi et al., 2005). Despite promising 

protective outcomes in vitro and in an in vivo model of acute liver failure (Chen et al., 2012), 

the exploitation of GSK3β inhibitors for the repression of ER stress in AD models remains to 

be fully investigated. 

A Ca2+ hypothesis of AD has also been proposed (reviewed in Berridge, 2010), and as outlined 

before, identifies the crucial role of ER function, mitochondria and UPR for neuronal 

physiology and homeostatic control. A range of Ca2+ channel blockers specifically targeting 

various Ca2+ permeable channels, including L, P/N type voltage gated channels and the NMDA 

receptor have been trialled against neurodegeneration-related excitotoxicity (Nimmrich and 

Eckert, 2012). Of note, memantine, currently prescribed for AD patients at moderate to 

severe stages, has been marketed based on its NMDA antagonistic actions and the suggested 

prevention of Ca2+ overload, though it should be noted that its cholinergic properties are likely 

more crucial to its temporary benefits (Drever et al, 2007). Nevertheless, further meta-

analysis has demonstrated beneficial outcomes following the treatment of AD sufferers with 

the L-type Ca2+ blocker nimodipine (López-Arrieta and Birks, 2002). In comparison, less work 

has been conducted evaluating drugs targeting ER Ca2+ release mechanisms via IP3 receptors 

and RyR, which may more directly target ER Ca2+ homeostasis and impact on ER stress.  

Interestingly, the RyR antagonist dantrolene reduced neuronal cell death associated with UPR 

activation in a model of cerebral artery occlusion (Li et al., 2005) and inhibited UPR induction 

and subsequent cell death in a model of a rare peripheral amyloidosis (Teixeira et al., 2006). 

Similarly, dantrolene reduced Aβ levels, deficits in synaptic plasticity and memory 

impairments in several AD models (Oulès et al., 2012; Chakroborty et al., 2012; Wu et al., 

2015), although varying protective mechanisms were proposed (Del Prete et al., 2014).   
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Crucially, changes in energy metabolism and impaired glucose handling due to failing 

mitochondria are central to ageing, the primary risk factor for all dementias (Bhatti et al., 

2016). Latrepirdine (tradename: dimebon), an anti-histamine repurposed for treatment of AD 

and Huntington’s disease, showed promise in experimental models and early trials largely 

linked with mitochondrial actions but later failed in phase III clinical trials (Bezprozyanny, 

2010). Other attempts to target mitochondria directly are now under way. For example, 

natural polyphenols such as resveratrol, an anti-oxidant and anti-inflammatory agent found 

in grapes and berries, potentially offers some neuroprotection (Ahmed et al., 2016), while 

other inhibitors of mitochondrial fission are also being developed (Reddy, 2014), but 

implications for UPR pathways remain to be confirmed. 

 

 

5. Conclusions 

Complex signalling pathways related to neuronal homeostasis and proteostasis are currently 

being unravelled and provide a better understanding of cellular physiology and pathology. 

Regulatory mechanisms link UPR not only with protein handling, but also with Ca2+ 

homeostasis and mitochondrial function, metabolics, inflammation, autophagy and synaptic 

plasticity, and a number of promising therapeutic targets are now emerging. However, 

comprehensive investigations into these targets are still required and it is essential to identify 

not just opportunities but also potential pitfalls, so as to avoid failures of future clinical trials. 

 

 

Acknowledgements 

The authors would like to thank Alzheimer's Research UK (Grant refs: ARUK-PPG2014A-21 

and ARUK-NSG2015-1 to BP and DK) who have provided support for relevant projects 

leading to this review. 

 

 

 

 

 

 

 

Formatted: Default Paragraph Font, Font: +Body (Calibri),
11 pt

Formatted: Font: Bold, Not Italic, Font color: Accent 1

Formatted: Font: Bold



21 
  

 

References 

Abisambra JF, Jinwal UK, Blair LJ, O'Leary JC,3rd, Li Q, Brady S, Wang L, et al. (2013) Tau 

accumulation activates the unfolded protein response by impairing endoplasmic reticulum-

associated degradation. J.Neurosci.; 33(22):9498-9507.  

Acosta-Alvear D, Zhou Y, Blais A, Tsikitis M, Lents NH, Arias C, Lennon CJ, et al. (2007) XBP1 

controls diverse cell type- and condition-specific transcriptional regulatory networks. 

Mol.Cell; 27(1):53-66.  

Adams JM, Cory S. (1998) The Bcl-2 protein family: arbiters of cell survival. Science; 

281(5381):1322-1326.  

Agouni A, Mody N, Owen C, Czopek A, Zimmer D, Bentires-Alj M, Bence KK, et al. (2011) Liver-

specific deletion of protein tyrosine phosphatase (PTP) 1B improves obesity- and 

pharmacologically induced endoplasmic reticulum stress. Biochem.J.; 438(2):369-378.  

Ahmed T, Javed S, Javed S, Tariq A, Samec D, Tejada S, Nabavi SF, et al. (2016) Resveratrol and 

Alzheimer's Disease: Mechanistic Insights. Mol.Neurobiol. In press, DOI: 10.1007/s12035-

016-9839-9. 

Akiyama H, Barger S, Barnum S, Bradt B, Bauer J, Cole GM, Cooper NR, et al. (2000) 

Inflammation and Alzheimer's disease. Neurobiol.Aging; 21(3):383-421.  

Allen B, Ingram E, Takao M, Smith MJ, Jakes R, Virdee K, Yoshida H, et al. (2002) Abundant tau 

filaments and nonapoptotic neurodegeneration in transgenic mice expressing human P301S 

tau protein. J.Neurosci.; 22(21):9340-9351.  

Anderton BH, Betts J, Blackstock WP, Brion JP, Chapman S, Connell J, Dayanandan R, et al. 

(2001) Sites of phosphorylation in tau and factors affecting their regulation. 

Biochem.Soc.Symp.; (67):73-80.  

Area-Gomez E, Del Carmen Lara Castillo M, Tambini MD, Guardia-Laguarta C, de Groof AJ, 

Madra M, Ikenouchi J, et al. (2012) Upregulated function of mitochondria-associated ER 

membranes in Alzheimer disease. EMBO J.; 31(21):4106-4123.  

Atkin JD, Farg MA, Walker AK, McLean C, Tomas D, Horne MK. (2008) Endoplasmic reticulum 

stress and induction of the unfolded protein response in human sporadic amyotrophic lateral 

sclerosis. Neurobiol.Dis.; 30(3):400-407.  

Avrahami L, Farfara D, Shaham-Kol M, Vassar R, Frenkel D, Eldar-Finkelman H. (2013) 

Inhibition of glycogen synthase kinase-3 ameliorates beta-amyloid pathology and restores 

lysosomal acidification and mammalian target of rapamycin activity in the Alzheimer disease 

mouse model: in vivo and in vitro studies. J.Biol.Chem.; 288(2):1295-1306.  

Commented [u1]: Need to remove part numbers throughout 



22 
  

Axten JM, Medina JR, Feng Y, Shu A, Romeril SP, Grant SW, Li WH, et al. (2012) Discovery of 

7-methyl-5-(1-{[3-(trifluoromethyl)phenyl]acetyl}-2,3-dihydro-1H-indol-5-yl)-7H-p yrrolo[2,3-

d]pyrimidin-4-amine (GSK2606414), a potent and selective first-in-class inhibitor of protein 

kinase R (PKR)-like endoplasmic reticulum kinase (PERK). J.Med.Chem.; 55(16):7193-7207.  

Baek JH, Whitfield D, Howlett D, Francis P, Bereczki E, Ballard C, Hortobagyi T, et al. (2016) 

Unfolded protein response is activated in Lewy body dementias. 

Neuropathol.Appl.Neurobiol.; 42(4):352-365.  

Bamji-Mirza M, Callaghan D, Najem D, Shen S, Hasim MS, Yang Z, Zhang W. (2014) Stimulation 

of insulin signaling and inhibition of JNK-AP1 activation protect cells from amyloid-beta-

induced signaling dysregulation and inflammatory response. J.Alzheimers Dis.; 40(1):105-122.  

Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB, Ambavade PD. (2015) 

Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment 

of Alzheimer's disease. Pharmacol.Biochem.Behav.; 134:65-69.  

Bassik MC, Kampmann M. (2011) Knocking out the door to tunicamycin entry. 

Proc.Natl.Acad.Sci.U.S.A.; 108(29):11731-11732.  

Bassik MC, Scorrano L, Oakes SA, Pozzan T, Korsmeyer SJ. (2004) Phosphorylation of BCL-2 

regulates ER Ca2+ homeostasis and apoptosis. EMBO J.; 23(5):1207-1216.  

Baumeister P, Dong D, Fu Y, Lee AS. (2009) Transcriptional induction of GRP78/BiP by histone 

deacetylase inhibitors and resistance to histone deacetylase inhibitor-induced apoptosis. 

Mol.Cancer.Ther.; 8(5):1086-1094.  

Berridge MJ. (2010) Calcium hypothesis of Alzheimer's disease. Pflugers Arch.; 459(3):441-

449.  

Berridge MJ, Bootman MD, Roderick HL. (2003) Calcium signalling: dynamics, homeostasis 

and remodelling. Nat.Rev.Mol.Cell Biol.; 4(7):517-529.  

Bezprozvanny I. (2010) The rise and fall of Dimebon. Drug News.Perspect.; 23(8):518-523.  

Bhatti JS, Bhatti GK, Reddy PH. (2016) Mitochondrial dysfunction and oxidative stress in 

metabolic disorders - A step towards mitochondria based therapeutic strategies. 

Biochim.Biophys.Acta . In press, DOI: 10.1016/j.bbadis.2016.11.010. 

Bobe R, Hadri L, Lopez JJ, Sassi Y, Atassi F, Karakikes I, Liang L, et al. (2011) SERCA2a controls 

the mode of agonist-induced intracellular Ca2+ signal, transcription factor NFAT and 

proliferation in human vascular smooth muscle cells. J.Mol.Cell.Cardiol.; 50(4):621-633.  

Bogoyevitch MA, Kobe B. (2006) Uses for JNK: the many and varied substrates of the c-Jun N-

terminal kinases. Microbiol.Mol.Biol.Rev.; 70(4):1061-1095.  



23 
  

Bondulich MK, Guo T, Meehan C, Manion J, Rodriguez Martin T, Mitchell JC, Hortobagyi T, et 

al. (2016) Tauopathy induced by low level expression of a human brain-derived tau fragment 

in mice is rescued by phenylbutyrate. Brain; 139(Pt 8):2290-2306.  

Braakman I, Hebert DN. (2013) Protein folding in the endoplasmic reticulum. Cold Spring Harb 

Perspect.Biol.;5 (5):a013201.  

Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, et al. (2011) Increased 

ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early 

phases of ER stress. J.Cell.Sci.; 124(Pt 13):2143-2152.  

Brotto M. (2011) Aging, sarcopenia and store-operated calcium entry: a common link? 

Cell.Cycle; 10(24):4201-4202.  

Brown MK, Naidoo N. (2012) The endoplasmic reticulum stress response in aging and age-

related diseases. Front.Physiol.; 3:263.  

Casas-Tinto S, Zhang Y, Sanchez-Garcia J, Gomez-Velazquez M, Rincon-Limas DE, Fernandez-

Funez P. (2011) The ER stress factor XBP1s prevents amyloid-beta neurotoxicity. 

Hum.Mol.Genet.; 20(11):2144-2160.  

Castillo-Carranza DL, Zhang Y, Guerrero-Munoz MJ, Kayed R, Rincon-Limas DE, Fernandez-

Funez P. (2012) Differential activation of the ER stress factor XBP1 by oligomeric assemblies. 

Neurochem.Res.; 37(8):1707-1717.  

Chakrabarti A, Chen AW, Varner JD. (2011) A review of the mammalian unfolded protein 

response. Biotechnol.Bioeng.; 108(12):2777-2793.  

Chakroborty S, Briggs C, Miller MB, Goussakov I, Schneider C, Kim J, Wicks J, et al. (2012) 

Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer's disease. 

PLoS One; 7(12):e52056.  

Chen G, Bower KA, Ma C, Fang S, Thiele CJ, Luo J. (2004) Glycogen synthase kinase 3beta 

(GSK3beta) mediates 6-hydroxydopamine-induced neuronal death. FASEB J.; 18(10):1162-

1164.  

Chen L, Ren F, Zhang H, Wen T, Piao Z, Zhou L, Zheng S, et al. (2012) Inhibition of glycogen 

synthase kinase 3beta ameliorates D-GalN/LPS-induced liver injury by reducing endoplasmic 

reticulum stress-triggered apoptosis. PLoS One; 7(9):e45202.  

Clarke JR, Lyra E Silva NM, Figueiredo CP, Frozza RL, Ledo JH, Beckman D, Katashima CK, et al. 

(2015) Alzheimer-associated Abeta oligomers impact the central nervous system to induce 

peripheral metabolic deregulation. EMBO Mol.Med.; 7(2):190-210.  



24 
  

Corbett EF, Oikawa K, Francois P, Tessier DC, Kay C, Bergeron JJ, Thomas DY, et al. (1999) Ca2+ 

regulation of interactions between endoplasmic reticulum chaperones. J.Biol.Chem.; 

274(10):6203-6211.  

Credle JJ, Forcelli PA, Delannoy M, Oaks AW, Permaul E, Berry DL, Duka V, et al. (2015) alpha-

Synuclein-mediated inhibition of ATF6 processing into COPII vesicles disrupts UPR signaling in 

Parkinson's disease. Neurobiol.Dis.; 76:112-125.  

Cross BC, Bond PJ, Sadowski PG, Jha BK, Zak J, Goodman JM, Silverman RH, et al. (2012) The 

molecular basis for selective inhibition of unconventional mRNA splicing by an IRE1-binding 

small molecule. Proc.Natl.Acad.Sci.U.S.A.; 109(15):E869-78.  

Cuadrado-Tejedor M, Ricobaraza AL, Torrijo R, Franco R, Garcia-Osta A. (2013) Phenylbutyrate 

is a multifaceted drug that exerts neuroprotective effects and reverses the Alzheimer s 

disease-like phenotype of a commonly used mouse model. Curr.Pharm.Des.; 19(28):5076-

5084.  

Cui J, Zhang M, Zhang YQ, Xu ZH. (2007) JNK pathway: diseases and therapeutic potential. 

Acta Pharmacol.Sin.; 28(5):601-608.  

de la Monte SM, Re E, Longato L, Tong M. (2012) Dysfunctional pro-ceramide, ER stress, and 

insulin/IGF signaling networks with progression of Alzheimer's disease. J.Alzheimers Dis.; 30 

Suppl 2:S217-29.  

Del Prete D, Checler F, Chami M. (2014) Ryanodine receptors: physiological function and 

deregulation in Alzheimer disease. Mol.Neurodegener; 9:21-1326-9-21.  

Devi L, Ohno M. (2013) Deletion of the eIF2alpha Kinase GCN2 fails to rescue the memory 

decline associated with Alzheimer's disease. PLoS One; 8(10):e77335.  

Devi L, Ohno M. (2014) PERK mediates eIF2alpha phosphorylation responsible for BACE1 

elevation, CREB dysfunction and neurodegeneration in a mouse model of Alzheimer's disease. 

Neurobiol.Aging; 35(10):2272-2281.  

Devi L, Ohno M. (2013) Deletion of the eIF2alpha Kinase GCN2 fails to rescue the memory 

decline associated with Alzheimer's disease. PLoS One; 8(10):e77335.  

Dionisio PA, Amaral JD, Ribeiro MF, Lo AC, D'Hooge R, Rodrigues CM. (2015) Amyloid-beta 

pathology is attenuated by tauroursodeoxycholic acid treatment in APP/PS1 mice after 

disease onset. Neurobiol.Aging; 36(1):228-240.  

Donnelly N, Gorman AM, Gupta S, Samali A. (2013) The eIF2alpha kinases: their structures 

and functions. Cell Mol.Life Sci.; 70(19):3493-3511.  



25 
  

Drever BD, Anderson WG, Johnson H, O'Callaghan M, Seo S, Choi DY, Riedel G, et al. (2007) 

Memantine acts as a cholinergic stimulant in the mouse hippocampus. J.Alzheimers Dis.; 

12(4):319-333.  

Egawa N, Yamamoto K, Inoue H, Hikawa R, Nishi K, Mori K, Takahashi R. (2011) The 

endoplasmic reticulum stress sensor, ATF6alpha, protects against neurotoxin-induced 

dopaminergic neuronal death. J.Biol.Chem.; 286(10):7947-7957.  

Fagone P, Jackowski S. (2009) Membrane phospholipid synthesis and endoplasmic reticulum 

function. J.Lipid Res.; 50 Suppl:S311-6.  

Fasolato C, Pizzo P, Pozzan T. (1998) Delayed activation of the store-operated calcium current 

induced by calreticulin overexpression in RBL-1 cells. Mol.Biol.Cell; 9(6):1513-1522.  

Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, et al. (2011) Aberrant lipid metabolism 

disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature; 

473(7348):528-531.  

Futerman AH, Riezman H. (2005) The ins and outs of sphingolipid synthesis. Trends Cell Biol.; 

15(6):312-318.  

Galehdar Z, Swan P, Fuerth B, Callaghan SM, Park DS, Cregan SP. (2010) Neuronal apoptosis 

induced by endoplasmic reticulum stress is regulated by ATF4-CHOP-mediated induction of 

the Bcl-2 homology 3-only member PUMA. J.Neurosci.; 30(50):16938-16948.  

Garg AD, Kaczmarek A, Krysko O, Vandenabeele P, Krysko DV, Agostinis P. (2012) ER stress-

induced inflammation: does it aid or impede disease progression? Trends Mol.Med.; 

18(10):589-598.  

Gerhard T, Devanand DP, Huang C, Crystal S, Olfson M. (2015) Lithium treatment and risk for 

dementia in adults with bipolar disorder: population-based cohort study. Br.J.Psychiatry; 

207(1):46-51.  

Glass CK, Saijo K, Winner B, Marchetto MC, Gage FH. (2010) Mechanisms underlying 

inflammation in neurodegeneration. Cell; 140(6):918-934.  

Gorbatyuk MS, Shabashvili A, Chen W, Meyers C, Sullivan LF, Salganik M, Lin JH, et al. (2012) 

Glucose regulated protein 78 diminishes alpha-synuclein neurotoxicity in a rat model of 

Parkinson disease. Mol.Ther.; 20(7):1327-1337.  

Guthrie LN, Abiraman K, Plyler ES, Sprenkle NT, Gibson SA, McFarland BC, Rajbhandari R, et 

al. (2016) Attenuation of PKR-like ER Kinase (PERK) Signaling Selectively Controls Endoplasmic 

Reticulum Stress-induced Inflammation Without Compromising Immunological Responses. 

J.Biol.Chem.; 291(30):15830-15840.  



26 
  

Halliday M, Radford H, Sekine Y, Moreno J, Verity N, le Quesne J, Ortori CA, et al. (2015) Partial 

restoration of protein synthesis rates by the small molecule ISRIB prevents 

neurodegeneration without pancreatic toxicity. Cell.Death Dis.; 6:e1672.  

Han Z, Boyle DL, Chang L, Bennett B, Karin M, Yang L, Manning AM, et al. (2001) c-Jun N-

terminal kinase is required for metalloproteinase expression and joint destruction in 

inflammatory arthritis. J.Clin.Invest.; 108(1):73-81.  

Hartigan JA, Johnson GV. (1999) Transient increases in intracellular calcium result in 

prolonged site-selective increases in Tau phosphorylation through a glycogen synthase kinase 

3beta-dependent pathway. J.Biol.Chem.; 274(30):21395-21401.  

Hayashi T, Rizzuto R, Hajnoczky G, Su TP. (2009) MAM: more than just a housekeeper. Trends 

Cell Biol.; 19(2):81-88.  

Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, Larssen P, et al. (2013) 

Modulation of the endoplasmic reticulum-mitochondria interface in Alzheimer's disease and 

related models. Proc.Natl.Acad.Sci.U.S.A.; 110(19):7916-7921.  

Hetz C, Thielen P, Matus S, Nassif M, Court F, Kiffin R, Martinez G, et al. (2009) XBP-1 

deficiency in the nervous system protects against amyotrophic lateral sclerosis by increasing 

autophagy. Genes Dev.; 23(19):2294-2306.  

Hiroi T, Wei H, Hough C, Leeds P, Chuang DM. (2005) Protracted lithium treatment protects 

against the ER stress elicited by thapsigargin in rat PC12 cells: roles of intracellular calcium, 

GRP78 and Bcl-2. Pharmacogenomics J.; 5(2):102-111.  

Hooper C, Killick R, Lovestone S. (2008) The GSK3 hypothesis of Alzheimer's disease. 

J.Neurochem.; 104(6):1433-1439.  

Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper 

W. (2005) The unfolded protein response is activated in Alzheimer's disease. Acta 

Neuropathol.; 110(2):165-172.  

Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. (2009) 

The unfolded protein response is activated in pretangle neurons in Alzheimer's disease 

hippocampus. Am.J.Pathol.; 174(4):1241-1251.  

Hoozemans JJ, van Haastert ES, Eikelenboom P, de Vos RA, Rozemuller JM, Scheper W. (2007) 

Activation of the unfolded protein response in Parkinson's disease. 

Biochem.Biophys.Res.Commun.; 354(3):707-711.  

Hoozemans JJ, van Haastert ES, Nijholt DA, Rozemuller AJ, Eikelenboom P, Scheper W. (2009) 

The unfolded protein response is activated in pretangle neurons in Alzheimer's disease 

hippocampus. Am.J.Pathol.; 174(4):1241-1251.  



27 
  

Hoozemans JJ, Veerhuis R, Van Haastert ES, Rozemuller JM, Baas F, Eikelenboom P, Scheper 

W. (2005) The unfolded protein response is activated in Alzheimer's disease. Acta 

Neuropathol.; 110(2):165-172.  

Hotokezaka Y, Katayama I, van Leyen K, Nakamura T. (2015) GSK-3beta-dependent 

downregulation of gamma-taxilin and alphaNAC merge to regulate ER stress responses. 

Cell.Death Dis.; 6:e1719.  

Hu P, Han Z, Couvillon AD, Kaufman RJ, Exton JH. (2006) Autocrine tumor necrosis factor alpha 

links endoplasmic reticulum stress to the membrane death receptor pathway through 

IRE1alpha-mediated NF-kappaB activation and down-regulation of TRAF2 expression. 

Mol.Cell.Biol.; 26(8):3071-3084.  

Hu S, Begum AN, Jones MR, Oh MS, Beech WK, Beech BH, Yang F, et al. (2009) GSK3 inhibitors 

show benefits in an Alzheimer's disease (AD) model of neurodegeneration but adverse effects 

in control animals. Neurobiol.Dis.; 33(2):193-206.  

Inokuchi Y, Nakajima Y, Shimazawa M, Kurita T, Kubo M, Saito A, Sajiki H, et al. (2009) Effect 

of an inducer of BiP, a molecular chaperone, on endoplasmic reticulum (ER) stress-induced 

retinal cell death. Invest.Ophthalmol.Vis.Sci.; 50(1):334-344.  

Jaeger PA, Wyss-Coray T. (2010) Beclin 1 complex in autophagy and Alzheimer disease. 

Arch.Neurol.; 67(10):1181-1184.  

Jiang HY, Wek SA, McGrath BC, Scheuner D, Kaufman RJ, Cavener DR, Wek RC. (2003) 

Phosphorylation of the alpha subunit of eukaryotic initiation factor 2 is required for activation 

of NF-kappaB in response to diverse cellular stresses. Mol.Cell.Biol.; 23(16):5651-5663.  

Kakiuchi C, Iwamoto K, Ishiwata M, Bundo M, Kasahara T, Kusumi I, Tsujita T, et al. (2003) 

Impaired feedback regulation of XBP1 as a genetic risk factor for bipolar disorder. Nat.Genet.; 

35(2):171-175.  

Kaneko M, Niinuma Y, Nomura Y. (2003) Activation signal of nuclear factor-kappa B in 

response to endoplasmic reticulum stress is transduced via IRE1 and tumor necrosis factor 

receptor-associated factor 2. Biol.Pharm.Bull.; 26(7):931-935.  

Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, et al. (1999) 

Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein 

response. Nat.Cell Biol.; 1(8):479-485.  

Katayama T, Imaizumi K, Honda A, Yoneda T, Kudo T, Takeda M, Mori K, et al. (2001) Disturbed 

activation of endoplasmic reticulum stress transducers by familial Alzheimer's disease-linked 

presenilin-1 mutations. J.Biol.Chem.; 276(46):43446-43454.  



28 
  

Katayama T, Imaizumi K, Sato N, Miyoshi K, Kudo T, Hitomi J, Morihara T, et al. (1999) 

Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein 

response. Nat.Cell Biol.; 1(8):479-485.  

Kida S, Serita T. (2014) Functional roles of CREB as a positive regulator in the formation and 

enhancement of memory. Brain Res.Bull.; 105:17-24.  

Kim S, Joe Y, Kim HJ, Kim YS, Jeong SO, Pae HO, Ryter SW, et al. (2015) Endoplasmic reticulum 

stress-induced IRE1alpha activation mediates cross-talk of GSK-3beta and XBP-1 to regulate 

inflammatory cytokine production. J.Immunol.; 194(9):4498-4506.  

Kim SI, Lee WK, Kang SS, Lee SY, Jeong MJ, Lee HJ, Kim SS, et al. (2011) Suppression of 

autophagy and activation of glycogen synthase kinase 3beta facilitate the aggregate 

formation of tau. Korean J.Physiol.Pharmacol.; 15(2):107-114.  

King MK, Pardo M, Cheng Y, Downey K, Jope RS, Beurel E. (2014) Glycogen synthase kinase-3 

inhibitors: Rescuers of cognitive impairments. Pharmacol.Ther.; 141(1):1-12.  

Kitamura M. (2013) The unfolded protein response triggered by environmental factors. 

Semin.Immunopathol.; 35(3):259-275.  

Klein C, Mathis C, Leva G, Patte-Mensah C, Cassel JC, Maitre M, Mensah-Nyagan AG. (2015) 

gamma-Hydroxybutyrate (Xyrem) ameliorates clinical symptoms and neuropathology in a 

mouse model of Alzheimer's disease. Neurobiol.Aging; 36(2):832-844.  

Korennykh AV, Egea PF, Korostelev AA, Finer-Moore J, Zhang C, Shokat KM, Stroud RM, et al. 

(2009) The unfolded protein response signals through high-order assembly of Ire1. Nature; 

457(7230):687-693.  

Koss DJ, Riedel G, Platt B. (2009) Intracellular Ca2+ stores modulate SOCCs and NMDA 

receptors via tyrosine kinases in rat hippocampal neurons. Cell Calcium; 46(1):39-48.  

Koss DJ, Riedel G, Bence K, Platt B. (2013) Store-operated Ca2+ entry in hippocampal neurons: 

Regulation by protein tyrosine phosphatase PTP1B. Cell Calcium; 53(2):125-138.  

Koss DJ, Riedel G, Platt B. (2009) Intracellular Ca2+ stores modulate SOCCs and NMDA 

receptors via tyrosine kinases in rat hippocampal neurons. Cell Calcium; 46(1):39-48.  

Kubota K, Niinuma Y, Kaneko M, Okuma Y, Sugai M, Omura T, Uesugi M, et al. (2006) 

Suppressive effects of 4-phenylbutyrate on the aggregation of Pael receptors and 

endoplasmic reticulum stress. J.Neurochem.; 97(5):1259-1268.  

Kudo T, Kanemoto S, Hara H, Morimoto N, Morihara T, Kimura R, Tabira T, et al. (2008) A 

molecular chaperone inducer protects neurons from ER stress. Cell Death Differ.; 15(2):364-

375.  



29 
  

Lagalwar S, Berry RW, Binder LI. (2007) Relation of hippocampal phospho-SAPK/JNK granules 

in Alzheimer's disease and tauopathies to granulovacuolar degeneration bodies. Acta 

Neuropathol.; 113(1):63-73.  

Lagalwar S, Guillozet-Bongaarts AL, Berry RW, Binder LI. (2006) Formation of phospho-

SAPK/JNK granules in the hippocampus is an early event in Alzheimer disease. 

J.Neuropathol.Exp.Neurol.; 65(5):455-464.  

Lammich S, Schobel S, Zimmer AK, Lichtenthaler SF, Haass C. (2004) Expression of the 

Alzheimer protease BACE1 is suppressed via its 5'-untranslated region. EMBO Rep.; 5(6):620-

625.  

Lee AH, Iwakoshi NN, Glimcher LH. (2003) XBP-1 regulates a subset of endoplasmic reticulum 

resident chaperone genes in the unfolded protein response. Mol.Cell.Biol.; 23(21):7448-7459.  

Lee DY, Lee KS, Lee HJ, Kim DH, Noh YH, Yu K, Jung HY, et al. (2010) Activation of PERK signaling 

attenuates Abeta-mediated ER stress. PLoS One; 5(5):e10489.  

Lee JH, Won SM, Suh J, Son SJ, Moon GJ, Park UJ, Gwag BJ. (2010) Induction of the unfolded 

protein response and cell death pathway in Alzheimer's disease, but not in aged Tg2576 mice. 

Exp.Mol.Med.; 42(5):386-394.  

Li F, Hayashi T, Jin G, Deguchi K, Nagotani S, Nagano I, Shoji M, et al. (2005) The protective 

effect of dantrolene on ischemic neuronal cell death is associated with reduced expression of 

endoplasmic reticulum stress markers. Brain Res.; 1048(1-2):59-68.  

Liu SY, Wang W, Cai ZY, Yao LF, Chen ZW, Wang CY, Zhao B, et al. (2013) Polymorphism -

116C/G of human X-box-binding protein 1 promoter is associated with risk of Alzheimer's 

disease. CNS Neurosci.Ther.; 19(4):229-234.  

Lo AC, Callaerts-Vegh Z, Nunes AF, Rodrigues CM, D'Hooge R. (2013) Tauroursodeoxycholic 

acid (TUDCA) supplementation prevents cognitive impairment and amyloid deposition in 

APP/PS1 mice. Neurobiol.Dis.; 50:21-29.  

Lopez-Arrieta JM, Birks J. (2002) Nimodipine for primary degenerative, mixed and vascular 

dementia. Cochrane Database Syst.Rev.; (3)(3):CD000147.  

Lourenco MV, Clarke JR, Frozza RL, Bomfim TR, Forny-Germano L, Batista AF, Sathler LB, et al. 

(2013) TNF-alpha mediates PKR-dependent memory impairment and brain IRS-1 inhibition 

induced by Alzheimer's beta-amyloid oligomers in mice and monkeys. Cell.Metab.; 18(6):831-

843.  

Luo S, Garcia-Arencibia M, Zhao R, Puri C, Toh PP, Sadiq O, Rubinsztein DC. (2012) Bim inhibits 

autophagy by recruiting Beclin 1 to microtubules. Mol.Cell; 47(3):359-370.  



30 
  

Ly PT, Wu Y, Zou H, Wang R, Zhou W, Kinoshita A, Zhang M, et al. (2013) Inhibition of 

GSK3beta-mediated BACE1 expression reduces Alzheimer-associated phenotypes. 

J.Clin.Invest.; 123(1):224-235.  

Ma JF, Huang Y, Chen SD, Halliday G. (2010) Immunohistochemical evidence for 

macroautophagy in neurones and endothelial cells in Alzheimer's disease. 

Neuropathol.Appl.Neurobiol.; 36(4):312-319.  

Ma QL, Yang F, Rosario ER, Ubeda OJ, Beech W, Gant DJ, Chen PP, et al. (2009) Beta-amyloid 

oligomers induce phosphorylation of tau and inactivation of insulin receptor substrate via c-

Jun N-terminal kinase signaling: suppression by omega-3 fatty acids and curcumin. 

J.Neurosci.; 29(28):9078-9089.  

Ma T, Trinh MA, Wexler AJ, Bourbon C, Gatti E, Pierre P, Cavener DR, et al. (2013) Suppression 

of eIF2alpha kinases alleviates Alzheimer's disease-related plasticity and memory deficits. 

Nat.Neurosci.; 16(9):1299-1305.  

Maiuri MC, Criollo A, Tasdemir E, Vicencio JM, Tajeddine N, Hickman JA, Geneste O, et al. 

(2007) BH3-only proteins and BH3 mimetics induce autophagy by competitively disrupting the 

interaction between Beclin 1 and Bcl-2/Bcl-X(L). Autophagy; 3(4):374-376.  

Malo A, Kruger B, Seyhun E, Schafer C, Hoffmann RT, Goke B, Kubisch CH. (2010) 

Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and 

acinar cell apoptosis while increasing secretion in rat pancreatic acini. 

Am.J.Physiol.Gastrointest.Liver Physiol.; 299(4):G877-86.  

Malo A, Kruger B, Goke B, Kubisch CH. (2013) 4-Phenylbutyric acid reduces endoplasmic 

reticulum stress, trypsin activation, and acinar cell apoptosis while increasing secretion in rat 

pancreatic acini. Pancreas; 42(1):92-101.  

Malo A, Kruger B, Seyhun E, Schafer C, Hoffmann RT, Goke B, Kubisch CH. (2010) 

Tauroursodeoxycholic acid reduces endoplasmic reticulum stress, trypsin activation, and 

acinar cell apoptosis while increasing secretion in rat pancreatic acini. 

Am.J.Physiol.Gastrointest.Liver Physiol.; 299(4):G877-86.  

Maqbool M, Mobashir M, Hoda N. (2016) Pivotal role of glycogen synthase kinase-3: A 

therapeutic target for Alzheimer's disease. Eur.J.Med.Chem.; 107:63-81.  

Marques CA, Keil U, Bonert A, Steiner B, Haass C, Muller WE, Eckert A. (2003) Neurotoxic 

mechanisms caused by the Alzheimer's disease-linked Swedish amyloid precursor protein 

mutation: oxidative stress, caspases, and the JNK pathway. J.Biol.Chem.; 278(30):28294-

28302.  



31 
  

Meares GP, Mines MA, Beurel E, Eom TY, Song L, Zmijewska AA, Jope RS. (2011) Glycogen 

synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in 

neuronal cells. Exp.Cell Res.; 317(11):1621-1628.  

Meares GP, Mines MA, Beurel E, Eom TY, Song L, Zmijewska AA, Jope RS. (2011) Glycogen 

synthase kinase-3 regulates endoplasmic reticulum (ER) stress-induced CHOP expression in 

neuronal cells. Exp.Cell Res.; 317(11):1621-1628.  

Mehan S, Meena H, Sharma D, Sankhla R. (2011) JNK: a stress-activated protein kinase 

therapeutic strategies and involvement in Alzheimer's and various neurodegenerative 

abnormalities. J.Mol.Neurosci.; 43(3):376-390.  

Mendez AS, Alfaro J, Morales-Soto MA, Dar AC, McCullagh E, Gotthardt K, Li H, et al. (2015) 

Endoplasmic reticulum stress-independent activation of unfolded protein response kinases 

by a small molecule ATP-mimic. Elife; 4:10.7554/eLife.05434.  

Mimori S, Ohtaka H, Koshikawa Y, Kawada K, Kaneko M, Okuma Y, Nomura Y, et al. (2013) 4-

Phenylbutyric acid protects against neuronal cell death by primarily acting as a chemical 

chaperone rather than histone deacetylase inhibitor. Bioorg.Med.Chem.Lett.; 23(21):6015-

6018.  

Mohammadi M, Guan J, Khodagholi F, Yans A, Khalaj S, Gholami M, Taghizadeh GH, et al. 

(2016) Reduction of autophagy markers mediated protective effects of JNK inhibitor and 

bucladesine on memory deficit induced by Abeta in rats. Naunyn Schmiedebergs 

Arch.Pharmacol.; 389(5):501-510.  

Moore L, Chen T, Knapp HR,Jr, Landon EJ. (1975) Energy-dependent calcium sequestration 

activity in rat liver microsomes. J.Biol.Chem.; 250(12):4562-4568.  

Moreno JA, Halliday M, Molloy C, Radford H, Verity N, Axten JM, Ortori CA, et al. (2013) Oral 

treatment targeting the unfolded protein response prevents neurodegeneration and clinical 

disease in prion-infected mice. Sci.Transl.Med.; 5(206):206ra138.  

Mouton-Liger F, Paquet C, Dumurgier J, Bouras C, Pradier L, Gray F, Hugon J. (2012) Oxidative 

stress increases BACE1 protein levels through activation of the PKR-eIF2alpha pathway. 

Biochim.Biophys.Acta; 1822(6):885-896.  

Mu JS, Lin H, Ye JX, Lin M, Cui XP. (2015) Rg1 exhibits neuroprotective effects by inhibiting the 

endoplasmic reticulum stress-mediated c-Jun N-terminal protein kinase apoptotic pathway in 

a rat model of Alzheimer's disease. Mol.Med.Rep.; 12(3):3862-3868.  

Nijholt DA, van Haastert ES, Rozemuller AJ, Scheper W, Hoozemans JJ. (2012) The unfolded 

protein response is associated with early tau pathology in the hippocampus of tauopathies. 

J.Pathol.; 226(5):693-702.  



32 
  

Nimmrich V, Gross G. (2012) P/Q-type calcium channel modulators. Br.J.Pharmacol.; 

167(4):741-759.  

Nunes AF, Amaral JD, Lo AC, Fonseca MB, Viana RJ, Callaerts-Vegh Z, D'Hooge R, et al. (2012) 

TUDCA, a bile acid, attenuates amyloid precursor protein processing and amyloid-beta 

deposition in APP/PS1 mice. Mol.Neurobiol.; 45(3):440-454.  

Nutt LK, Pataer A, Pahler J, Fang B, Roth J, McConkey DJ, Swisher SG. (2002) Bax and Bak 

promote apoptosis by modulating endoplasmic reticular and mitochondrial Ca2+ stores. 

J.Biol.Chem.; 277(11):9219-9225.  

O'Connor T, Sadleir KR, Maus E, Velliquette RA, Zhao J, Cole SL, Eimer WA, et al. (2008) 

Phosphorylation of the translation initiation factor eIF2alpha increases BACE1 levels and 

promotes amyloidogenesis. Neuron; 60(6):988-1009.  

Ogata M, Hino S, Saito A, Morikawa K, Kondo S, Kanemoto S, Murakami T, et al. (2006) 

Autophagy is activated for cell survival after endoplasmic reticulum stress. Mol.Cell.Biol.; 

26(24):9220-9231.  

Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H. (2008) Induction of BiP, 

an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia 

in gerbil. Brain Res.; 1208:217-224.  

Oida Y, Hamanaka J, Hyakkoku K, Shimazawa M, Kudo T, Imaizumi K, Yasuda T, et al. (2010) 

Post-treatment of a BiP inducer prevents cell death after middle cerebral artery occlusion in 

mice. Neurosci.Lett.; 484(1):43-46.  

Oida Y, Izuta H, Oyagi A, Shimazawa M, Kudo T, Imaizumi K, Hara H. (2008) Induction of BiP, 

an ER-resident protein, prevents the neuronal death induced by transient forebrain ischemia 

in gerbil. Brain Res.; 1208:217-224.  

Okada T, Yoshida H, Akazawa R, Negishi M, Mori K. (2002) Distinct roles of activating 

transcription factor 6 (ATF6) and double-stranded RNA-activated protein kinase-like 

endoplasmic reticulum kinase (PERK) in transcription during the mammalian unfolded protein 

response. Biochem.J.; 366(Pt 2):585-594.  

Oules B, Del Prete D, Greco B, Zhang X, Lauritzen I, Sevalle J, Moreno S, et al. (2012) Ryanodine 

receptor blockade reduces amyloid-beta load and memory impairments in Tg2576 mouse 

model of Alzheimer disease. J.Neurosci.; 32(34):11820-11834.  

Ounallah-Saad H, Sharma V, Edry E, Rosenblum K. (2014) Genetic or pharmacological 

reduction of PERK enhances cortical-dependent taste learning. J.Neurosci.; 34(44):14624-

14632.  



33 
  

Ozcan U, Yilmaz E, Ozcan L, Furuhashi M, Vaillancourt E, Smith RO, Gorgun CZ, et al. (2006) 

Chemical chaperones reduce ER stress and restore glucose homeostasis in a mouse model of 

type 2 diabetes. Science; 313(5790):1137-1140.  

Paillusson S, Stoica R, Gomez-Suaga P, Lau DH, Mueller S, Miller T, Miller CC. (2016) There's 

Something Wrong with my MAM; the ER-Mitochondria Axis and Neurodegenerative Diseases. 

Trends Neurosci.; 39(3):146-157.  

Palam LR, Baird TD, Wek RC. (2011) Phosphorylation of eIF2 facilitates ribosomal bypass of an 

inhibitory upstream ORF to enhance CHOP translation. J.Biol.Chem.; 286(13):10939-10949.  

Papandreou I, Denko NC, Olson M, Van Melckebeke H, Lust S, Tam A, Solow-Cordero DE, et 

al. (2011) Identification of an Ire1alpha endonuclease specific inhibitor with cytotoxic activity 

against human multiple myeloma. Blood; 117(4):1311-1314.  

Pattingre S, Tassa A, Qu X, Garuti R, Liang XH, Mizushima N, Packer M, et al. (2005) Bcl-2 

antiapoptotic proteins inhibit Beclin 1-dependent autophagy. Cell; 122(6):927-939.  

Pei JJ, Braak E, Braak H, Grundke-Iqbal I, Iqbal K, Winblad B, Cowburn RF. (2001) Localization 

of active forms of C-jun kinase (JNK) and p38 kinase in Alzheimer's disease brains at different 

stages of neurofibrillary degeneration. J.Alzheimers Dis.; 3(1):41-48.  

Pennisi M, Crupi R, Di Paola R, Ontario ML, Bella R, Calabrese EJ, Crea R, et al. (2016) 

Inflammasomes, hormesis, and antioxidants in neuroinflammation: Role of NRLP3 in 

Alzheimer disease. J.Neurosci.Res.  In press, DOI: 10.1002/jnr.23986. 

Pickford F, Masliah E, Britschgi M, Lucin K, Narasimhan R, Jaeger PA, Small S, et al. (2008) The 

autophagy-related protein beclin 1 shows reduced expression in early Alzheimer disease and 

regulates amyloid beta accumulation in mice. J.Clin.Invest.; 118(6):2190-2199.  

Puzianowska-Kuznicka M, Kuznicki J. (2009) The ER and ageing II: calcium homeostasis. Ageing 

Res.Rev.; 8(3):160-172.  

Radford H, Moreno JA, Verity N, Halliday M, Mallucci GR. (2015) PERK inhibition prevents tau-

mediated neurodegeneration in a mouse model of frontotemporal dementia. Acta 

Neuropathol.; 130(5):633-642.  

Ramalho RM, Ribeiro PS, Sola S, Castro RE, Steer CJ, Rodrigues CM. (2004) Inhibition of the 

E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced 

apoptosis of PC12 cells. J.Neurochem.; 90(3):567-575.  

Ramalho RM, Nunes AF, Dias RB, Amaral JD, Lo AC, D'Hooge R, Sebastiao AM, et al. (2013) 

Tauroursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro and in 

APP/PS1 mice. Neurobiol.Aging; 34(2):551-561.  



34 
  

Ramalho RM, Borralho PM, Castro RE, Sola S, Steer CJ, Rodrigues CM. (2006) 

Tauroursodeoxycholic acid modulates p53-mediated apoptosis in Alzheimer's disease mutant 

neuroblastoma cells. J.Neurochem.; 98(5):1610-1618.  

Ramalho RM, Nunes AF, Dias RB, Amaral JD, Lo AC, D'Hooge R, Sebastiao AM, et al. (2013) 

Tauroursodeoxycholic acid suppresses amyloid beta-induced synaptic toxicity in vitro and in 

APP/PS1 mice. Neurobiol.Aging; 34(2):551-561.  

Ramalho RM, Ribeiro PS, Sola S, Castro RE, Steer CJ, Rodrigues CM. (2004) Inhibition of the 

E2F-1/p53/Bax pathway by tauroursodeoxycholic acid in amyloid beta-peptide-induced 

apoptosis of PC12 cells. J.Neurochem.; 90(3):567-575.  

Ramin M, Azizi P, Motamedi F, Haghparast A, Khodagholi F. (2011) Inhibition of JNK 

phosphorylation reverses memory deficit induced by beta-amyloid (1-42) associated with 

decrease of apoptotic factors. Behav.Brain Res.; 217(2):424-431.  

Reddy PH. (2014) Misfolded proteins, mitochondrial dysfunction, and neurodegenerative 

diseases. Biochim.Biophys.Acta; 1842(8):1167.  

Reinhardt S, Schuck F, Grosgen S, Riemenschneider M, Hartmann T, Postina R, Grimm M, et 

al. (2014) Unfolded protein response signaling by transcription factor XBP-1 regulates 

ADAM10 and is affected in Alzheimer's disease. FASEB J.; 28(2):978-997.  

Reynolds CH, Utton MA, Gibb GM, Yates A, Anderton BH. (1997) Stress-activated protein 

kinase/c-jun N-terminal kinase phosphorylates tau protein. J.Neurochem.; 68(4):1736-1744.  

Ricobaraza A, Cuadrado-Tejedor M, Perez-Mediavilla A, Frechilla D, Del Rio J, Garcia-Osta A. 

(2009) Phenylbutyrate ameliorates cognitive deficit and reduces tau pathology in an 

Alzheimer's disease mouse model. Neuropsychopharmacology; 34(7):1721-1732.  

Rockenstein E, Torrance M, Adame A, Mante M, Bar-on P, Rose JB, Crews L, et al. (2007) 

Neuroprotective effects of regulators of the glycogen synthase kinase-3beta signaling 

pathway in a transgenic model of Alzheimer's disease are associated with reduced amyloid 

precursor protein phosphorylation. J.Neurosci.; 27(8):1981-1991.  

Rogers TB, Inesi G, Wade R, Lederer WJ. (1995) Use of thapsigargin to study Ca2+ homeostasis 

in cardiac cells. Biosci.Rep.; 15(5):341-349.  

Rubio C, Pincus D, Korennykh A, Schuck S, El-Samad H, Walter P. (2011) Homeostatic 

adaptation to endoplasmic reticulum stress depends on Ire1 kinase activity. J.Cell Biol.; 

193(1):171-184.  

Salminen A, Kaarniranta K, Kauppinen A, Ojala J, Haapasalo A, Soininen H, Hiltunen M. (2013) 

Impaired autophagy and APP processing in Alzheimer's disease: The potential role of Beclin 1 

interactome. Prog.Neurobiol.; 106-107:33-54.  



35 
  

Savage MJ, Lin YG, Ciallella JR, Flood DG, Scott RW. (2002) Activation of c-Jun N-terminal 

kinase and p38 in an Alzheimer's disease model is associated with amyloid deposition. 

J.Neurosci.; 22(9):3376-3385.  

Scheper W, Hoozemans JJ. (2015) The unfolded protein response in neurodegenerative 

diseases: a neuropathological perspective. Acta Neuropathol.; 130(3):315-331.  

Schreiner B, Hedskog L, Wiehager B, Ankarcrona M. (2015) Amyloid-beta peptides are 

generated in mitochondria-associated endoplasmic reticulum membranes. J.Alzheimers Dis.; 

43(2):369-374.  

Schwarz DS, Blower MD. (2016) The endoplasmic reticulum: structure, function and response 

to cellular signaling. Cell Mol.Life Sci.; 73(1):79-94.  

Sclip A, Antoniou X, Colombo A, Camici GG, Pozzi L, Cardinetti D, Feligioni M, et al. (2011) c-

Jun N-terminal kinase regulates soluble Abeta oligomers and cognitive impairment in AD 

mouse model. J.Biol.Chem.; 286(51):43871-43880.  

Sclip A, Antoniou X, Colombo A, Camici GG, Pozzi L, Cardinetti D, Feligioni M, et al. (2011) c-

Jun N-terminal kinase regulates soluble Abeta oligomers and cognitive impairment in AD 

mouse model. J.Biol.Chem.; 286(51):43871-43880.  

Selvaraj S, Sun Y, Watt JA, Wang S, Lei S, Birnbaumer L, Singh BB. (2012) Neurotoxin-induced 

ER stress in mouse dopaminergic neurons involves downregulation of TRPC1 and inhibition of 

AKT/mTOR signaling. J.Clin.Invest.; 122(4):1354-1367.  

Sereno L, Coma M, Rodriguez M, Sanchez-Ferrer P, Sanchez MB, Gich I, Agullo JM, et al. (2009) 

A novel GSK-3beta inhibitor reduces Alzheimer's pathology and rescues neuronal loss in vivo. 

Neurobiol.Dis.; 35(3):359-367.  

Shen J, Chen X, Hendershot L, Prywes R. (2002) ER stress regulation of ATF6 localization by 

dissociation of BiP/GRP78 binding and unmasking of Golgi localization signals. Dev.Cell.; 

3(1):99-111.  

Shi Y, Gerritsma D, Bowes AJ, Capretta A, Werstuck GH. (2007) Induction of GRP78 by valproic 

acid is dependent upon histone deacetylase inhibition. Bioorg.Med.Chem.Lett.; 17(16):4491-

4494.  

Shoji M, Iwakami N, Takeuchi S, Waragai M, Suzuki M, Kanazawa I, Lippa CF, et al. (2000) JNK 

activation is associated with intracellular beta-amyloid accumulation. Brain Res.Mol.Brain 

Res.; 85(1-2):221-233.  

Sidrauski C, Acosta-Alvear D, Khoutorsky A, Vedantham P, Hearn BR, Li H, Gamache K, et al. 

(2013) Pharmacological brake-release of mRNA translation enhances cognitive memory. Elife; 

2:e00498.  



36 
  

Sola S, Castro RE, Laires PA, Steer CJ, Rodrigues CM. (2003) Tauroursodeoxycholic acid 

prevents amyloid-beta peptide-induced neuronal death via a phosphatidylinositol 3-kinase-

dependent signaling pathway. Mol.Med.; 9(9-12):226-234.  

Song L, De Sarno P, Jope RS. (2002) Central role of glycogen synthase kinase-3beta in 

endoplasmic reticulum stress-induced caspase-3 activation. J.Biol.Chem.; 277(47):44701-

44708.  

Song S, Liang JJ, Mulhern ML, Madson CJ, Shinohara T. (2011) Cholesterol-derived bile acids 

enhance the chaperone activity of alpha-crystallins. Cell Stress Chaperones; 16(5):475-480.  

Standen CL, Brownlees J, Grierson AJ, Kesavapany S, Lau KF, McLoughlin DM, Miller CC. (2001) 

Phosphorylation of thr(668) in the cytoplasmic domain of the Alzheimer's disease amyloid 

precursor protein by stress-activated protein kinase 1b (Jun N-terminal kinase-3). 

J.Neurochem.; 76(1):316-320.  

Takadera T, Yoshikawa R, Ohyashiki T. (2006) Thapsigargin-induced apoptosis was prevented 

by glycogen synthase kinase-3 inhibitors in PC12 cells. Neurosci.Lett.; 408(2):124-128.  

Teixeira PF, Cerca F, Santos SD, Saraiva MJ. (2006) Endoplasmic reticulum stress associated 

with extracellular aggregates. Evidence from transthyretin deposition in familial amyloid 

polyneuropathy. J.Biol.Chem.; 281(31):21998-22003.  

Tirasophon W, Welihinda AA, Kaufman RJ. (1998) A stress response pathway from the 

endoplasmic reticulum to the nucleus requires a novel bifunctional protein 

kinase/endoribonuclease (Ire1p) in mammalian cells. Genes Dev.; 12(12):1812-1824.  

Toescu EC, Verkhratsky A. (2000) Parameters of calcium homeostasis in normal neuronal 

ageing. J.Anat.; 197 Pt 4:563-569.  

Toledo EM, Inestrosa NC. (2010) Activation of Wnt signaling by lithium and rosiglitazone 

reduced spatial memory impairment and neurodegeneration in brains of an 

APPswe/PSEN1DeltaE9 mouse model of Alzheimer's disease. Mol.Psychiatry; 15(3):272-85, 

228.  

Triaca V, Sposato V, Bolasco G, Ciotti MT, Pelicci P, Bruni AC, Cupidi C, et al. (2016) NGF 

controls APP cleavage by downregulating APP phosphorylation at Thr668: relevance for 

Alzheimer's disease. Aging Cell.; 15(4):661-672.  

Trinh MA, Klann E. (2013) Translational control by eIF2alpha kinases in long-lasting synaptic 

plasticity and long-term memory. Neurobiol.Learn.Mem.; 105:93-99.  

Troy CM, Rabacchi SA, Xu Z, Maroney AC, Connors TJ, Shelanski ML, Greene LA. (2001) beta-

Amyloid-induced neuronal apoptosis requires c-Jun N-terminal kinase activation. 

J.Neurochem.; 77(1):157-164.  



37 
  

Unterberger U, Hoftberger R, Gelpi E, Flicker H, Budka H, Voigtlander T. (2006) Endoplasmic 

reticulum stress features are prominent in Alzheimer disease but not in prion diseases in vivo. 

J.Neuropathol.Exp.Neurol.; 65(4):348-357.  

Urano F, Bertolotti A, Ron D. (2000) IRE1 and efferent signaling from the endoplasmic 

reticulum. J.Cell.Sci.; 113 Pt 21:3697-3702.  

van der Harg JM, Nolle A, Zwart R, Boerema AS, van Haastert ES, Strijkstra AM, Hoozemans JJ, 

et al. (2014) The unfolded protein response mediates reversible tau phosphorylation induced 

by metabolic stress. Cell.Death Dis.; 5:e1393.  

Vannuvel K, Renard P, Raes M, Arnould T. (2013) Functional and morphological impact of ER 

stress on mitochondria. J.Cell.Physiol.; 228(9):1802-1818.  

Vanterpool CK, Pearce WJ, Buchholz JN. (2005) Advancing age alters rapid and spontaneous 

refilling of caffeine-sensitive calcium stores in sympathetic superior cervical ganglion cells. 

J.Appl.Physiol.(1985); 99(3):963-971.  

Vattem KM, Wek RC. (2004) Reinitiation involving upstream ORFs regulates ATF4 mRNA 

translation in mammalian cells. Proc.Natl.Acad.Sci.U.S.A.; 101(31):11269-11274.  

Vega H, Agellon LB, Michalak M. (2016) The rise of proteostasis promoters. IUBMB Life; 

68(12):943-954.  

Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, et al. (2009) 

Tauroursodeoxycholic acid prevents E22Q Alzheimer's Abeta toxicity in human cerebral 

endothelial cells. Cell Mol.Life Sci.; 66(6):1094-1104.  

Viana RJ, Ramalho RM, Nunes AF, Steer CJ, Rodrigues CM. (2010) Modulation of amyloid-beta 

peptide-induced toxicity through inhibition of JNK nuclear localization and caspase-2 

activation. J.Alzheimers Dis.; 22(2):557-568.  

Viana RJ, Nunes AF, Castro RE, Ramalho RM, Meyerson J, Fossati S, Ghiso J, et al. (2009) 

Tauroursodeoxycholic acid prevents E22Q Alzheimer's Abeta toxicity in human cerebral 

endothelial cells. Cell Mol.Life Sci.; 66(6):1094-1104.  

Vidal RL, Figueroa A, Court FA, Thielen P, Molina C, Wirth C, Caballero B, et al. (2012) Targeting 

the UPR transcription factor XBP1 protects against Huntington's disease through the 

regulation of FoxO1 and autophagy. Hum.Mol.Genet.; 21(10):2245-2262.  

Volkmann K, Lucas JL, Vuga D, Wang X, Brumm D, Stiles C, Kriebel D, et al. (2011) Potent and 

selective inhibitors of the inositol-requiring enzyme 1 endoribonuclease. J.Biol.Chem.; 

286(14):12743-12755.  



38 
  

Volmer R, van der Ploeg K, Ron D. (2013) Membrane lipid saturation activates endoplasmic 

reticulum unfolded protein response transducers through their transmembrane domains. 

Proc.Natl.Acad.Sci.U.S.A.; 110(12):4628-4633.  

Wang CY, Xie JW, Wang T, Xu Y, Cai JH, Wang X, Zhao BL, et al. (2013) Hypoxia-triggered m-

calpain activation evokes endoplasmic reticulum stress and neuropathogenesis in a 

transgenic mouse model of Alzheimer's disease. CNS Neurosci.Ther.; 19(10):820-833.  

Wang JF, Bown C, Young LT. (1999) Differential display PCR reveals novel targets for the mood-

stabilizing drug valproate including the molecular chaperone GRP78. Mol.Pharmacol.; 

55(3):521-527.  

Wiley JC, Pettan-Brewer C, Ladiges WC. (2011) Phenylbutyric acid reduces amyloid plaques 

and rescues cognitive behavior in AD transgenic mice. Aging Cell.; 10(3):418-428.  

Wiseman RL, Zhang Y, Lee KP, Harding HP, Haynes CM, Price J, Sicheri F, et al. (2010) Flavonol 

activation defines an unanticipated ligand-binding site in the kinase-RNase domain of IRE1. 

Mol.Cell; 38(2):291-304.  

Wu Z, Yang B, Liu C, Liang G, Liu W, Pickup S, Meng Q, et al. (2015) Long-term dantrolene 

treatment reduced intraneuronal amyloid in aged Alzheimer triple transgenic mice. Alzheimer 

Dis.Assoc.Disord.; 29(3):184-191.  

Xu N, Xiao Z, Zou T, Huang Z. (2015) Induction of GADD34 Regulates the Neurotoxicity of 

Amyloid beta. Am.J.Alzheimers Dis.Other Demen.; 30(3):313-319.  

Yamamoto K, Yoshida H, Kokame K, Kaufman RJ, Mori K. (2004) Differential contributions of 

ATF6 and XBP1 to the activation of endoplasmic reticulum stress-responsive cis-acting 

elements ERSE, UPRE and ERSE-II. J.Biochem.; 136(3):343-350.  

Yan W, Frank CL, Korth MJ, Sopher BL, Novoa I, Ron D, Katze MG. (2002) Control of PERK 

eIF2alpha kinase activity by the endoplasmic reticulum stress-induced molecular chaperone 

P58IPK. Proc.Natl.Acad.Sci.U.S.A.; 99(25):15920-15925.  

Yang W, Chauhan A, Wegiel J, Kuchna I, Gu F, Chauhan V. (2014) Effect of trichostatin A on 

gelsolin levels, proteolysis of amyloid precursor protein, and amyloid beta-protein load in the 

brain of transgenic mouse model of Alzheimer's disease. Curr.Alzheimer Res.; 11(10):1002-

1011.  

Yao M, Nguyen TV, Pike CJ. (2005) Beta-amyloid-induced neuronal apoptosis involves c-Jun 

N-terminal kinase-dependent downregulation of Bcl-w. J.Neurosci.; 25(5):1149-1158.  

Yarza R, Vela S, Solas M, Ramirez MJ. (2016) c-Jun N-terminal Kinase (JNK) Signaling as a 

Therapeutic Target for Alzheimer's Disease. Front.Pharmacol.; 6:321.  



39 
  

Yenki P, Khodagholi F, Shaerzadeh F. (2013) Inhibition of phosphorylation of JNK suppresses 

Abeta-induced ER stress and upregulates prosurvival mitochondrial proteins in rat 

hippocampus. J.Mol.Neurosci.; 49(2):262-269.  

Yoshida H. (2007) Unconventional splicing of XBP-1 mRNA in the unfolded protein response. 

Antioxid.Redox Signal.; 9(12):2323-2333.  

Yoshida H, Matsui T, Yamamoto A, Okada T, Mori K. (2001) XBP1 mRNA is induced by ATF6 

and spliced by IRE1 in response to ER stress to produce a highly active transcription factor. 

Cell; 107(7):881-891.  

Zhang H, Nakajima S, Kato H, Gu L, Yoshitomi T, Nagai K, Shinmori H, et al. (2013) Selective, 

potent blockade of the IRE1 and ATF6 pathways by 4-phenylbutyric acid analogues. 

Br.J.Pharmacol.; 170(4):822-834.  

Zhang XJ, He C, Tian K, Li P, Su H, Wan JB. (2015) Ginsenoside Rb1 attenuates angiotensin II-

induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling 

pathways. Vascul Pharmacol.; 73:86-95.  

Zhang X, Tang S, Zhang Q, Shao W, Han X, Wang Y, Du Y. (2016a)a Endoplasmic reticulum stress 

mediates JNK-dependent IRS-1 serine phosphorylation and results in Tau 

hyperphosphorylation in amyloid beta oligomer-treated PC12 cells and primary neurons. 

Gene; 587(2):183-193.  

Zhang Y, Li D, Li H, Hou D, Hou J. (2016b)b Taurine Pretreatment Prevents Isoflurane-Induced 

Cognitive Impairment by Inhibiting ER Stress-Mediated Activation of Apoptosis Pathways in 

the Hippocampus in Aged Rats. Neurochem.Res.; 41(10):2517-2525.  

Zhao X, Weisleder N, Thornton A, Oppong Y, Campbell R, Ma J, Brotto M. (2008) Compromised 

store-operated Ca2+ entry in aged skeletal muscle. Aging Cell.; 7(4):561-568.  

Zhou Q, Wang M, Du Y, Zhang W, Bai M, Zhang Z, Li Z, et al. (2015) Inhibition of c-Jun N-

terminal kinase activation reverses Alzheimer disease phenotypes in APPswe/PS1dE9 mice. 

Ann.Neurol.; 77(4):637-654.  

Zhou W, Song W. (2006) Leaky scanning and reinitiation regulate BACE1 gene expression. 

Mol.Cell.Biol.; 26(9):3353-3364.  

Zhu S, Henninger K, McGrath BC, Cavener DR. (2016) PERK Regulates Working Memory and 

Protein Synthesis-Dependent Memory Flexibility. PLoS One ;11(9):e0162766.  

 

Zou JJ, Gao YD, Geng S, Yang J. (2011) Role of STIM1/Orai1-mediated store-operated Ca(2)(+) 

entry in airway smooth muscle cell proliferation. J.Appl.Physiol.(1985); 110(5):1256-1263. 



40 
  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure legend 



41 
  

Figure 1: Molecular pathways of UPR and potential mechanisms of cellular damage 

promoting AD-relevant pathology. Damaging factors such as age, environment and lifestyle 

() affect cellular organelles and hence ER protein folding and cellular homeostasis. 

Impairments result in increased misfolded proteins, which accumulate in the ER lumen. These 

sequester protein chaperones such as BIP, and lead to the activation of three UPR-arms via 

PERK, IRE1 and ATF-6. The initially adaptive phase of UPR requires phosphorylation of eIF2α, 

halting general protein translation, whilst favouring the translation of protective stress 

proteins. In parallel, IRE1 activates XBP-1 alongside the cleavage and activation of ATF-6, 

which together promotes the expression of key ER protein chaperones and enhance the ER 

protein degrading machinery (ERAD) to clear misfolded proteins. If this adaptive response can 

restore ER functionality the stress response is terminated. However, if the ER’s protein -

handling capacity of the ER remains impaired and UPR persists, it enters a pathological phase: 

the prolonged blockade of protein translation prevents structural changes essential for 

plasticity:, it increases amyloidogenic processing via BACE1 and PS1, alongside APP trafficking 

proteins as well as the induction of the pro-apoptotic mediator CHOP, which in turn increases 

expression of pro-apoptotic Bcl2 proteins. Supported by the activation of JNK stress kinase 

and GSK3, Bcl2 proteins cause mitochondrial damage as well as autophagy. In conjunction 

with elevated levels of JNK as well as GSK3, IRE1-mediated degradation of anti-inflammatory 

factors leads to the upregulation of AP-1/NFƙB, promoting the production of chemokines and 

cytokines and hence inflammation. The continued alteration of Ca2+-binding chaperones 

impairs Ca2+ homeostasis, this promotes tau phosphorylation and further impairs binding of 

newly translated proteins. *= Kinases activated downstream from IRE kinase domain. For 

abbreviations, see text. 

 

 

 

 

 

 

 

 

 

 

Table legend 



42 
  

Table 1: UPR-targeting pharmacological agents.  Drug categories are listed based on the 

primary mode of action, and major outcomes reported in vitro and in vivo. Phosphorylation 

is indicated by a “p-“ prefix . Where drugs have been evaluated for protective abilities in 

disease models / or cellular stress the description is given in bold. * denotes where in vitro 

studies have been conducted in primary neuronal cultures as oppose to cell lines.  

Abbreviations: Aβ = beta amyloid, AD= Alzheimer’s disease,  ATF-4 = Activating transcription 

factor 4, ATP= adenosine triphosphate, BACE1= β secretase,  BAX= Bcl2 associated X, Bcl = B-

cell lymphoma, BIO= 6-bromoindirubin-3′-oxime, BIP = binding immunoglobulin protein, BIX= 

BIP inducer X, CHOP= CCAAT enhancer binding protein homologous protein, eIF2α = 

eukaryotic initiation factor 2α kinase, ERSRE= endoplasmic reticulum stress response 

element, GADD34 = growth arrest and DNA damage inducible protein 34, GRP94 = glucose 

regulated protein 94 , GSK3β, Glycogen syntheses kinase 3β, HDAC = histone deacetylates, 

IRE-1 = inositol-requiring enzyme 1, ISRIB = integrated stress response inhibitor, JNK= Jun-N-

Kinase, NF-κB= Nuclear factor κB,  N.R. = not reported, PBA= 4-phenyl butyric acid, PERK = 

PRK-like ER kinase , RYR = ryanodine receptor, TDZD= thiadiazolidinone,  TUDCA = 

tauroursodeoxycholic acid, UPR= Unfolded Protein Response, XBP-1 = Xbox protein 1 and 

2DG = 2-deoxy-D-glucose. 

 

 

 


