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Abstract 26 

 27 

OBJECTIVE: Although high-dose rifampicin holds promise for improving tuberculosis 28 

disease control by eradication of persistent bacteria, the optimal dose of rifampicin which 29 

kills persistent bacteria and shortens the treatment duration is unknown.  30 

METHODS: The Cornell mouse model was used to test the efficacy of rifampicin in elevated 31 

dose combined with isoniazid and pyrazinamide to kill actively growing and persistent bacilli 32 

and to measure relapse rate. Persistent bacteria were evaluated using Mycobacterium 33 

tuberculosis culture supernatant containing resuscitation promoting factors. Pharmacokinetic 34 

parameters and dose-dependent activity on cultivable and persistent bacilli were determined.  35 

RESULTS: Increasing doses of rifampicin in combination with isoniazid and pyrazinamide 36 

resulted in dose-dependent faster bacterial clearance.  Evaluated both on solid media and in 37 

culture filtrate containing resuscitation promoting factors, a regimen containing a standard 38 

dose of rifampicin at 10 mg/kg over 14 weeks failed to achieve organ sterility. In contrast, 39 

higher doses of rifampicin achieved organ sterility in a much shorter time of 8 to 11 week.  40 

Disease relapse, which occurred in 86% of mice treated with the standard regimen for 14 41 

weeks, was completely prevented by rifampicin doses of 30 mg/kg and above.  42 

Conclusions: In the treatment of murine tuberculosis, a rifampicin dose of 30 mg/kg was 43 

sufficient to eradicate persistent M. tuberculosis, allowing shorter treatment duration without 44 

disease relapse. 45 

 46 
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Introduction  58 
 59 

TB remains one of the most prevalent and lethal infectious diseases worldwide, despite of the 60 

advent of anti-TB drugs and global healthcare initiatives, leading to approximately 2 million 61 

deaths annually.
1
 Although the current drug regimen is effective, 6 months of chemotherapy 62 

are necessary to achieve a cure.  The long duration of therapy leads to poor patient 63 

compliance which gives rise to high relapse rates (7-13%) and the emergence of drug-64 

resistant strains.
2
 Thus, shortening the duration of chemotherapy is of significant clinical 65 

benefit. Unfortunately, under the current paradigm, it takes more than 6 years to bring a new 66 

drug from bench to bedside, and more than 20 years for novel drug combinations to emerge.
3
 67 

This problem is amplified by the fact that tubercle bacilli can become dormant and persistent, 68 

undetectable by conventional tests. The persistent bacteria are tolerant to current TB drugs 69 

and difficult to eradicate using the dose levels in the current drug regimen.
4, 5

 Therefore, to 70 

bridge the gap, there is an urgent need to optimize the doses of the drugs that are already used 71 

in the standard treatment regimen to maximize their bactericidal and sterilizing activities.
6
  72 

Of the current anti-tuberculous drugs, rifampicin was introduced at suboptimal doses.
6, 7

  73 

Rifampicin exhibits bactericidal activity, killing actively growing organisms and sterilizing 74 

activity, killing the persisting bacilli that are responsible for relapse.
6, 8-10

 It can be used at 75 

higher doses without serious adverse effects.
11-14

 Previous studies showed that high-dose 76 

rifampicin therapy up to 35 mg/kg is well-tolerated in man
14-16

 and increases the rate of 77 

tuberculosis clearance.
15

 Similar observations were made in mice 
13, 17-19

 with a maximum 78 

tolerable dose of 160 mg/kg per day.
19

 Recent results of a randomized clinical trial in South 79 

Africa and Tanzania by the PanACEA consortium suggested that rifampicin at 35 mg/kg was 80 

more efficacious than the standard rifampicin dose regimen by increasing culture conversion 81 

time in liquid medium.
20

 However, it is not known if rifampicin at 35 mg/kg is able to shorten 82 

the treatment duration and provides a low relapse rate. We have showed that M. tuberculosis 83 
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forms persistent bacteria which are dependent on culture filtrate (CF) containing resuscitation 84 

promoting factors 
21

  to recommence multiplication. We demonstrated for the first time that a 85 

high-dose rifampicin drug regimen was able to kill CF-dependent persistent bacteria, 86 

enabling a shortened treatment duration in mice without disease relapse.
13

  However, in our 87 

previous study, we only used one high dose of the drug (50 mg/kg). It is therefore crucial to 88 

find the minimum dose size of rifampicin capable of killing persistent bacteria with a 89 

favorable toxicity profile to patients.  90 

Herein, we studied the therapeutic effects of incremental doses of rifampicin in combination 91 

with isoniazid and pyrazinamide in the Cornell mouse model. We measured the rate of 92 

elimination of bacterial cfu counts and relapse rates. We detected and quantified persistent 93 

bacilli in cfu count-free organs using M. tuberculosis culture filtrates.    94 

Materials and methods 95 

Bacterial strains and growth conditions  96 

M. tuberculosis strain H37Rv was mouse-passaged and grown in 7H9 medium supplemented 97 

with 10% albumin dextrose complex (ADC; Becton and Dickinson, UK) and containing 98 

0.05% Tween 80 at 37°C without disturbance for 15 days. The culture was subsequently 99 

stored at -70°C for animal infection. To determine the viable counts prior to infection, colony 100 

forming unit (cfu) counting was performed prior to freezing and once again after thawing.  101 

cfu counting was carried out by plating serial 10-fold dilutions of the cultures on 7H11 agar 102 

medium supplemented with oleic albumin dextrose complex (OADC, Becton and 103 

Dickinson, UK). Colonies were counted after incubation of the plates at 37°C for 3 to 4 104 

weeks and viability was expressed as Log cfu/mL.  The cultures were subsequently diluted in 105 

PBS and used for inoculations in mice.  All culture media were made selective by the 106 

addition of polymyxin B 200 U/mL, carbenicillin 100 mg/L, trimethoprim 20 mg/L and 107 

amphotericin B 10 mg/L (Selectatab, Mast Diagnostica GmbH).  Human medicines of 108 
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rifampicin (Rifadin capsules, Sanofi Aventis), isoniazid (isoniazid tablets, Focus) and 109 

pyrazinamide (Zinamide tablets, Genus Pharmaceuticals) were used in this study.  110 

Cornell mouse model   111 

Rifampicin at different dose sizes in combination with isoniazid and pyrazinamide was tested 112 

using the Cornell mouse model.
22, 23

   The model was conducted using the experimental 113 

design and procedure described previously.
24

 Briefly, as shown in Table 1, at 3 weeks after 114 

M. tuberculosis H37Rv infection, treatment was given to female BALB/c mice for 14 weeks 115 

with 150 mg/kg pyrazinamide, 25 mg/kg isoniazid combined with 10, 20, 30, 40 and 50 116 

mg/kg rifampicin by daily oral administration for 5 days per week. A sample of 4 mice was 117 

sacrificed at the beginning of the treatment and 8 mice was sacrificed 2
nd

, 4
th

, 6
th

, 8
th

, 11
th

 and 118 

14
th

 week of treatment to monitor cfu counts. The organ homogenates from 6
th

 to 14
th

 week 119 

were cultured in selective Kirchner liquid medium for 4 weeks with subsequent sub-culturing 120 

onto selective Löwenstein-Jensen slopes for a further 4 weeks.  121 

Immediately after termination of 14 weeks of chemotherapy, the remaining mice were 122 

administered 0.5 mg/mouse of hydrocortisone acetate by daily oral administration for 8 123 

weeks to suppress their host immunity, cfu counts from lungs and spleen were performed to 124 

determine disease relapse.   125 

The animal husbandry guidelines and all animal experiments were performed according to 126 

the Animals Scientific Procedures Act, 1986 (an Act of the Parliament of the United 127 

Kingdom 1986 c. 14) (Home Office Project licence Number 70/7077) with approval from St 128 

George’s, University of London ethics committee.  129 

Pharmacokinetics of rifampicin in BALB/c mice 130 

Pharmacokinetic (PK) profiles of rifampicin were determined in uninfected and infected mice 131 

in a dose-ranging study with regimens matching those used in the Cornell mouse model 132 

which were administered orally by gavage. There were three BALB/c mice in 2 parallel 133 
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uninfected or infected groups (total n=12 each). The infected group was treated previously 134 

with each of these drug regimens for 8 weeks. After both groups were given the drug 135 

regimens, serial venous blood samples (20 µL) were collected at time points 1, 2, 3, 4, 5, 6, 8 136 

and 24 hours post-dose by tail puncture and mixed with 40 µl of water. The blood samples 137 

were stored at -80°C and subsequently transported in dry ice to GlaxoSmithKline Tres Cantos 138 

for bioanalysis. The concentrations of rifampicin in the blood were determined by UPLC-139 

MSMS assay. PK parameters were calculated using a noncompartmental analysis model 140 

(NCA) in the R software package (v 3.3.2).    141 

Resuscitation of M. tuberculosis in mouse lungs and spleens 142 

For resuscitation of M. tuberculosis grown in mouse organs, culture filtrates containing 143 

resuscitation promoting factor (RPF) were used as described previously.
13, 21, 24

   M. 144 

tuberculosis H37Rv was grown in 7H9 medium for 15 to 20 days until an optical density of 1 145 

to 1.5 was reached.  The cultures were harvested by centrifugation at 3000 g for 15 minutes 146 

and sterilized by filtration with 0.2 µm filter (Sartorius) twice. The culture filtrates were 147 

made selective by addition of polymyxin B 200000 U/L, carbenicillin 100 mg/L, 148 

trimethoprim 20 mg/L and amphotericin B 10 mg/L (Selectatab, Mast Diagnostica GmbH).  149 

Broth counting of lungs and spleens was performed as serial 10-fold dilutions in triplicate in 150 

which 0.5 mL of tissue homogenates were added to 4.5 mL of the culture filtrates. At 10-day 151 

intervals over a 2-month period of incubation at 37°C, the broth cultures were examined for 152 

visible turbidity changes.  The patterns of positive and negative growth tubes will be used to 153 

calculate the most probable number (MPN) of the bacilli.
25

  154 

Growth of M. tuberculosis in turbid tubes was confirmed by colonial morphology on 7H11 155 

agar plates.  The absence of microorganisms other than mycobacteria from turbid tubes was 156 

confirmed by plating on blood agar medium (Oxoid) and Sabouraud dextrose agar (Oxoid).  157 

In order to assess the sterility of culture filtrates free of M. tuberculosis, tubes containing 158 
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culture filtrates were incubated at 37°C for 2 months to ensure  the absence of M. 159 

tuberculosis.  160 

Statistical analysis  161 

A simple model for monoexponential bacterial growth and elimination was used.
24, 26

  162 

Standard errors of parameter estimates were calculated using the method outlined by Landaw 163 

et al. 
27

  with the Jacobian of model parameter sensitivities estimated using a numerical 164 

central difference method. The datasets comprised from multiple individual subject animals 165 

were treated as a naïve pool for data analysis purposes  
28

 rather than using the average of the 166 

data at each time-point. The significance of differences between model parameter estimates 167 

under different therapies was examined with pairwise Z-tests incorporating a Bonferroni 168 

correction of 15 (including a comparison versus 50 mg/kg rifampicin monotherapy from 169 

previous data)  
13

,  where P values <0.0033 would be considered significant. The significance 170 

of differences between the relapse rates was determined with pairwise Fisher’s exact tests 171 

with a Bonferroni correction of 15, with P values <0.0033 considered significant.  172 

RESULTS 173 

Treatment with regimens containing different dose sizes of rifampicin in the 174 

Cornell mouse model  175 

We investigated the effect of rifampicin at 10, 20, 30, 40 and 50 mg/kg in combination 176 

regimens with fixed standard doses of isoniazid and pyrazinamide on the rate of bacterial 177 

eradication and relapse in the Cornell mouse model.  As shown in Table 2 and Fig 1a, there 178 

was a rifampicin dose-dependent increase in the rate of eradication of cfu counts in the lungs. 179 

At rifampicin 10 and 20 mg/kg regimens, the rate of pulmonary bacterial eradication was 180 

slow showing 99% kill at 3.5 weeks and at 2.5 weeks, respectively. Treatment with 181 

rifampicin 30, 40 and 50 mg/kg increased the rate of bacterial eradication (99% kill at 1.8, 1.6 182 

and 1.4 weeks, respectively). Undetectable M. tuberculosis cfu counts were achieved in 183 
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mouse lungs after 14 weeks treatment for 10 mg/kg, 11 weeks for 20 mg/kg, 8 weeks for 30 184 

and 40 mg/kg and 6 weeks with 50 mg/kg of rifampicin containing regimens (Table 2). A 185 

similar dose response trend was observed in spleens except cfu count free organs were 186 

achieved at 6 weeks for both 40 and 50 mg/kg rifampicin regimens (Table 2 and Fig 1b). 187 

These activities were confirmed by the estimates of the exponential rate constants 188 

(logarithmic base 10) for net bacterial elimination during treatment (knet_with_drug) in both lung 189 

and spleen cfu count profiles versus time (Table 3). The elimination rate constants become 190 

faster (i.e. greater in magnitude) with increasing dose, in a linear relationship in both lungs 191 

and spleens (Fig. 1c and 1d).  In the cfu count free organs, no tubercle bacilli were recovered 192 

as confirmed by negative cultures of the organ homogenates in selective Kirchner medium. 193 

No outward signs of toxicity or abnormal behavior were observed in any of the mice treated 194 

with all doses of rifampicin containing regimens. 195 

Pharmacokinetics of rifampicin in combination with isoniazid and 196 

pyrazinamide  197 

Rifampicin blood concentrations after administration of rifampicin containing regimens with 198 

isoniazid and pyrazinamide were examined over a period of 24 hour in both M. tuberculosis 199 

infected and uninfected BALB/c mice.  As shown in Fig 2, there was a linear, dose-200 

proportional increase in the exposure of rifampicin as indicated by both maximal 201 

concentration of rifampicin (Cmax) (Fig 2a) and the overall drug exposure (AUC) (Fig 2b) in 202 

both uninfected and infected mice.  The dose linearity of the rifampicin PK in this range of 203 

doses was further supported by a plot of clearance versus dose from each regimen (Fig 2c). 204 

Clearance (equal to Dose/AUC) was shown to be approximately constant at ~0.04 L/h/kg in 205 

both infected and uninfected animals at each dose level. Both AUC and Cmax of rifampicin 206 

were similar between infected and uninfected animals at all the doses examined (< 30% 207 

difference in either measure at all doses uninfected versus infected).   208 
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Post-treatment level of persisters in the Cornell mouse model 209 

In order to investigate the effect of different rifampicin dose regimens on the post-treatment 210 

level of persisters through RPF-induced resuscitation, lung and spleen homogenates at the 211 

weeks of treatment when cfu counts reached zero for each of the regimens were incubated 212 

with CF containing RPFs. As shown in Table 4, after 14 weeks of treatment with the 213 

rifampicin 10 mg/kg regimen, despite cfu cultures being negative, the number of RPF-214 

dependent persisters was still high. At 11 weeks post-treatment, there were significant levels 215 

of CF-resuscitated bacilli in lungs and spleens for the rifampicin 20 mg/kg regimen, whilst 216 

reduced numbers of persisters were present at 14 weeks of treatment. At 8 weeks of 217 

treatment, there were low numbers of persisters present after treatment with rifampicin 30 218 

mg/kg regimen, complete persister eradication was seen at 11 weeks. There were no 219 

persistent bacteria at 8, 11 and 14 week for rifampicin 40 mg/kg treatment. The regimen 220 

containing 50 mg/kg rifampicin, although failed to clear persisters  at 6 week,  showed no 221 

CF-resuscitated bacilli in both lungs and spleens at 8, 11 and 14 weeks of treatment  (Table 222 

4).  223 

Relapse rate of treatment with the regimens containing different doses of rifampicin 224 

in the Cornell model 225 

The organ cfu counts are shown in Table 5. The treatment with the regimen containing 10 226 

mg/kg of rifampicin gave rise to M. tuberculosis positive organs in 19 out of 23 mice (86.3% 227 

relapse rate). 20 mg/kg rifampicin containing regimen led to 33% relapse rate after 14 weeks 228 

of treatment. In contrast, treatment with the regimens containing 30, 40 and 50 mg/kg of 229 

rifampicin resulted in zero counts in the organs showing relapse free (P < 0.001).  230 

DISCUSSION 231 

TB drug regimens capable of eradicating persistent bacilli likely have the greatest clinical 232 

value to shorten the treatment duration and reduce relapse rate.  In this study, the efficacy of a 233 
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dose range for rifampicin in the standard drug regimen was studied and CF-dependent 234 

persisters were quantified at the time points when cfu count free organs were reached in the 235 

Cornell mouse model. We intended to define if we could utilize CF-dependent persistent M. 236 

tuberculosis as a biomarker for assessment of TB treatment outcome. The Cornell model is a 237 

reliable surrogate for efficacy in tuberculosis focused on disease relapse, developed more 238 

than 60 years ago by McCune et al.
22, 23

  It has been used to assess the pharmacodynamics of 239 

TB drug regimens and pave the way for drugs from critical preclinical evaluation to clinical 240 

application.
29

  Our previous results demonstrated that RPF-dependent bacilli constituted a 241 

major pool for disease relapse in the Cornell model.
13

 It has been repeatedly shown that the 242 

standard rifampicin dose (10 mg/kg) regimen was unable to eliminate the undetectable 243 

persistent bacteria leading to a high disease relapse.
8, 13, 24

 With high dose rifampicin (50 244 

mg/kg) regimen, treatment duration was shortened from 14 to 6 weeks and free of relapse. 
13

 245 

This was attributed to the eradication of CF-responsive persistent bacilli from the infected 246 

organs. In this study, we showed that double the standard dose size of rifampicin failed to 247 

remove CF-dependent persisters at both 11 weeks and 14 weeks of treatment with a relapse 248 

rate of 33% (Table 5). When the drug reached 30 mg/kg, cfu count zero was achieved at 8 249 

weeks with low number of CF-dependent persisters and a further treatment period (up to 11 250 

weeks) was needed to sterilize the organs (Table 4). The regimens with rifampicin at 40 and 251 

50 mg/kg rendered true tubercle bacilli-sterility (negativity for both cfu count and CF-252 

resuscitatable bacteria) in lungs and spleens at 8 weeks of treatment.  253 

We present clear evidence that we were able to predict disease relapse by assessing CF-254 

dependent persisters.  For the first time, we demonstrated that in mice, rifampicin dose size of 255 

30 mg/kg (a minimum threshold) or higher was able to eradicate persistent bacilli leading to 256 

about 21 to 43% shortened treatment period with no disease relapse. Based on this 257 

observation, it may be argued that patients treated with higher than 30 mg/kg of rifampicin 258 
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are likely to achieve cfu count negative sputum faster with low number or no persistent 259 

bacteria leading to shortened treatment duration. This is evidenced in humans, that rifampicin 260 

at 35 mg/kg was able to improve time to stable culture conversion in liquid media 
20

 although 261 

treatment outcome is unknown in term of treatment duration and relapse. Our data offered a 262 

potential prediction of high dose rifampicin at 30 to 50 mg/kg to improve current clinical 263 

treatment, namely shortening the treatment duration and reducing relapse. This highly 264 

promising proof-of-principle work has pioneered a novel clinical method to identify and 265 

quantify persistent bacteria by RPF resuscitation to assess the clinical effectiveness of higher 266 

dose rifampicin in humans (A. Jindani, St George’s University of London, personal 267 

communications).  268 

In addition, we demonstrated that rifampicin in combination with isoniazid and pryzinimide 269 

showed a linear relationship between its dose level and plasma exposure (Cmax and AUC) in 270 

both uninfected and infected mice. We also showed that the plasma exposures of rifampicin 271 

were similar in both infected and uninfected animals (Fig. 2). The drug exposures were about 272 

two fold higher than those in our previous and other group’s reports.
13, 14, 17, 19

  Importantly, 273 

the rifampicin dose linearity of plasma exposure coincided with the linear trend in cfu count 274 

elimination (Fig. 1). There was a clear linearity of the bacterial elimination rate constant as a 275 

measure of efficacy with increasing dose of rifampicin within the range of doses examined 276 

(Fig 1).  Similarly, the dose-dependent drug exposure of rifampicin is closely associated with 277 

the persistent bacterial elimination at the time points when cfu counts were negative. The 278 

linear trend in elimination rate constant was in agreement with the deduction of persister 279 

counts and relapse rate, namely faster elimination rates at higher doses concurred with lower 280 

persister counts and lower relapse rates.  The same may be true in humans because 281 

interestingly, the linearity of rifampicin plasma exposure with dose shown in this study is 282 

consistent with the linearity of rifampicin PK over the range of 10 to 35 mg/kg in humans.
14

   283 

Page 11 of 25

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review
 only

12 

 

It has been shown that in the standard dose of rifampicin (10 mg/kg), 90% of the drug was  284 

bound to human plasma proteins 
30

 and 97% was  bound to mouse proteins,
19

 therefore, only 285 

a very low amount of free drug was able to diffuse into tuberculous lesions. Here we showed 286 

that increasing dose of rifampicin exhibited an accelerated dose-dependent eradication of 287 

persistent bacteria (Table 4). When rifampicin concentration was increased to 30 mg/kg and 288 

above, high blood Cmax and AUC were achieved, leading to higher levels of biologically 289 

available rifampicin which were able to kill persistent bacteria.
13

  290 

The drug exposure and the unbound drug for the same dose size between mice and humans 291 

are different for rifampicin. In mice, AUCs and Cmax of rifampicin are at least threefold 292 

higher than those in humans. In contrast, the free fraction of the drug is almost threefold 293 

greater in humans than that in mice. This suggests that the levels of the active and free drug 294 

in mice leading to the greater efficacy shown in this study can be effectively reached in 295 

humans at the dose levels which were currently studied in human clinical trials. 296 

The implication of our mouse data to patient’s benefits must be taken with caution. 297 

Tuberculosis in humans and in mice differs in the histopathology of the disease. In humans, 298 

TB rarely kills the host in the initial infection. Active disease is associated with a wide range 299 

of granuloma lesions, including bacterial bearing, necrotic granulomas undergoing central 300 

liquefaction and large open cavities, as well as closed granulomas with central caseum, 301 

fibrotic and calcified lesions. In contrast, in the standard Cornell model, infection is initiated 302 

by a high dose of M. tuberculosis (10
5
 cfu/mouse) and treatment is commenced 2 to 3 weeks 303 

after infection  when adaptive immunity is just established. There are no granuloma-like 304 

structures in the lungs.  305 

In conclusion, the current recommended dosage of rifampicin at 10 mg/kg is insufficient to 306 

kill persistent bacilli in the Cornell mouse model. Rifampicin at 30 mg/kg or higher in 307 

combination with isoniazid and pyrazinamide significantly shortened the treatment and 308 
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prevented disease relapse by removing persistent bacteria. PK exposure of rifampicin and the 309 

observed cfu elimination rate constants were both linear in the range of rifampicin doses from 310 

10 to 50 mg/kg in the combination therapy. Optimizing rifampicin to its maximal therapeutic 311 

efficacy with acceptable side-effect profiles will provide valuable information in human 312 

studies and can potentially revolutionize current tuberculosis chemotherapy.  313 

314 

Page 13 of 25

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review
 only

14 

 

ACKNOWLEDGMENTS 315 

We would like to thank Denis Mitchison for helpful discussion. 316 

Funding  317 

This work was supported by the Innovative Medicines Initiative Joint Undertaking  resources 318 

of which are composed of financial contribution from the European Union’s Seventh 319 

Framework Programme (FP7/2007-2013) and EFPIA companies’ in kind contribution (grant 320 

number 115337). The publication reflects only the author’s views. The European 321 

Commission is not liable for any use that may be made of the information herein. The 322 

financial support of MRC (MR/P011144/1) is gratefully acknowledged.  323 

Transparency declarations 324 

None to declare 325 

REFERENCES 326 

1. WHO. WHO global tuberculosis control report 2010. Summary. Cent Eur J Public Health 327 

2010; 18: 237. 328 

2. Mitchison DA. Shortening the treatment of tuberculosis. Nat Biotechnol 2005; 23: 187-8. 329 

3. Regimens CPtTD. Critical Path to TB Drug Regimens: work scope. 2010. 330 

4. Jindani A, Harrison TS, Nunn AJ et al. High-dose rifapentine with moxifloxacin for 331 

pulmonary tuberculosis. N Engl J Med 2014; 371: 1599-608. 332 

5. Gillespie SH, Crook AM, McHugh TD et al. Four-month moxifloxacin-based regimens for 333 

drug-sensitive tuberculosis. N Engl J Med 2014; 371: 1577-87. 334 

6. Mitchison DA, Fourie PB. The near future: improving the activity of rifamycins and 335 

pyrazinamide. Tubercle  (Edinburgh, Scotland) 2010; 90: 177-81. 336 

7. van Ingen J, Aarnoutse RE, Donald PR et al. Why do we use 600 mg of rifampicin in 337 

tuberculosis treatment? Clin Infect Dis 2011; 52: e194-9. 338 

8. Hu Y, Mangan JA, Dhillon J et al. Detection of mRNA transcripts and active transcription 339 

in persistent Mycobacterium tuberculosis induced by exposure to rifampin or pyrazinamide. J 340 

Bacteriol 2000; 182: 6358-65. 341 

9. Mitchison DA. The action of antituberculosis drugs in short-course chemotherapy. 342 

Tubercle 1985; 66: 219-25. 343 

10. Mitchison DA. Role of individual drugs in the chemotherapy of tuberculosis. Int J Tuberc 344 

Lung Dis 2000; 4: 796-806. 345 

11. Girling DJ. The hepatic toxicity of antituberculosis regimens containing isoniazid, 346 

rifampicin and pyrazinamide. Tubercle 1978; 59: 13-32. 347 

12. Yew WW, Leung CC. Antituberculosis drugs and hepatotoxicity. Respirology 2006; 11: 348 

699-707. 349 

13.Hu Y, Liu A, Ortega-Muro F et al. High-dose rifampicin kills persisters, shortens 350 

treatment duration, and reduces relapse rate in vitro and in vivo. Front Microbiol 2015; 6: 351 

641. 352 

Page 14 of 25

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review
 only

15 

 

14. Boeree MJ, Diacon AH, Dawson R et al. A dose-ranging trial to optimize the dose of 353 

rifampin in the treatment of tuberculosis. Am J Respir Crit Care Med 2015; 191: 1058-65. 354 

15. Kreis B, Pretet S, Birenbaum J et al. Two three-month treatment regimens for pulmonary 355 

tuberculosis. Bull Int Union Tuberc 1976; 51: 71-5. 356 

16. Diacon AH, Patientia RF, Venter A et al. Early bactericidal activity of high-dose rifampin 357 

in patients with pulmonary tuberculosis evidenced by positive sputum smears. Antimicrob 358 

Agents Chemother 2007; 51: 2994-6. 359 

17. Rosenthal IM, Tasneen R, Peloquin CA et al. Dose-ranging comparison of rifampin and 360 

rifapentine in two pathologically distinct murine models of tuberculosis. Antimicrob Agents 361 

Chemother 2012; 56: 4331-40. 362 

18. Jayaram R, Gaonkar S, Kaur P et al. Pharmacokinetics-pharmacodynamics of rifampin in 363 

an aerosol infection model of tuberculosis. Antimicrob Agents Chemother 2003; 47: 2118-24. 364 

19. de Steenwinkel JE, Aarnoutse RE, de Knegt GJ et al. Optimization of the rifampin dosage 365 

to improve the therapeutic efficacy in tuberculosis treatment, using a murine model. Am J 366 

Respir Crit Care Med 2013. 187:1127-34 367 

20. Boeree MJ, Heinrich N, Aarnoutse R et al. High-dose rifampicin, moxifloxacin, and 368 

SQ109 for treating tuberculosis: a multi-arm, multi-stage randomised controlled trial. Lancet 369 

Infect Dis  2017; 17: 39-49. 370 

21. Mukamolova GV, Turapov O, Malkin J et al. Resuscitation-promoting factors reveal an 371 

occult population of tubercle bacilli in sputum. Am J Respir Crit Care Med 2010; 181: 174-372 

80. 373 

22. McCune RM, Jr., McDermott W, Tompsett R. The fate of Mycobacterium tuberculosis in 374 

mouse tissues as determined by the microbial enumeration technique. II. the conversion of 375 

tuberculous infection to the latent state by the administration of pyrazinamide and a 376 

companion drug. J Exp Med  1956; 104: 763-802. 377 

23. McCune RM, Jr., Tompsett R. Fate of Mycobacterium tuberculosis in mouse tissues as 378 

determined by the microbial enumeration technique. I. the persistence of drug-susceptible 379 

tubercle bacilli in the tissues despite prolonged antimicrobial therapy. J Exp Med  1956; 104: 380 

737-62. 381 

24. Hu Y, Pertinez H, Ortega-Muro F et al. Investigation of elimination rate, persistent 382 

subpopulation removal, and relapse rates of Mycobacterium tuberculosis by using 383 

combinations of first-line drugs in a modified cornell mouse model. Antimicrob Agents 384 

Chemother 2016; 60: 4778-85. 385 

25. Blodgett R. U. S. Food and Drug Administration, most probable number from serial 386 

dilutions, appendix 2, Bacteriological analytical manual online, Department of Health and 387 

Human Services, Washington, DC, 2010. 388 

https://www.fda.gov/Food/FoodScienceResearch/LaboratoryMethods/ucm109656.htm 389 

26. Meagher AK, Forrest A, Dalhoff A et al. Novel pharmacokinetic-pharmacodynamic 390 

model for prediction of outcomes with an extended-release formulation of ciprofloxacin. 391 

Antimicrob Agents Chemother 2004; 48: 2061-8. 392 

27. Landaw EM, DiStefano JJ, 3rd. Multiexponential, multicompartmental, and 393 

noncompartmental modeling. II. data analysis and statistical considerations. Am J Physiol  394 

1984; 246: R665-77. 395 

28. Ette EI, Williams PJ. Population pharmacokinetics II: estimation methods. Ann 396 

Pharmacother 2004; 38: 1907-15. 397 

29. Council. EABMR. Controlled clinical trial of short-course (6-month) regimens of 398 

chemotherapy for treatment of pulmonary tuberculosis. Lancet 1972; 1: 1079-85. 399 

30. te Brake LH, Ruslami R, Later-Nijland H et al. Exposure to total and protein-unbound 400 

rifampin is not affected by malnutrition in indonesian tuberculosis patients. Antimicrob 401 

Agents Chemother 2015; 59: 3233-9. 402 

Page 15 of 25

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review
 only

16 

 

 403 

 404 

Figure legends 405 

Figure 1. Treatment profiles of M. tuberculosis H37Rv with different dose size of rifampicin 406 

(R) in combination with isoniazid (H) and pyrazinamide (Z) in the Cornell mouse model. a. 407 

Elimination of cfu counts in lungs. b. Elimination of cfu counts in spleens. The solid arrow 408 

indicates the treatment starting at 3 weeks of post infection. The empty arrow indicates 409 

starting steroid treatment after the termination of 14 week therapy.  c. Elimination rate 410 

constant against rifampicin doses in lungs. d. Elimination rate constant against rifampicin 411 

doses in spleens.  412 

Figure 2. Rifampicin pharmacokinetic relationship between dose sizes and drug exposure in 413 

infected and uninfected mice. a. Linear relationship between rifampicin dose and Cmax. b. 414 

Linear relationship between rifampicin dose and AUC. c. Clearance of rifampicin with 415 

different dose sizes of the drug.  416 

 417 

Page 16 of 25

Journal of Antimicrobial Chemotherapy: under review

Journal of Antimicrobial Chemotherapy



Confidential: for peer review
 only

Table 1. Cornell model experimental design 

Treatment groups
a
 No. of mice

b
 D0 D21 2W 4W 6W 8W 11W 14W 22W

c
 

Control 8 4 4 

       R10HZ 71 
 

8 8 8 8 8 8 23 

R20HZ 71 8 8 8 8 8 8 23 

R30HZ 71 8 8 8 8 8 8 23 

R40HZ 71 8 8 8 8 8 8 23 

R50HZ 71 

  

8 8 8 8 8 8 23 

a Mice were intravenously infected at day 0. Treatment commenced at 21 days after infection. 

Dosages for each drug were as follows: rifampicin (R) 10, 20, 30, 40 or 50 mg/kg, isoniazid 

(H) 25 mg/kg and pryzinimide (Z) 150 mg/kg. 

b Total mice were infected and treated excluding natural death of the mice during the course 

of treatment 

c 8 weeks of hydrocortisone treatment post 14 weeks of treatment   
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Table 2. Bactericidal and sterilizing activities of the experimental regimens against M. 

tuberculosis in mouse lungs and spleens 

Organs Time Control R10HZ R20HZ R30HZ R40HZ R50HZ 

Lung D0
a
 4.36 ± 0.26 

    D21
b
 6.93 ± 0.07 

2 weekc 5.58 ± 0.43 5.12 ± 0.14 4.68 ± 0.27 4.35 ± 0.29 4.00 ± 0.23 

4 week 4.58 ± 0.33 4.12 ± 0.06 3.35 ± 0.46 2.80 ± 0.41 1.99 ± 0.02 

6 week 3.71 ± 0.05 3.08 ± 0.52 1.88 ± 0.70 1.14 ± 0.62 0 

8 week 2.58 ± 0.27 1.95 ± 0.43 0 0 0 

11 week 1.01 ± 0.43 0 0 0 0 

14 week 0 0 0 0 0 

Spleen D0a 5.30 ± 0.16 

 

D21b 7.43 ± 0.21 
    

 

2 week
c
 6.36 ± 0.29 5.73 ± 0.96 5.07 ± 0.52 4.61 ± 0.56 3.94 ± 0.46 

4 week 5.20 ± 0.23 4.17 ± 0.48 3.24 ± 0.13 2.00 ± 0.48 1.40 ± 0.42 

6 week 3.65 ± 0.45 2.54 ± 0.49 1.69 ± 0.46 0 0 

8 week 2.34 ± 0.36 1.49 ± 0.53 0 0 0 

11 week 0.92 ± 0.46 0 0 0 0 

14 week 0 0 0 0 0 

a. 2 hours post-infection. b. 21 days post-infection. c. week 2 post-treatment.   

Zero cfu count from each drug regimen was derived from one third of tissue homogenate 

and limit detection was 3 cfu/organ. 

The data presented as mean of 4 mice for the control and 8 mice for the treatment groups        

with standard deviation.  
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Table 3. Estimates of exponential rate constants during pre-treatment (knet_no_drug) and 

treatment (knet_with_drug) in mouse lungs and spleens 

 

 

Elimination rate constant (wk-1) 

Treatment group Lungs Spleens  

 

est.a %RSEb est.a %RSEb 

R10HZ -0.52 2.0 -0.56 3.4 

R20HZ -0.58 4.9 -0.69 6.3 

R30HZ -0.75 8.2 -0.88 5.4 

R40HZ -0.84 6.2 -1.32 6.7 

R50HZ -1.07 5.2 -1.40 6.9 
a
 estimate. 

b
 percentage relative standard error. 
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Table 4. Resuscitation of M. tuberculosis H37Rv in mouse lungs and spleens in the Cornell 

mouse model after treatment with regimens containing different doses of rifampicin 

  

MPN counts (CF)
a
 

Organs Weeks of treatment R10HZ R20HZ R30HZ R40HZ R50HZ 

Lung 6 - - - - 1 ± 4 

 

8 - - 9 ± 9 0 0 

11 - 90 ± 30 0 0 0 

14 245 ± 28 20 ± 23 0 0 0 

Spleen 6 - - - - 3 ± 5 

 

8 - - 18 ± 10 0 0 

 

11 - 122 ± 83 0 0 0 

14 308 ± 440 58 ± 21 0 0 0 
a
determined by MPN of the diluted organ homogenies (n=8)  with the culture filtrates, mean 

MPN ± standard deviations.  Broth counts were derived from one third of tissue homogenate 

and calculated to represent the MPN of entire organ. The limit of detection was 1 

MPN/organ. -, Colony count positive and MPN counts not performed organs.  
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Table 5. Relapse rates of mice after treatment with regimens containing different doses of 

rifampicin for 14 weeks 

CFU counts detected from R10HZ R20HZ R30HZ R40HZ R50HZ 

Both organs 6 1 0 0 0 

Lungs 7 5 0 0 0 

Spleens 6 2 0 0 0 

Negative organs 3 16 22 23 22 

Total mice 22 24 22 23 22 

% relapse 86.36 33 0 0 0 
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