E% University of
OPEN (2" ACCESS BRISTOL

Stanoev, A., Audinet, N., Tancock, S., & Dahnoun, N. (2018). Real-time
stereo vision for collision detection on autonomous UAVSs. In Proceedings of
the |EEE International Conference on Imaging Systems and Techniques
(I1ST), 2017 Ingtitute of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/1ST.2017.8261524

Peer reviewed version

Link to published version (if available):
10.1109/1ST.2017.8261524

Link to publication record in Explore Bristol Research
PDF-document

This is the author accepted manuscript (AAM). The final published version (version of record) is available online
via IEEE at http://ieeexplore.ieee.org/document/8261524/. Please refer to any applicable terms of use of the
publisher.

University of Bristol - Explore Bristol Research
General rights
This document is made available in accordance with publisher policies. Please cite only the published

version using the reference above. Full terms of use are available:
http://www.bristol.ac.uk/pure/about/ebr-terms

https://doi.org/10.1109/IST.2017.8261524
https://doi.org/10.1109/IST.2017.8261524
https://research-information.bris.ac.uk/en/publications/realtime-stereo-vision-for-collision-detection-on-autonomous-uavs(8c255814-f0fa-416c-90c5-7c0ad9f75834).html
https://research-information.bris.ac.uk/en/publications/realtime-stereo-vision-for-collision-detection-on-autonomous-uavs(8c255814-f0fa-416c-90c5-7c0ad9f75834).html

Real-Time Stereo Vision for Collision Detection on
Autonomous UAVs

Aleksandar Stanoev, Nicolas Audinet, Scott Tancock, Naim Dahnoun
Emails: as14622@my.bristol.ac.uk, nal4285@my.bristol.ac.uk, st12660@my.bristol.ac.uk,
naim.dahnoun@bristol.ac.uk
Department of Electrical and Electronic Engineering
University of Bristol
Bristol, U.K.

Abstract—Collision detection is an important unsolved prob-
lem in the domain of modern UAV, which would enable safe nav-
igation in unknown environments. Stereo vision provides a com-
pact, lightweight and low-power solution. This paper describes
an adaptive system for achieving real-time stereo vision for
collision detection on an embedded GPU. Several optimisations
are described including using sensor fusion with an ultrasonic
sensor to better filter noise, organising the computations to
take advantage of the platform’s heterogeneous architecture and
using GPU textures to benefit from caching. A discussion of the
hardware features is provided, followed by the algorithm and
implementation details for disparity calculations and finally a
method for identifying objects from a disparity map. The system
was implemented on an NVIDIA Tegra X1, achieving 48 FPS on
a 320x240 image.

I. INTRODUCTION

UAV! technology has seen a lot of interest in many
industries in recent years. Applications range from military [1],
monitoring, delivery, surveying, first respondents in accidents
and even delivering vaccines to remote locations [2][3]. In many
of these applications, UAVs require the ability to autonomously
navigate through an unknown environment without crashing
into obstacles.

Stereo vision is a promising avenue to approach the problem
of detecting obstacles. Stereo vision relies on the differences
between two images of the same scene captured at the same
time from two cameras at a known offset. Cameras are cheap,
light and low-powered, and computation power is becoming
increasingly so. Additionally, cameras capture a wide scene
almost instantaneously, contrasting with other methods such as
LiDAR or infrared time-of-flight depth sensors which require
forced IR illumination.

Stereo vision depth maps also provide a dense set of depth
measurements, which can be used to accurately map the
environment. This map can then be used to recommend a
path to the UAV navigation system to avoid the detected
objects [4]. Although stereo vision technology has been an
established area of research for many years, its use in real-time
collision detection still remains an unsolved problem. A variety

of different approaches, such as [4], [5], and [6] are common.

An important trade-off to always consider in a stereo vision
system is speed versus quality of the disparity map. Recently,

'Unmanned aerial vehicle

a new generation of embedded GPUs from NVIDIA - the
Maxwell-based Tegra X1, has made substantial progress in the
processing power available for embedded applications, allowing
for fast real-time stereo vision systems with a relatively low
power profile [7].

This paper focuses on describing and demonstrating a
collision detection pipeline targeted at a modern embedded
GPU architecture. Section II contains an overview of the
hardware used for this implementation. Section III contains an
overview of the complete collision detection system. In Section
IV, the theory and the implementation of real-time disparity
map generation from a stereo image pair is described. Section
V deals with the filtering techniques applied to the disparity
map for noise reduction. Section VI illustrates a method
for identifying objects from the disparity map. Section VII
contains benchmark results from the practical implementation
of the proposed method. Finally, Section VIII summarises the
achievements and results of the paper, and suggests future work
that could be performed.

II. HARDWARE CONSIDERATIONS

The UAV application that the proposed system targets
necessitates a compact and power-efficient platform. Due to
the highly parallel nature of the chosen disparity algorithm
(explained in section IV-A), it can be efficiently offloaded to
compute accelerators such as graphic processors, digital signal
processors or other massively parallel systems.

A. The Tegra X1 SoC

The proposed GPGPU? implementation of this algorithm
uses NVIDIA CUDA technology and targets the NVIDIA
Jetson TX1 compute module. This is a platform using the
NVIDIA Tegra X1 mobile processor, which contains four 64-bit
ARM A57 CPU cores and an NVIDIA Maxwell GPU with 256
CUDA cores (Fig. 1). The Tegra X1 SoC? is oriented towards
UAV/automotive computer vision and autopilot applications as
well as neural networks.

The Jetson TX1 runs Linux, has a memory bandwidth of
25.6GB/s and its GPU can perform up to 1 TeraFLOP of 16-bit

2General-purpose computing on graphics processing units
3System-on-Chip

Maxwell

4k 60FPS
Video

Encode

Decode

4k 60 fps
Display
controller

LPDDR4
memory
controller

4 A57

4k
Dual
HDMI 2.0 Display

HDCP 2.2

Securit)
Offloads

4 A53

e Audio

SPI MIPI
ISP engine

Hx
Flach SDIO Csl-2

Fig. 1: NVIDIA Tegra X1 mobile SoC architecture [7]

floating point calculations with a maximum thermal design
power of 15 watts [8][7].

The main motivation for choosing this platform was the
high relative performance among other ARM-based solutions
coupled with a familiar (CUDA-capable) GPU, while con-
suming a fraction of the power of an entire drone platform.
The combination of a standard Linux distribution and CUDA
API allowed for rapid development on ordinary x86/NVIDIA
GeForce desktop hardware with no changes required when
running on the target device.

B. The Maxwell GPU architecture

Massively parallel platforms require different programming
paradigms compared to the usual sequential model. The
approach taken by CUDA and OpenCL is modelled around
the physical architecture of graphics processors. It involves
launching kernels - blocks of code which perform a single
iteration of a computation. These are launched by the CUDA
runtime multiple times so as to best occupy the underlying
hardware. The device is controlled by a host-side program
which is responsible for enqueuing kernels and copying memory
on and off the GPU, while also being able to perform
computation on the CPU.

The Maxwell architecture consists of Graphics Processing
Clusters, which in turn contain a number of Streaming Mul-
tiprocessors (SMM). Each streaming multiprocessor contains
CUDA Cores, organised in warps. Each warp runs 32 parallel
threads which execute instructions in lockstep.

The kernels run on the CUDA cores in parallel and make
use of the register file and texture cache to efficiently store
data without hitting global memory, which has a much higher
access latency.

Additional Maxwell architecture details are available in
NVIDIA’s GTX 980 whitepaper [9] and a general warp
scheduling and dispatch overview is provided in NVIDIA’s
Kepler GK110 Architecture whitepaper [10].

Fig. 2: S550 hexacopter

III. COLLISION DETECTION SYSTEM OVERVIEW

The UAV control system consists of the Jetson TX1 module
mounted on an Auvidea J120 carrier board [11] and a Tara
stereo vision camera [12].

Flight control inputs are accepted from various sources by
an application which takes into account the output of the
proposed collision detection system along with input from
various other sensors. These inputs are then converted into
Yaw/Pitch/Roll/Throttle values which are relayed to a flight
controller, performing PID control to keep the aerial platform
stable. The proof of concept has been implemented on an
S550 hexacopter [13] (Fig. 2) utilising the Naze32 flight
control platform [14], however no autonomous tests have been
performed yet.

The e-con Systems Tara stereo vision camera has been
chosen due to its synchronised 60fps 10-bit uncompressed
grayscale output and out-of-the box calibration. The manu-
facturer provides a Software Development Kit which wraps
communication with the camera and image rectification in an
interface accessible from C++ OpenCV.

Camera images are acquired by the ARM host-side software
(section IV-D) over a USB 3.0 bus. Each frame is then rectified
to compensate for camera lens distortion before being copied
to the GPU. The GPU performs disparity calculations (detailed
in section IV-B) and executes the guided filter (section V-A)
and morphological filters (section V-B). Post-processing on the
previous frame is executed in parallel on the CPU while the
GPU kernels are running to maximise throughput (Fig. 3).

IV. DISPARITY IMPLEMENTATION

There are many approaches to calculating the disparity of
stereo images. They can be classified into three categories:
global, semi-global and local methods.

Global methods involve minimising an energy function over
all disparity values. These methods tend to output good results,
but also have a high complexity and are not suitable for real-
time embedded processing. Semi-global methods share similar
characteristics with global methods [15].

Local methods make the assumption that all the information
needed to calculate the disparity of a given pixel can be found
in its local neighbourhood. Therefore, these methods tend to

ARM A57 CPU NVIDIA Maxwell GPU

Upscale disparity

3D reproject

5 n
:)
' 3 Disparity kernel
i | Collision detection 3 Frame n
t :
8 | Send data to
2 | 1| flight controller
‘ ' v
|_ \ A
: Read frame ' v
;—};' Guided filter kernels
Rectify stereo 3 Frame n
2 v
2

' Morphological
Copy data to GPU --1---p filter kernels
R Frame n

Copy frame n
disparity from GPU

Fig. 3: Pipelined algorithm implementation

Disparity kernel
Frame n+1

have a lower complexity and faster execution time than global
methods, and were chosen for our real-time implementation.
However, they also tend to be significantly noisier than their
global counterparts.

A. Algorithm

As defined by Scharstein and Szeliski [16], local stereo
vision methods can be defined in four steps: cost computation,
cost aggregation, disparity selection and disparity refinement.

In cost computation, the pixels in the support window
around the two pixels to be matched are compared. In the
cost aggregation step, these comparisons are used to produce a
likelihood of the two pixels matching. A simple and fast way of
achieving this is calculating the Sum of Absolute Differences
(SAD),

SAD (z,y,d) = > |Ip(i.j) — Ir(i—d,j)] (1)
(i,j)EW

where = and y are the coordinates of the pixel in question,
d is the disparity to be tested, W is the set of all pixels in
the support window centred at (z,y) and Iy (4,7) and Ig(i,5)
are the intensity values at coordinates (i,j) of the left and
right input image respectively. A low SAD score between two
regions indicates that the difference between them is small, and
therefore that the two pixels likely match. This is the method
used in our disparity calculations.

Various other matching methods using support windows
exist. The Sum of Squared Differences [17] method squares

the pixel difference instead of finding the absolute value, and is
more sensitive to outlier noise. Normalised Cross Correlation
(NCC) [18] seeks to statistically compensate for differences
in gain and bias, but also blurs discontinuities (edges). Finally
the Census Transform (CT) [19] finds the Hamming difference
between two bit strings created by comparing all the pixels
in the support window to the centre pixel. This method has
good outlier tolerance, but performs poorly in regions with
repeated structures. Although NCC and CT methods produce
less noisy disparity maps, they require significantly more
computing power. Therefore, it was chosen to use the faster
SAD comparisons and filter the depth map at a later stage.

To select the best disparity, a Winner Takes All (WTA)
approach was used. This method selects the disparity with the
lowest SAD score as the disparity from the available disparity
range. Finally, two different filters are applied to the resulting
disparity map to reduce noise (see Section V).

B. GPU disparity implementation

The implemented algorithm performs left-right stereo match-
ing and filtering on the GPU. Such disparity calculations
are inherently memory-bound and can exploit the massive
parallelism of the hardware due to individual pixel calculations
being independent of each other. The matching is performed
by taking a square window of pixels from both images and
correlating them by calculating the SAD. Due to the nature of
the square sliding window, the run time complexity is O(d?*nr)
where d is the side length of the square window, r is the
maximum disparity range and n is the total number of pixels
in the image. Each window in the left image (which is not
shifted by the disparity value being considered) is calculated
in parallel with the others using the parallelism available in
the GPU.

The left window is stored fully in GPU registers - this is
achieved by keeping it in a statically indexed array such that
all accesses can be resolved at compile time. For every window
in the left image, matches are performed by sliding a window
horizontally on the right camera image up to the search range.
This implies that there is a large overlap between every adjacent
window, as each next one is shifted to the left by a single
column of pixels.

These factors provide an ideal use case for textures, which
allow for both efficient random access to arrays as well as a
2D aware cache. By mapping the stereo images to 2D CUDA
textures, recently accessed texels* would be cached in the
texture cache, thus avoiding reloading the entire window from
global memory.

Development was done on an NVIDIA GeForce GTX 770
(Kepler) GPU with CUDA 8.0. The achieved occupation of the
development hardware is 48.5% which is enough to partially
hide the effect of memory latency. This occupation value is
caused by the high use of registers (used for window caching)
per thread.

Upon profiling on the GTX 770, the software exhibits a
texture cache read rate of 301.8GB/s but is bound by global
memory access speed and latency, peaking at 117.9GB/s. This

4Texture elements

(b) 11x11 window size

(a) 7x7 window size

Fig. 4: Comparison of disparity quality for varying window
sizes (Tsukuba image pairs)

shows that compute optimisations won’t have a measurable
effect on the speed of the kernel and instead speedups can be
achieved by either increasing the memory bandwidth (by using
more powerful and thus more power-hungry hardware, which
defeats the embedded focus of this paper) or by decreasing
the amount of pixels processed by the kernel (a product of the
window size).

C. Performance impact of window sizes

Increasing the support window size results in a loss of details
but decreases the number of outliers and noise (Fig. 4).

As noted in the previous section, the window size needs to
be constant to allow for loop unrolling by the GPU compiler.
A way to still allow for varying window sizes at runtime is
to build several versions of the disparity kernel, each with
different window dimensions and enqueue whichever window
size is required.

In UAV applications, this allows for varying the accuracy
of the collision detection subsystem with regards to the flight
speed. Faster speeds require lower latencies to avoid collision,
but those are obtained by sacrificing accuracy which can be
regained if a longer frame time is acceptable.

A combination of ultrasonic [20] and laser [21] distance
sensors allows for a fail-safe to be implemented alongside the
proposed computer vision approach. While these sensors do
not allow for obstacle avoidance, they do allow for switching
between the two disparity accuracy modes - fast (46 fps) but
noisy and slower (20 fps) but with less noise without risking
collision. Since those sensors have a wide field of view (25
degrees for the VL53L0X laser [21] and 15 degrees for the
ultrasonic sensor [20]), their output can also be used as an
adaptive threshold for filtering out erroneous matches in the
resulting disparity. The noise in disparities calculated with a
smaller window is usually caused by occlusions or untextured
surfaces and manifests itself as an outlier area of high disparity.
If the distance of the nearest object reported by the time-of-
flight sensors is larger than this erroneous detection, these
outliers can be culled safely.

The achieved performance with varying window parameters
is detailed in section VII.

D. Host-side code

The host code (implemented in C++) is tasked with acquiring
frames from the stereo camera, copying memory content to

and from the GPU and performing postprocessing on each
calculated disparity. This is then passed over to the collision
detection section of this system (section VI) which performs
3D reprojection and sends collision data to the flight controller.

By refactoring the code such that there are always two
frames in flight (Fig. 3), the implementation can benefit
from asynchronous kernel launches and perform computation
while the GPU is busy, instead of blocking. This approach
considerably increases the program’s throughput, but requires
careful balancing of the workloads to prevent one side (CPU or
GPU) from becoming a large bottleneck. Camera frame capture
was implemented in a separate thread to prevent reliance on
the camera frame rate and any possible frame time jitter due
to capture delay.

V. FILTERING

SAD region-based disparity calculation is fast but noisy.
This reduces the accuracy of the collision avoidance system,
increasing the error of the distance measurements and poten-
tially introducing artifacts in the image. To counteract this, the
disparity map is filtered to improve the Signal-to-Noise Ratio.
Two types of filters were used: a guided filter and an opening
morphological transformation.

A. Guided Filtering

For this application, it was chosen to use a guided filter [22],
which performs edge-aware blurring (averaging) of the image.
This filter aims to average the areas of the image with low
variance (objects) whilst keeping areas of high variance (edges)
intact. It does this by using a guidance image, and assuming
that the output is a linear transformation of the guidance image.
This would therefore maintain the edge structure in the guidance
image.

Additionally, the calculations for each pixel are independent
of each other, making the algorithm highly parallelisable and
a good fit for running on the graphics processor.

The filter is implemented on the graphics processor as a
two-stage process. The first pass computes A and B values
by sliding a window over the complete disparity image and
performing the calculations detailed in section IV. This two-
step process is necessary as the final step of the filter averages
the values of A and B over a window for every pixel. This
creates a data dependency - where every pixel depends on
the computed values of those surrounding it. The first pass
computes those variables for every pixel independently and
populates a pair of buffers which are subsequently used by the
second pass to compute the filtered value for every pixel.

B. Morphological filtering

When taking a stereo image, it is likely that an object
obstructs the view of one of the cameras. Therefore, when
trying to match pixels in the occluded region, the algorithm
will fail and usually return unpredictable results. Some of these
will be attenuated by the guided filter, but often this still leads
to small bright regions in the disparity map.

To counteract this problem, an opening morphological
transformation is applied to the disparity map. An opening

transformation is composed of two steps: an erosion trans-
formation followed by a dilation transformation. The erosion
transformation assigns to every pixel in the image the minimum
value in a local region defined by a kernel (or structuring
element). Symmetrically, the dilation transformation assigns to
every pixel in the image the maximum value in the kernel.

When a dilation transformation is performed after an erosion
transformation with the same kernel, it will restore the bright
regions to their original size, albeit altering the value of the
pixels.

Similarly to the guided filter, the opening transformation is
highly parallelisable since the value assigned to each pixel is
independent from the value assigned to all other pixels. This
calculation is therefore also executed on the GPU.

The implementation of the erosion and dilation kernels is
similar to that of the second stage of the guided filter. An
aggregate min operation for erosion and max operation for
dilation is performed on a window with a configurable size.

The combined opening transformation is performed in-place
on the GPU disparity array by utilising an intermediate buffer
such that erosion reads from the main buffer and writes into
the temporary buffer and dilation reads from the temporary
buffer and writes back into the main buffer.

VI. COLLISION DETECTION

Once the disparity has been calculated for each pixel in the
input stereo image, it has to be used to recognise objects. The
first step is to convert the disparities to depth measurements.
The depth measurements are then used to identify prominent
objects that need to be avoided.

A. Conversion to depth map

The disparity map only contains the difference in pixel
positions between the same pixel in the left and right stereo
image (the disparity). This distance is directly linked to the
distance between the object and the stereo camera. To retrieve
the depth information from the disparity map, one can use the
following formula:

_ T
T d

where Z is the perpendicular distance from the image
plane to the object, T' is the distance between the two focal
points (the baseline), f is the distance between the focal
point and the image plane (the focal length), and d is the
disparity. It is possible to use this equation, rather than the
more complex epipolar geometry, as the cameras had been
physically calibrated to avoid any alignment issues.

In practice, two OpenCV functions were used to achieve
this. The stereoRectify() function is run by the Tara camera
Software Development Kit, and returns the) matrix which
contains the baseline and focal length parameters. This matrix is
then used by the reprojectImageT 03D() function that takes
the disparity and returns an array of three images containing
the 3D coordinates of each pixel. The final depth map is then
obtained by taking the Euclidean distance from the origin of
the points.

Z

B. Object Identification

The next task of the system is to recognise objects to avoid
from the depth map. This is achieved in three stages:

1) threshold the depth map
2) label the various different objects
3) model the objects with spheres

The aim of the thresholding step is to simplify the depth
map into a binary image (see 5). The white pixels in this
binary image will be the obstacle pixels, or pixels that are
closer than a certain threshold to the drone. Dark pixels will
be pixels with a depth value beyond the threshold, which are
ignored. The threshold that determines how far ahead to look
is adaptively decided based on the speed of the drone. If the
drone is travelling fast, it will take longer to stop and avoid
obstacles, and therefore the threshold will be large. Conversely,
when the drone is travelling slowly, there is no need to consider
objects far away from the UAV and therefore the threshold can
be smaller.

Once a binary image is obtained from thresholding the depth
map, the Connected Component Labelling (CCL) algorithm
is executed (see 5). This algorithm outputs an image where
all white connected pixel clusters are labelled [23], [24]. Dark
pixels are ignored and labelled as background. The purpose
of this step is to identify which pixels belong to the same
object that needs to be avoided. Note that it is assumed that
disconnected pixels do not belong to the same object.

Each relevant pixel is labelled, then the image is scanned
again to identify more information about the detected objects.
Every detected object is modelled as a sphere, based on the
model described in [4]. The centre of the sphere is calculated
as the mean of the 2D image coordinates of the pixels within
each object. The radius of the sphere is calculated by iterating
over all the pixels in the object again and finding the pixel that
is furthest away from the centre (see Fig. 5). Finally, using
the depth information, the 3D coordinates of the centre of
the sphere relative to the UAV and it’s radius in meters are
approximated by averaging, similarly to the 2D centre and
radius.

VII. BENCHMARKS

The implemented disparity algorithm performs at 48 fps,
using a 7x7 window, (faster kernel) on a 320x240 8-bit single
channel stereo image with an average frame time of 20 ms
(over 500 frames). Increasing the window size to 11x11 (slower
kernel) results in a frame time of 47 ms and a frame rate of
21 fps.

The Jetson TX1 exhibited an idle power draw of 4.9 watts
and drew 13.5 watts while performing video capture (USB
bus powered camera) and disparity calculations using the 7x7
window implementation.

The system has not been comprehensively tested yet due
to time constraints. Preliminary tests have been performed
by moving objects towards and away from the hexacopter.
The system successfully identified when the objects moved
dangerously close to the drone and provided alternative aiming
points.

Fig. 5: Example of collision detection on a single object.
Displays the original images (top), the disparity map (middle
left), the thresholded disparity map (middle right), the output
of CCL (bottom left) and the output of the collision avoidance
(bottom right). Taken while the hexacopter was placed on a
desk.

VIII. CONCLUSION

In conclusion, this paper demonstrated a stereo vision
collision avoidance system for UAVs implemented on an
NVIDIA Tegra X1 embedded GPU. It discussed the different
features of a suitable embedded GPU for autonomous UAV
image processing. SAD disparity was chosen due to its speed

and simplicity, and implemented on a GPU using CUDA.

Noise reduction operations were executed on the resulting
disparity map, including using a guided filter, an opening
transformation and sensor data fusion. The filtered disparity
map was converted to a depth map, adaptively thresholded
and analysed to identify potentially dangerous objects in the
path of the UAV. Several optimisations to the systems were
used, such as a method of reorganising calculations to take full
advantage of the heterogeneous architecture, and efficiently
using the GPU texture cache in disparity calculations.

The system ran at a maximum of 48 FPS on a 320x240
8-bit single channel stereo image and a power consumption
of 13.5 Watts when performing video capture and disparity
calculations. Furthermore, two disparity kernels with different
window sizes were compiled and used adaptively to change
the speed or quality of the disparity computation based on the
speed of the UAV.

[1]
[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

REFERENCES

D. Gregory, “From a view to a kill: Drones and late modern war,” Theory,
Culture & Society, vol. 28, no. 7-8, pp. 188-215, 2011.

J. Javelosa. (2016, August) Drone-delivered medical supplies set to bring
vaccines to remote areas. [Online]. Available: https://futurism.com/drone-
delivered-medical-supplies-set-to-bring-vaccines-to-remote-areas/

N. Wingfield. (2016, August) A field guide to civilian drones. [Online].
Available: https://www.nytimes.com/interactive/2015/technology/guide-
to-civilian-drones.html

J. Park and Y. Kim, “Collision avoidance for quadrotor using stereo
vision depth maps,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 51, no. 4, pp. 32263241, 2015.

S. Hrabar, “3d path planning and stereo-based obstacle avoidance for
rotorcraft uavs,” in Intelligent Robots and Systems, 2008. IROS 2008.
1IEEE/RSJ International Conference on. IEEE, 2008, pp. 807-814.

S. Hrabar, G. S. Sukhatme, P. Corke, K. Usher, and J. Roberts, “Combined
optic-flow and stereo-based navigation of urban canyons for a uav,”
in Intelligent Robots and Systems, 2005.(IROS 2005). 2005 IEEE/RSJ
International Conference on. 1EEE, 2005, pp. 3309-3316.

NVIDIA, “NVIDIA Tegra X1: NVIDIA’s new mo-
bile superchip,” Tech. Rep., January 2015. [Online].
Available: http://international.download.nvidia.com/pdf/tegra/Tegra-X1-
whitepaper-v1.0.pdf

D. Franklin, “NVIDIA Jetson TXI supercomputer-on-
module drives next wave of autonomous machines,”’
https://devblogs.nvidia.com/parallelforall/nvidia-jetson-tx 1-
supercomputer-on-module-drives-next-wave-of-autonomous-machines/,
2015, accessed: 2017-04-26.

NVIDIA, “NVIDIA GeForce GTX 980 Whitepaper,” Tech. Rep., 2014.
[Online]. Available: https://international.download.nvidia.com/geforce-
conm/international/pdfs/GeForce_GTX_980_Whitepaper_FINAL.PDF
——, “NVIDIA’s Next Generation CUDA Compute Ar-
chitecture: Kepler GK110,” Tech. Rep., 2012. [Online].
Available: http://www.nvidia.com/content/PDF/kepler/NVIDIA-Kepler-
GK110-Architecture-Whitepaper.pdf

“J120 carrier board for the NVIDIA Jetson TXI1,”
https://auvidea.com/j120/, accessed: 2017-04-26.
“Tara - USB 3.0 stereo vision camera,” https://www.e-

consystems.com/3D-USB-stereo-camera.asp, accessed: 2017-04-26.
“HobbyKing S550 Hexcopter Combo,”
https://hobbyking.com/en_us/hobbykingtm-s550-hexcopter-combo-
frame-esc-s-and-motors-arf.html, accessed: 2017-09-04.

“Naze 32 full 10 DOF flight controller rev 6,”
https://www.unmannedtechshop.co.uk/naze-32-full-10-dof-flight-
controller-rev-6/, accessed: 2017-04-26.

H. Hirschmuller, “Stereo processing by semiglobal matching and mutual
information,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 30, no. 2, pp. 328-341, 2008.

D. Scharstein, R. Szeliski, and R. Zabih, “A taxonomy and evaluation
of dense two-frame stereo correspondence algorithms,” in Stereo and
Multi-Baseline Vision, 2001.(SMBV 2001). Proceedings. IEEE Workshop
on. IEEE, 2001, pp. 131-140.

R. Yang and M. Pollefeys, “Multi-resolution real-time stereo on com-
modity graphics hardware,” in Computer Vision and Pattern Recognition,
2003. Proceedings. 2003 IEEE Computer Society Conference on, vol. 1.
IEEE, 2003, pp. I-L.

H. Hirschmuller and D. Scharstein, “Evaluation of cost functions for
stereo matching,” in Computer Vision and Pattern Recognition, 2007.
CVPR’07. IEEE Conference on. 1EEE, 2007, pp. 1-8.

M. Humenberger, C. Zinner, M. Weber, W. Kubinger, and M. Vincze, “A
fast stereo matching algorithm suitable for embedded real-time systems,”
Computer Vision and Image Understanding, vol. 114, no. 11, pp. 1180—
1202, 2010.

“Ultrasonic ranging module HC - SR04,”
https://cdn.sparkfun.com/datasheets/Sensors/Proximity/HCSRO04.pdf,
accessed: 2017-09-04.

STMicroelectronics, “VL53L0X - World smallest Time-of-Flight ranging
and gesture detection sensor,” Tech. Rep., 2016.

K. He, J. Sun, and X. Tang, “Guided image filtering,” IEEE transactions
on pattern analysis and machine intelligence, vol. 35, no. 6, pp. 1397—
1409, 2013.

L. He, Y. Chao, K. Suzuki, and K. Wu, “Fast connected-component
labeling,” Pattern Recognition, vol. 42, no. 9, pp. 1977-1987, 2009.

L. He, Y. Chao, and K. Suzuki, “A run-based two-scan labeling algorithm,”
IEEFE Transactions on Image Processing, vol. 17, no. 5, pp. 749-756,
2008.

