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Abstract

Zebrafish are rapidly emerging as a powerful model organism in hypothesis-driven stud-
ies targeting a number of functional and dysfunctional processes. Mathematical models of
zebrafish behaviour can inform the design of experiments, through the unprecedented ability
to perform pilot trials on a computer. At the same time, in-silico experiments could help
refining the analysis of real data, by enabling the systematic investigation of key neurobe-
havioural factors. Here, we establish a data-driven model of zebrafish social interaction.
Specifically, we derive a set of interaction rules to capture the primary response mechanisms
which have been observed experimentally. Contrary to previous studies, we include dynamic
speed regulation in addition to turning responses, which together provide attractive, repulsive
and alignment interactions between individuals. The resulting multi-agent model provides a
novel, bottom-up framework to describe both the spontaneous motion and individual-level
interaction dynamics of zebrafish, inferred directly from experimental observations.
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1. Introduction 1

Zebrafish are fast emerging as a species of choice in preclinical research [1–4]; the main 2

reasons being its neurogenetic similarities with humans, ease of stocking and maintenance, 3

short intergeneration time, and rich behavioural repertoires in response to environmental and 4

psychoactive compounds [5–8]. The locomotion of this freshwater species is governed chiefly 5

by forward bursts of acceleration, followed by a period of coasting, or deceleration. Turns 6

are achieved by a conformation of body posture, resulting in a change in heading direction, 7

followed by further forward bursts in the new direction [9–12]. 8

Data-driven models of zebrafish promise to aid neurobehavioral science, by empowering 9

researchers with computational tools to conduct pilot in-silico experiments, refine experimen- 10

tal observations, and enhance statistical analysis. Much of the existing work has focused on 11
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individual response of zebrafish, swimming in isolation [13–15], to capture key behavioral 12

phenotypes which have been experimentally observed [7]. For example, in [14], we explained 13

the burst-and-coast swimming style of zebrafish and in [13] we investigated the emergence of 14

thigmotactic response during interactions with tank walls. 15

A pressing open problem is the derivation of computational models able to capture social 16

interaction between zebrafish swimming in a shoal, and reproduce experimentally observed so- 17

cial behaviour [16–19]. An improved understanding of social interactions can help identifying 18

and quantifying the biological advantages of living in groups, and the role of pharmacological 19

manipulations on group behaviour [20] 20

Formulating an accurate model of zebrafish social behaviour requires the precise quan- 21

tification of “social forces” between individual fish [21–23]. Central to this approach is to 22

compute, for each individual at every time-sample, the reaction forces which describe how a 23

focal agent moves, or accelerates, in response to the current “social” configuration of itself 24

and a local neighbour. These configurations are typically described by measurable spatial 25

quantities, for example, the relative position and orientation of a neighbour with respect to 26

the focal individual. Dynamic variables, such as the speed and acceleration of individuals 27

are also taken into account into the description of a pair-wise configuration. The notion of 28

social forces has been successfully applied to study social behaviour of other teleosts, such as 29

golden shiners [21] and mosquitofish [22]. 30

In previous work, we presented preliminary models to capture some aspects of the inter- 31

action among zebrafish swimming together towards exploring leader-follower relationships. 32

Specifically, in [24], we examined the interactions between two zebrafish in terms of their turn 33

rate dynamics, without considering speed regulation or wall interaction. In [25], we explored 34

the effects of leaders onto the dynamics of a virtual zebrafish shoal based on a preliminary 35

model of social interaction between conspecifics – developed in more detail in this work. 36

In this paper, we establish a data-driven model of zebrafish social interaction building on 37

our previous work and on recent analytical methods which have been used to infer interaction 38

behaviours within social animal groups [21, 22, 26, 27]. 39

In particular, we derive a set of interaction rules to capture the primary response mecha- 40

nisms which have been observed experimentally [28, 29]. Inspired by recent models proposed 41

by Gautrais, Calovi and others [30–32], we subsequently incorporate interaction behaviours 42

into our original model framework [13], in a way which leaves the unique locomotory pat- 43

terns of individuals intact. Importantly here, we include dynamic speed regulation in addition 44

to turning responses, showing that together they better capture experimental observations 45

of attractive, repulsive and alignment interactions between individuals. Variable speed is a 46

fundamental feature of the locomotory patterns of zebrafish and similar species [10, 33]. Simi- 47

larly, the ability to modulate forward speed with respect to neighbours has also been proposed 48

as a central mechanism for explaining collective behaviour of similar teleosts [21, 22, 34–36]. 49

Our multi-agent model provides a novel, bottom-up framework to describe both the spon- 50

taneous motion and individual-level interaction dynamics of zebrafish — inferred directly 51

from experimental observations. In contrast to the conclusions of a similar study [21], we 52

also report evidence of an explicit alignment mechanism between co-swimming zebrafish. 53

Specifically, we use force-mapping analysis to decompose the observed turning responses into 54

distinct attractive and alignment components. These behaviours are subsequently included 55

in the model construction, by determining the relative contributions of each response, as a 56
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function of the spatial configuration of zebrafish pairs. 57

2. Social-force mapping of zebrafish interactions 58

The first step towards a comprehensive mathematical model is the identification of the 59

social forces acting on an individual zebrafish as a result of the presence of its conspecifics. 60

These forces are measured from the acceleration of a focal fish at any instant in time — 61

ignoring strictly physical quantities such as mass and momentum. The assumption is that 62

by analysing experimental trajectory data from periods in which fish are swimming in close 63

proximity, we can isolate the accelerations due to their specific interaction responses. Pro- 64

vided sufficient data is collected, accelerations due to interactions are manifested against the 65

residual (random) background from the spontaneous motion of individuals. In this study, we 66

therefore consider composites of multiple observations of zebrafish pairs, swimming together 67

for extended periods of time. 68

2.1. Data collection 69

The experiments described in this study, similar to those in [13], are designed to extract 70

sufficient information from live zebrafish in order to reconstruct swimming trajectories — 71

specifically in terms of position, speed, angular velocity (turn-rate) and associated accelera- 72

tions as a function of time. 73

We use 18 × 20 min observations of swimming zebrafish pairs from experiments carried 74

out at the Dynamical Systems Laboratory of New York University. Each pair was video 75

recorded from above a shallow (10 cm depth), circular tank after which trajectory data was 76

extracted to obtain unique time-series of centroid positions xi(t) for each fish i at time t (see 77

online supporting information (SI): video V1). 78

The depth of water in the experimental tank is designed to reflect the natural habitat of 79

zebrafish which occupy shallow, slow-flowing waters [37]. The primary component of their 80

collective motion is therefore in the plane, justifying our analysis based on two-dimensional 81

data captured from a single overhead perspective. Ultimately from this data we are able to 82

compute linear components of the fish’s acceleration: a
‖
i in the direction of motion, and a⊥i in 83

the radial direction, perpendicular to the fish’s heading direction (Fig. 1). Turning behaviour 84

is further characterised by computing angular turn-rates ωi(t) and the angular accelerations 85

ω̇i(t). The same dataset is utilized in [24] and [25]. 86

In what follows, we show how this information is obtained and subsequently analysed to 87

infer average interaction responses of a fish with respect to its neighbours. Specifically, we 88

present and discuss the results of force mapping analysis for experimental observations of 89

co-swimming zebrafish pairs. For each mapping described, data is averaged over all 18 pair 90

observations, taking each fish in turn as the focal fish. Using a coordinate system in the 91

frame of the focal fish (Fig. 1), we compute population density and force maps such that the 92

focal fish’s orientation is aligned with the y-axis of each plot. 93

2.2. Zebrafish response as a function of relative position 94

The mapping shown in Fig. 2A depicts the population density of positions occupied by a 95

neighbour over time, relative to the focal fish. The most populated region forms an ellipse, 96

elongated in the direction of motion, with preferred separation distances of approximately 97
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1 body-length (BL) in the front-back direction dFB, and approximately 0.8 BL in the left- 98

right direction dLR. Regions with the highest probability of occupation by a neighboring 99

fish are found to either side of the focal fish, with a preferred angle of ±90◦ with respect to 100

its orientation. This suggests that side-by-side swimming is somewhat more common than 101

in-line (front-to-back) swimming. A low density region surrounding the focal fish indicates 102

an exclusion, or repulsive zone in which neighbours are unlikely to be found. Beyond the 103

high density region, neighbours are less likely to be found further than 3 BL to either side or 104

5 BL in front or behind (< 1% occupancy). 105

By computing the acceleration vector a(t) = [a‖, a⊥] of the focal fish in its body coordinate 106

frame, we construct the mapping of the magnitude |a| (Fig. 2B). The tangential (forward- 107

backwards / axial) and radial (left-right / lateral) components of the acceleration, a‖ and 108

a⊥, are used to plot the vector field shown. As one expects, the high population density 109

regions are associated with regions where the magnitude of the response force of the focal 110

fish |a| is minimised. The region of lowest response however, forms an ellipse which encircles 111

the focal fish but which is biased in the frontal direction. Within the (low density) repulsion 112

zone, the avoidance response is mediated primarily by the tangential component a‖, where 113

we find strong deceleration, with acceleration vectors anti-aligned with the fish’s orientation. 114

Negative tangential acceleration (slowing down to avoid collisions) in the region just ahead 115

of the focal fish, is much more pronounced than in the region behind, suggesting fish are 116

more sensitive to neighbours directly in front of them, as could be expected for a reaction to 117

visual stimuli. Directly behind the fish, there is some evidence of forward acceleration (rear 118

collision avoidance), although small in comparison to frontal response. 119

In general, we find that the tangential acceleration a‖ increases more rapidly in the frontal 120

direction than behind, thereby the focal fish tends to accelerate to stay close to its neighbour 121

by modulating its forward speed. Conversely, to the rear-left and rear-right of the focal 122

Figure 1: Fish interaction coordinate system and separation metrics. Cartesian coordinate system
in frame of focal fish i, separated from its neighbour j by dij with front-back distance dFB = dij sin θij and
left-right distance dLR = dij cos θij with respect to its velocity vi (orientation). Angle θij is formed between
the heading direction of fish i and the relative position of fish j; with φij giving the relative orientation
(heading angle) of fish j with respect to fish i. The tank frame acceleration vector ai is decomposed into a

tangential acceleration a
‖
i and a radial acceleration a⊥i in the focal fish frame as shown.
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fish, the radial acceleration a⊥ dominates, suggesting that the fish expends more effort by 123

turning, perhaps allowing for better visual perception of its neighbour, rather than to change 124

its forward speed. Beyond a radius of approximately 2 BL away from the focal fish, it is the 125

radial component a⊥ which increases most with distance, where |a| is found to be greatest 126

on either side of the focal fish, and reduced in the regions directly in front and to the rear. 127

We note that the mean speeds of individuals swimming in pairs are very well matched 128

across all observations (Fig. S10A). Indeed, conspecifics must necessarily match their swim- 129

ming speeds in order to remain close. However, observations of isolated individuals (Fig. S10B) 130

suggest that their preferred, or intrinsic, swimming speed is somewhat lower but are likely to 131

be sufficiently similar such that only minor accelerations (a‖) are required when swimming 132

in front-to-back arrangement. In contrast, the radial accelerations a⊥ resulting from turns 133
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Figure 2: Relative neighbour position density and interaction force (acceleration) maps for 18
zebrafish pairs. Two dimensional histograms are constructed by discretising the area around a focal fish
shown into a 30 × 30 grid of equal width bins (interpolated over 300 × 300 grid), accumulating values in
the appropriate bins according the the location of a neighbour at each time sample, averaged over every
focal-neighbour pair combination. (A) Probability of a neighbouring fish located at a given position relative
to a focal fish at the origin, aligned with the y-axis (as per Fig. 1). Contours (all panels) indicate % density
isolevels with respect to the most populated location bin. An exclusion region just larger than the shape of
the focal fish depicted (grey polygon) is clearly shown, surrounded by a high density annular region. (B)
Magnitude of focal fish acceleration response |a| as a function of the neighbour’s position and vector field
(black arrows) indicating size and direction of the response ‘force’ on the focal fish, relative to its orientation.
(C) Tangential acceleration a‖ of focal fish, as a function of neighbour position. Positive acceleration (red)
indicate fish speeding up in its direction of motion, negative acceleration (blue) indicates fish slowing down.
(D) Radial acceleration a⊥ of focal fish, as a function of neighbour position. Positive accelerations are to the
right (red) whilst negative accelerations are to the left (blue).
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towards a neighbour on either side are much higher, most likely a consequence of a rapid 134

change of orientation followed by a burst of forward motion. 135

In Fig. 2C, we report the tangential acceleration a‖, indicating the forward, or axial 136

speeding force response of a focal fish as a function of its neighbour’s position. Data clearly 137

highlights the repulsive region, extending approximately 0.8 BL to either side of the focal fish. 138

Hence, the focal fish slows down (a‖ < 0) if its neighbour is less than 2 BL ahead of its position, 139

and speeds up (a‖ > 0) if its neighbour is following less than 1 BL behind, presumably in 140

both cases to avoid collisions. When neighbours are further away, fish accelerate to catch 141

up with the neighbour when it is far ahead (dFB > 2 BL), and decelerate when neighbours 142

are further behind (dFB < 1 BL). Outside of the repulsive region, the speeding force is found 143

to be primarily dependent on the front-back distance dFB and insensitive to the left-right 144

separation dLR. It is clear that our observations from this analysis support previous studies 145

suggesting that speed regulation is an important mechanism for the interaction between small 146

shoaling fish; one which should not be overlooked when describing a realistic model of their 147

group behaviour[21, 22]. 148

Spatial mapping of the radial acceleration a⊥ (Fig. 2D) suggests the resultant lateral 149

attraction and repulsion responses of a focal fish, a result of turning, as a function of its 150

neighbour’s position. This plot also reveals a pronounced repulsive region, surrounded by a 151

wider region of attraction with a dependence primarily on the left-right separation dLR. The 152

repulsive region is concentrated just in front of the focal fish, characterised by accelerations 153

in the opposite direction to neighbouring fish’s position when it is closer than approximately 154

0.8 BL to either side. Beyond this distance however, focal fish’s response is attractive - 155

accelerating (radially) in the direction towards its neighbour, largely independent of their 156

front-back separation dFB. 157

2.3. Zebrafish response as a function of relative orientation 158

We now proceed by observing how focal fish acceleration components, a‖ and a⊥, vary 159

as a function of spatial position, but also with respect to the pair’s relative orientation φij 160

(Fig. 3). We also look for direct evidence of an alignment response by computing the angular 161

acceleration ω̇, in addition to the resultant lateral attraction or repulsion described by a⊥. 162

The response of the tangential acceleration a‖ (Fig. 3A) as a function of the relative 163

orientation φij is similar to that observed in Fig. 2C. When conspecifics are well aligned, 164

we find evidence of a slight increase in the front-back width of the (faintly) discernible 165

repulsive region. At larger dFB separations, the sign of a‖ indicates attraction towards the 166

neighbour independent of their relative orientation. Similarly, we find that the direction 167

of the radial acceleration a⊥ is always in the direction towards its neighbour, regardless of 168

the orientation (Fig. 3C). Interestingly, and in contrast to our results for a⊥, mapping the 169

angular acceleration ω̇ as a function φij, and either front-back (Fig. 3B), or left-right (Fig. 3D) 170

separation, reveals a strong dependence on the relative orientation. Specifically, the angular 171

acceleration is found to be in consistently the same sense of rotation which would be required 172

to align the focal fish with its neighbour. 173

The results of this analysis suggest that whilst the tangential (forward) accelerations are 174

strongly correlated with the relative position of a neighbour, zebrafish turning response is a 175

function of both relative position (attraction / repulsion), and the specific orientation (align- 176

ment) of a neighbour. The histograms in Fig. 3B and Fig. 3D, where the angular acceleration 177
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of the focal fish is mapped as a function of φij, do not suggest a strong distance dependence 178

of such an alignment interaction when data is averaged over either axis of separation indi- 179

vidually. 180

Furthermore, by averaging over all pairwise samples (ignoring relative position), we can 181

summarise the alignment interaction by plotting projection of ω̇ only as a function of φij 182

(Fig. 7C). The relationship we find is highly linear between 0◦ (fully aligned) and ±90◦, with 183

peak positive and negative accelerations occurring at φij ≈ ±120◦ respectively, decaying to 184

ω̇ = 0 as the pair become progressively anti-aligned (φij → ±180◦). As such, the sign (direc- 185

tion) of ω̇ varies with that of the relative orientation φij, with an approximate relationship 186

given by ω̇ ∝ sinφij. These results, and those outlined in the following section, therefore re- 187

veal a more complex turning response than understood previously in [21] (for golden shiners), 188

indicating explicit alignment interactions between conspecifics. 189

Figure 3: Force mapping as a function of the relative heading angle and separation between
a focal zebrafish and its neighbour. (A) Tangential acceleration a‖ and (B) angular acceleration ω̇ of
the focal fish as functions of front-back displacement dFB of the neighbour and its relative heading angle
φij . (C) radial acceleration a⊥ and (D) angular acceleration ω̇ of the focal fish as functions of the left-right
displacement dLR of the neighbour and its relative heading angle φij . Orientation of the neighbour fish is
shown pictorially, with respect to the focal fish oriented along the positive y-axis at the centre of each panel.
Contours show the relative population density of neighbours in a specific configuration. Red regions indicate
tangential (forward) acceleration, radial accelerations to the right or angular accelerations in a clockwise
direction. Blue regions correspondingly indicate either tangential deceleration, radial acceleration to the left,
or anti-clockwise angular acceleration.
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2.4. Spatial structure of attraction and alignment interactions 190

We investigate the spatial structure of the alignment and attractive interactions in more 191

detail by plotting separate spatial maps of the accelerations ω̇ and a⊥ as functions of the 192

distances [dFB, dLR] for subsets of the relative pair orientation φij, grouped into the four 193

quadrants spanning φij = [−π, π] (Fig. 4). Segregating the data in this way allows us to 194

disambiguate the positional and orientation dependencies, highlighting the different inter- 195

action responses which occur as a result of specific pair configurations. Interestingly this 196

analysis confirms our previous assertion that the spatial structure of the radial acceleration, 197

in terms of the relative position of the neighbour (Fig. 5), remains essentially invariant to the 198

relative orientation. Conversely, within the radius of interaction shown (±4 BL) the angular 199

acceleration depends primarily on the relative orientation, with only subtle variation due to 200

Figure 4: Angular acceleration response of focal zebrafish as a function of neighbour position
and relative orientation. Histograms show the average angular acceleration ω̇ of the focal fish as it varies
depending on the relative position of its neighbour. Panels show data isolated for ranges of relative heading
angle φij split across four quadrants: (top-left) −π2 < φij ≤ 0, (top-right) 0 < φij ≤ π

2 , (bottom-left)
−π < φij ≤ −π2 , (bottom-right) π

2 < φij ≤ π. Positive values of φij indicate neighbour is rotated clockwise
with respect to the focal fish. Positive angular accelerations (red) indicate increased (clockwise) turning to
the right, negative angular accelerations indicate increased (anti-clockwise) turning to the left. Contours show
isolevels of population density as percentages of the maximum bin value for each panel individually. Arrows
indicate the vector field given by [a‖, a⊥]. In each quadrant we find that overall, the angular acceleration is
such that the focal fish rotates in the direction required to align with the neighbour’s orientation, indicated
by arrows at each corner.
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Figure 5: Radial acceleration response of focal zebrafish as a function of neighbour position and
relative orientation. Histograms shows radial acceleration a⊥ of the focal fish as it varies depending on
the relative position of its neighbour. Panels description as per Fig. 4. Here, positive values of φij indicate
neighbour is rotated clockwise with respect to the focal fish. Positive radial forces (red) indicate increased
acceleration to the right, negative radial forces indicate increased accelerations to the left.

the relative position (Fig. 4). Examining the ω̇ maps in more detail, we note that the spatial 201

structure of the angular acceleration response is bilaterally symmetric as one would expect, 202

i.e., it shows an equal and opposite alignment response, depending on whether the neighbour 203

is rotated anti-clockwise (Fig. 4, left panels) or clockwise (right panels). For a more detailed 204

description of this analysis, see online SI §S3. 205

2.5. Effects of forward speed on attraction, repulsion and alignment 206

Motivated by a similar analysis conducted by Katz et al. in [21], we further leverage the 207

force mapping method to reveal how the forward speed of either fish affects the observed 208

interaction responses. 209

The structure of the tangential acceleration a‖ (Fig. 6A) suggests that the width of the 210

repulsive region in the front-back direction increases proportionally to the speed of the focal 211

fish uf . We also find that attractive regions extend further both in front and behind the focal 212

fish as speed increases, where the maximum acceleration achieved also becomes stronger with 213

speed. Both of these observations seem intuitive in that a faster moving fish should increase 214

its average distance between neighbours, and/or change its speed more rapidly to avoid 215
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Figure 6: Force mapping as a function of the forward speed of the focal zebrafish. (A) tangential
acceleration a‖ as a function of front-back separation dFB and speed of the focal fish uf ; (B) radial acceleration
a⊥ as a function of left-right separation dLR and uf ; (C) angular acceleration ω̇ as a function of φij and uf .
Contours show the population density of neighbours relative to the most common configuration.

collisions. 216

The effect of the fish’s speed on radial acceleration a⊥ (Fig. 6B) is less striking, where we 217

note only a slight decrease in the range of the attractive force as the speed increases. At low 218

speeds (uf < 1 BL−1) the angular acceleration (Fig. 6C) plotted as a function of the relative 219

orientation φij, is found to be magnified, in line with our previous observations that high 220

speed turning is associated with lower forward speeds. 221

A confounding issue is that approximations of ω and its derivative ω̇ for the focal fish 222

are potentially less accurate at such low speeds and are both subject to high amplitude 223

fluctuations, making a reasonable interpretation of this result difficult (see online SI §S1.4). 224

Regardless, we note that the relative density of data points, indicated by the overlaid con- 225

tours, is skewed in the uf axis, such that the distribution of samples becomes spread over a 226

larger range of φij at lower speeds. This suggests that higher forward speeds are associated 227

with increased alignment of the interacting pair, a correlation also observed in groups of 228

golden shiners [38], giant danios [39], and barred flagtails [30]. 229

Additional analysis shows that for most observations, the pair separation dij(t) is strongly 230

correlated with the mean forward speed of the pair ūij(t) at time t, with changes in speed 231

found to lag those of the separation by approximately 0.14 s on average (see cross-correlograms 232

in Fig. S11 & Fig. S12 in the online SI). Supporting conclusions from the force maps described, 233

the latter observation also suggests the rapid modulation of swimming speed required to 234

prevent collisions and maintain close proximity. 235

3. Data-driven model of zebrafish shoals 236

In this section, we develop a modelling framework which captures the primary character- 237

istics of the individual locomotory patterns of zebrafish observed in experiments — further 238

incorporating the structure and dynamics of the various interaction behaviours which have 239

been discussed. Employing a bottom-up approach, we proceed by augmenting an existing 240

data-driven model of individual zebrafish locomotion [13], with coupled feedback terms (in- 241

teraction rules) which as far as possible, approximate the various dynamical relationships 242

which have been revealed earlier. 243
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The proposed multi-agent model has been designed to include the following key features, 244

inferred directly from the available experimental data: (i) autocorrelated, mean-reverting 245

individual speed and turn-rate with joint distributions similar to those observed experimen- 246

tally, (ii) wall-avoidance behaviour via boundary induced modulation of the turn-rate, (iii) 247

attraction and repulsion to position of neighbours, governed by regulation of both forward 248

speed and turning, and (iv) alignment with orientation of neighbours, governed by turn-rate 249

regulation. 250

3.1. Individual model of zebrafish locomotion 251

A two-dimensional model describing the swimming dynamics of individual zebrafish was
proposed in a previous study [13], in which we extended the so-called persistent turning
walker (PTW) model presented by Gautrais et al. in [30, 40]. Specifically, our extended
model uses two, coupled stochastic differential equations (SDEs), describing the evolution of
both the forward speed U(t), and the angular turn-rate Ω(t) of a random walker in the plane,
according to:

dU = −θu(U − µu)dt+ σudW (1a)

dΩ = −θω(Ω− fW )dt+ fc(U)dZ (1b)

where we restrict the output values of U at any discrete time step t to be strictly greater 252

than an empirical lower bound set at Umin = 10−6 cm s−1 — ensuring physically realistic, 253

forward only swimming. Both speed and (absolute) turn-rate values are saturated when they 254

exceed the maximum realistic values Umax = 10 BL s−1 and Ωmax = 20 rad s−1 respectively, 255

in line with experimental observations. (An alternative approach to avoid using saturations 256

has been recently presented in [15].) 257

Derived from the standard Ornstein-Uhlenbeck (OU) process, both equations in (1) ex- 258

hibit mean reversion to an equilibrium value with an exponentially decaying autocorrelation 259

(relaxation rate θu/ω). The equilibrium forward speed in (1a) is prescribed by a fixed pa- 260

rameter µu, whilst the equilibrium turn-rate in (1b) is nominally zero (unbiased turning) 261

modulated by a time-varying value given by a wall avoidance function fW . Random fluctu- 262

ations are driven by independent Wiener processes dW and dZ, with variances proportional 263

to the fixed parameter σu, and a speed-dependent coupling function fc respectively. 264

Data from zebrafish trajectories, whether swimming in pairs as found here, or swimming
in isolation [13], indicates that the range and variance of turn-rate decays (approximately)
exponentially as a function of forward speed (see Fig. S13 for examples). To account for this,
we define the coupling function fc as:

fc(U) = αc exp(−βcU) (2)

describing an exponential decay as the speed U increases, with maximum amplitude αc and 265

decay parameter βc. The parameters αc and βc can be extracted directly from experimental 266

data using maximum-likelihood estimation (MLE) – see online SI §S5 for methodology. 267

The function fW provides an empirical description of the interaction and collision avoid-
ance behaviour observed for zebrafish as they approach a boundary [13]. Specifically, fW
describes a bias to the turn-rate as a function of the projected distance dW , and incident
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angle φW to the circular tank boundary, given the current position and velocity of the fish
at any given sample. It is chosen as

fW = sgn(φW )αW exp (−βWdW ) (3)

where parameters αW and βW control respectively the strength and decay of the interaction 268

as a function of the projected distance to the boundary. Again, both parameters can be 269

estimated directly using the same MLE procedure. 270

3.2. Pair interactions and multi-agent model 271

The interaction model presented here is adapted from an existing framework developed 272

in [30, 31, 41] for other species, where we tailor the behavioural rules based directly on the 273

force mapping analysis presented in the previous section. Inspired by the simple functional 274

form of the interactions in [30] which are introduced as perturbations to the equilibrium of 275

the stochastic turn-rate process, we extend the same methodology to reproduce observed 276

zebrafish responses via modulation of both the forward speed and turn-rate. 277

Interaction rules are encapsulated in two response functions U∗i (t) and Ω∗i (t), which bias
the equilibrium (time-averaged mean) values of the forward speed and angular velocity of
fish i, modifying the existing stochastic equations of motion in (1) as follows:

dUi = −θu (Ui − µu − U∗i ) dt+ σudWi (4a)

dΩi = −θω (Ωi − fW − Ω∗i ) dt+ fcdZi (4b)

The response terms U∗i and Ω∗i are informed by the previous force mapping analysis, 278

derived as functions which are dependent on the external stimuli due a neighbour, and to 279

a lesser extent on the present internal state of a focal fish. External stimuli (neighbour 280

interactions) in this model are restricted to (i) the relative position of the neighbour, expressed 281

in polar coordinates with respect to position and heading of a focal fish: at a distance dij with 282

angle θij, and (ii) the relative orientation φij between focal fish i and neighbour j (Fig. 1). 283

In general, for the set Ni of interacting neighbours of fish i, we define the interaction
functions as a normalised linear superposition of pairwise contributions:

U∗i =
1

|Ni|θu

∑
j∈Ni

fd
(
dij
)︸ ︷︷ ︸

distance-decay

Ks

[
dij − ru

(
Ui
)]

cos θij︸ ︷︷ ︸
attraction / repulsion

(5a)

Ω∗i =
1

|Ni|
∑
j∈Ni

fd
(
dij
)
Kp

(dij − rω) sin θij
Ui︸ ︷︷ ︸

attraction / repulsion

+Kv
sinφij
θω︸ ︷︷ ︸

alignment

 (5b)

Here, |Ni| is the number of interacting neighbours of i, where in general, the set of individuals 284

Ni contains the first-shell Voronoi neighbours of fish i (see online SI §S7). 285

Constants Ks (s−1), Kp (rad s−2), and Kv (rad s−2) define a set of tunable gain parameters 286

which modify the strength of each of the interaction types, namely: speed induced attraction 287

(and repulsion), turning induced attraction (and repulsion), and alignment. In contrast to 288
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Figure 7: Axial force projections - comparing experimental and simulated data (A) Projection
of the tangential acceleration a‖ in the dLR = 0 axis, parallel to the focal fish’s direction of motion. (B)
Projection of the radial acceleration a⊥ in the dFB = 0 axis, perpendicular to the direction of motion. (C)
Angular acceleration ω̇ as a function of the relative heading angle φij between focal fish i and neighbour
j. Experimental data computed for 18 zebrafish pairs (black) is compared with data from 18 (18 × 20 min)
simulated realisations of the model (solid red). Model acceleration functions used in (5a), (5b) are shown
in panels A and B respectively (red dashed) for nominal interaction parameter set, assuming φij = 0 and
Ui = µu. Model angular acceleration from (5b) is shown in panel C (red dashed).

recent models [30, 31], we also prescribe explicit repulsion through the parameter rω and the 289

function ru(U) that accounts for variation in repulsion zone in response to speed variations. 290

The radius of the repulsive region ru can be estimated directly from the time-averaged
spatial force map in Fig. 2C, or more precisely from the axial projection in Fig. 7A as the
(absolute) value of dij or dFB respectively, where a‖ passes through zero. However, our
observations in Fig. 6 indicate that the radius of the repulsive region is strongly dependent
on the speed of the focal fish Uf ≡ Ui(t) at time t, increasing in diameter as the speed
increases. Therefore we choose

ru
(
Ui(t)

)
= ru0

Ui(t)

µu
(6)

that describes a linear increase of the repulsion zone as a function of the speed from its 291

nominal value ru0 at the mean speed. 292

In addition, we introduce two decay functions fd,u and fd,ω to attenuate long-range inter-
actions as a function of the pair separation dij. The two functions are chosen to share the
same functional form given by

fd,u/ω =

{
1− exp

[
(dij − δu/ω)/λu/ω

]
, if dij < δu/ω

0, otherwise.
(7)

where the parameters δu/ω and λu/ω are chosen to match the experimental observations for 293

the speed and turning interaction respectively. 294

The functional form of the speed response in (5a) is informed directly from the spatial 295

mapping shown in Fig. 2C, such that we derive a comparable potential field for the tangential 296

acceleration as a function of polar coordinates (dij, θij). Specifically, we find that the spatial 297

structure of the experimental tangential acceleration, a‖, is symmetric in the dLR = 0 axis, 298

and approximately symmetric but with opposite sign in the dFB = 0 axis. From this, we infer 299

a response function which is maximised along the dFB axis, with an amplitude modulated 300
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by cos θij ∝ dFB. Based on the projection of a‖ in the dLR = 0 axis (Fig. 7A), we choose the 301

model function in (5a) (see Fig. 7 for its validation on the experimental data). 302

With respect to the attraction/repulsion term in (5b), we follow a similar line of argument 303

based on the spatial force mapping in Fig. 2D, and the projection in Fig. 7B. Note that to 304

match the experimental observations we scale this term by the speed of the focal fish Ui(t) – 305

see relationship derived in SI §S2. 306

The alignment term in (5b) is inspired from that used in the original PTW model in [30], 307

to estimate the dependence of the angular acceleration ω̇i as a function of the relative pair 308

orientation φij – capturing the observed relationship (Fig. 3B,D) and Fig. 7C). 309

Unlike the PTW model described in [24, 31], we do not include an angular weighting to 310

the turning (or speeding) response to bias the interaction in favour of neighbours in front 311

of the focal fish (visual region), finding insufficiently strong evidence for this from our force 312

mapping analysis. We also do not specify a speed dependence on the alignment term since, 313

due to the coupling function fc, we already expect faster moving fish to have lower turn-rate 314

variance thus encouraging polarisation (aligned swimming). 315

We emphasise that whilst the first term (radial attraction/repulsion) in (5b) varies pro- 316

portionally with the separation distance dij, the second term (alignment) does not. The 317

combined interaction allows for a distance-dependent weighting between dominant align- 318

ment at short separation distances, with attraction dominating as the distance increases. 319

This model description, as noted in [30], provides a continuous transition between alignment 320

and attraction, in contrast to ‘zonal’ models, e.g.,[42], in which dominant behaviour is effec- 321

tively switched beyond a prescribed (radial) distance. The effect of this smooth transition 322

is demonstrated by plotting the potential force fields due to the tangential (U∗) and radial 323

(Ω∗) acceleration terms in the model, shown in Fig. S14, and the (semi-spatial) force maps 324

in Fig. S15. The same transition between attraction and alignment is also demonstrated by 325

evaluating spatial force maps for ω̇ (Fig. S16). 326

4. Model calibration and validation 327

In the spirit of the data-driven approach we adopt for this study, the parameters of the 328

proposed model were, as far as possible, determined directly from the experimental data 329

obtained from observations of swimming zebrafish pairs. For a complete description of the 330

calibration procedures, including maximum-likelihood estimation, we refer the reader to the 331

online SI. For brevity, we present here only the set of nominal parameter values used for 332

further numerical simulations described in this study. 333

The model described in the previous section is defined by two sets of parameters, those 334

characterising the dynamics of an individual’s motion, including wall avoidance behaviour 335

(Tab. 1), and those which measure the interactions between conspecifics (Tab. 2). 336

We proceed by performing a force mapping analysis of simulated trajectory data. Syn- 337

thetic trajectories were generated from 18 independent simulations of interacting, homoge- 338

neous pairs. Trajectories were simulated for 20 min of real time, generated at a frequency 339

of 30 Hz, and with randomised initial conditions (see online SI §S4). The total number of 340

samples obtained is therefore identical to that of the experimental data set. Similar analysis 341

was performed using heterogeneous parameters for each fish, calibrated separately on each of 342
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Table 1: MLE calibrated parameters for individual zebrafish model

Description Symbol Unit Value

SDE parameters
equilibrium speed µu cm s−1 11.42
speed variance σu cm s−3/2 2.59
speed mean-reversion rate θu s−1 0.21
turn-rate coupling amplitude αc rad s−3/2 11.81
turn-rate coupling decay βc s cm−1 0.11
turn-rate mean-reversion rate θω s−1 3.58
wall-avoidance amplitude αW rad s−1 5.00
wall-avoidance decay βW cm−1 0.15

Table 2: Nominal pair interaction parameters.

Description Symbol Unit Value

Interaction parameters
Tangential force gain Ks s−1 4
Radial force gain Kp rad s−2 6
Alignment force gain Kv rad s−2 12
Speed modulated repulsion (mean) radius ru cm 3.6
Turning modulated repulsion radius rω cm 1.8
Speed interaction cut-off distance δu cm 21
Turning interaction cut-off distance δω cm 18
Speed distance decay λu cm 22.5
Turning distance decay λω cm 6

the 18 observations (see Fig. S17), where we found no significant differences to the composite 343

force mapping results. 344

The plots in Fig. 8 show the density and linear (a‖ and a⊥) force mappings, obtained as 345

an averaged composite for each fish pair. Specifically, we take each fish in turn as the focal 346

fish for every pair, and accumulate data from all pairs by taking an average force value at 347

each discretised relative position coordinate. These plots can be compared directly to those 348

extracted from experimental zebrafish data, presented earlier (Fig. 2). 349

Considered separately, the simulated tangential force a‖ (Fig. 8C) and radial force a⊥ 350

(Fig. 8D) maps match extremely well with the experimental ones (Figs. 2C & 2D respec- 351

tively). The characteristic circular repulsion regions around the origin are clearly visible, 352

beyond which we find the attractive regions. Therein, forces vary in magnitude as a function 353

of the neighbour’s position, as prescribed by model potential fields for U∗ and Ω∗ (Fig. S14). 354

The spatial structure of linear accelerations close to the focal fish (dFB, dLR < 2 BL) is 355

examined in more detail, by comparing the magnitude |a| for experimental data (Fig. 9A), 356

to the model predictions (Fig. 9B), and dynamic simulations (Fig. 9C). 357

The plots in Fig. 10 report the semi-spatial force maps obtained using the same method 358

adopted previously for experimental data (Fig. 3). From the 18 simulated pairs, we compute 359

mappings for linear accelerations a‖ and a⊥, and angular acceleration ω̇, as functions of 360
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Figure 8: Relative neighbour position density and force maps for simulated fish pairs. Data
obtained from 18× 20 min independent realisations of model with 2 interacting fish simulated with nominal
parameters in Tabs. 1 & 2. Histogram construction as per Fig. 2. Panels show: (A) relative position density.
(B) Magnitude of focal fish acceleration response |a| with vector field [a‖, a⊥] (arrows). (C) Tangential accel-
eration a‖ of focal fish. (D) Radial acceleration a⊥ of focal fish. Positive accelerations indicate translations
or turns right/clockwise (red) whilst negative accelerations are to the left/anti-clockwise (blue). Contours
indicate 0.1, 1, 10, 50 and 90% density isolevels with respect to the most populated location bin.
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Figure 9: Acceleration response maps within ±2 BL of focal fish. Close up mapping of focal fish
acceleration response as a function of neighbours position for (A) experimental zebrafish data, (B) predicted
force magnitude |aest| from equations for U∗ and Ω∗ with nominal parameters, and (C) simulated (dynamic)
realisations of fish pairs using nominal parameters. In each panel, the magnitude of the linear acceleration
|a| is plotted as heatmap with its components a‖ and a⊥ in the focal fish frame used to construct vector field
(arrows).
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orthogonal separation distances (dFB or dLR), and the relative orientation φij. Overall we 361

find that the characteristic features of each force map are qualitatively similar to those 362

evaluated for the experimental data — with more specific observations described in what 363

follows. 364

Force maps in Figs. 10A & 10B report respectively the tangential acceleration a‖, and 365

the angular acceleration ω̇ as functions of the front-back separation dFB, and the relative 366

orientation φij, averaged over values of the left-right separation dLR. Here, we find that 367

the speed response (a‖) varies primarily as a function of dFB. However, similar to the 368

experimental mapping (Fig. 3A), we also find the range and magnitude of the repulsive 369

interaction to be more pronounced when the pair are well aligned. Note that this behaviour 370

is not prescribed explicitly in the model description but emerges from its simulation. 371

In terms of the angular acceleration ω̇ (Fig. 10B), we find values are primarily dependent 372

on the relative orientation such that the direction of increasing rotation is always to restore 373

alignment between the pair, as found for experimental data (Fig. 3B). Only the magnitude 374

of the angular acceleration component is found to vary as a function of the pair separation, 375

as prescribed by the distance decay term fd,ω in the model, as per (5b) and (7). 376

Figure 10: Force mapping as a function of the relative heading angle and separation between
simulated conspecifics. Panel descriptions as per Fig. 3. Force maps show significant characteristics
of both (A) tangential a‖, and (C) radial a⊥ attraction and repulsion in response to relative position of
neighbour, with only marginal dependence on the relative orientation. Force maps for ω̇ in (B) and (D)
however, indicate strong angular acceleration dependence on relative orientation indicating active alignment
between conspecifics, as described by the model
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Analysis of experimental data indicated that resultant radial accelerations (Fig. 3C) are 377

largely independent of the relative orientation φij, whilst the observed angular acceleration 378

ω̇ (Fig. 3D) are dependent only on φij. Both of these features are well captured overall in 379

respective force mappings for simulated pair trajectories shown in Figs. 10C & 10D. 380

The overall dependence of the angular acceleration on φij, averaging over all positions of 381

the neighbour (spatial maps in Fig. 10B & 10D) is compared against experimental data in 382

Fig. 7C. Based on this simplified projection, in conjunction with the axial projection of a⊥ 383

(Fig. 7B), we find that the model is able to simultaneously capture both the angular and 384

linear components of the turning response, including the observed repulsive region, with a 385

high degree of accuracy. 386

More specifically, we find that increasing the relative strength of the alignment interac- 387

tion by adjusting Kv in (5b), provides better matching of the ω̇ map in Fig. 10D with the 388

experimental equivalent. Unfortunately, exaggerating the alignment response in this way 389

negatively impacts the observed radial acceleration plot (Fig. 10C), which becomes increas- 390

ingly dominated by changes in the relative orientation φij. For comparison, a similar analysis 391

(see Fig. S6 in the SI) was conducted on simulated trajectories with no explicit alignment be- 392

haviour (Kv = 0). There, we find that the radial acceleration becomes entirely uniform with 393

respect to orientation, comparably better with respect to experimental data. However, the 394

resulting angular acceleration response with respect to front-back separation is essentially flat 395

(zero everywhere), responding only to left-right separation due to residual radial attraction 396

(a⊥) with no dependence on φij. These results indicate that an explicit alignment response 397

is required to reproduce the angular accelerations observed experimentally for zebrafish. 398

Further evidence supporting our choice of interaction model, prescribing a continuous 399

weighting between radial attraction and alignment, is obtained by comparing the spatial 400

structures of accelerations for different neighbour orientations. Panels in Fig. S2 & Fig.S3 (on- 401

line SI) report results of the same analysis we performed for zebrafish data as per Figs. 4 & 5, 402

in which we compute spatial (dLR, dFB) mappings for simulated conspecifics, separately across 403

four angle quadrants of relative orientation φij. For angular accelerations ω̇i (Fig. S2.B), we 404

find alignment interactions dominate in a region of approximately ±2 BL around the focal 405

agent, such that it turns to align its heading direction with respect to the neighbour, irre- 406

spective of its relative position. As the separation increases however, attraction dominates 407

such that the focal agent turns towards the neighbour, irrespective of its orientation. 408

Similar to our experimental observations, the direction (sign) of the angular acceleration 409

ω̇ is found to change depending on the sign of the orientation φij. For radial accelerations 410

however, the sign of a⊥ at any particular position is (almost) independent of φij, indicating 411

changes to the perpendicular translation speed of the fish, — e.g. beyond the repulsion 412

zone, it is always attractive with respect to the neighbour’s position. However, unlike our 413

experimental observations, the magnitude of the radial accelerations are noticeably reduced 414

when agents are anti-aligned (Fig. S3.B, bottom panels). Although the dynamics of the 415

model dynamics does not recover all of the subtleties observed for zebrafish, these mappings 416

further demonstrate its ability to capture the fundamental features of both attraction and 417

alignment as functions of both the location and orientation of a neighbour. Again, these 418

features are put into perspective when performing the same analysis for model realisations 419

without explicit alignment (Kv = 0) — shown in Fig. S7). In those simulations we find that 420

angular acceleration is, predictably, a function only of the neighbour’s position where the 421
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Figure 11: Speed dependent repulsion. Force maps shown for tangential acceleration a‖ as a function
the front-back distance dLR, and the focal fish speed uf and Uf , respectively for (A) experimental zebrafish
data, and (B) simulated pairs. The speed dependent repulsion radius r̃u = ±ru (Ui(t)/µu), estimated from
experimental data and prescribed in the model, is shown in green for nominal parameter value ru = 3.6 cm
(1.2 BL)

structure (normalised values) of all mappings shown for ω̇ and a⊥ are qualitatively identical. 422

The final force-map comparison presented in this analysis quantifies the effect of the 423

focal agent’s forward speed on the dynamics of interactions. In particular, we demonstrate 424

the effects of regulating the repulsion radius ru of the tangential acceleration as function 425

of forward speed U(t), as per (6). Here, we compare mappings for a‖ values computed 426

as a function of focal fish speed, and the front-back separation distance dLR — for both 427

experimental (Fig. 11A) and simulated data (Fig. 11B). Results obtained from dynamical 428

simulation clearly indicate the linear speed dependence defined in the model. 429

Force maps for both radial and angular acceleration responses due to the speed of the 430

focal agent are presented in Fig. S18). As found for zebrafish, the radial acceleration com- 431

ponent is essentially invariant to the speed. Similarly, we find no obvious speed dependence 432

on the magnitude of angular accelerations ω̇. Importantly however, the narrowing width of 433

isodensity contours for simulated data (Fig. S18C) suggests that pair alignment, or polarisa- 434

tion, is more likely as speed increases. Although this effect is not found to be as pronounced 435

as observed in experimental data, it is still an interesting and desirable feature of the model 436

proposed. 437

5. Comparative collective dynamics of small shoals 438

The force mapping analysis conducted for calibrated model realisations suggests that 439

the model successfully captures many of the interactions, previously observed for live ze- 440

brafish pairs. In what follows, we extend our comparisons by considering how these localised 441

(individual-level) interaction behaviours lead to aggregate collective states in simulated and 442

experimental shoals. Here, we draw direct comparisons between experimental and simulated 443

dynamics in terms of the emergent collective behaviour — quantified using a set of global 444

observables, measured at each time sample. To provide a comprehensive analysis, we also 445

simulated interacting populations of five individuals, and compared their collective dynamics 446

to experimental trajectory data obtained for five zebrafish shoals in [43]. 447
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Figure 12: Comparing experimental and simulated distributions of global observables Experimen-
tal distributions (grey) are compared with those for simulated data with: (A) two fish (red), and (B) five
fish (blue). Nominal model parameters (Tabs. 1 & 2) are used for both simulated groups, but where for
(A) alignment strength is reduced: Kv = 8, and in (B) increased: Kv = 14, to yield better comparisons
for some distributions. From left to right, histograms report: (P)olarisation, (M)illing, (C)ohesion, Mean
nearest-neighbour distance (MNND), and (E)longation. Mean values shown by vertical dashed lines. Data
for five-fish shoals was gathered under identical conditions, selected from a set of control trials in [43]

Specifically, we infer the relative persistence of either polarised (P ) or rotational milling 448

(M) dynamical states, as well the relative group cohesion (C) based on each individual’s 449

distance from the shoal centre of mass (where P,M,C ∈ [0, 1]). In addition to polarised 450

and rotational aggregate states, we also compute observables measuring the mean nearest- 451

neighbour distance (MNND), and the shoal elongation (E). Mathematical derivations and 452

descriptions for each observable can be found in §S8 of the SI. 453

The collective behaviour of fish shoals, as with other animal groups, are found to transition 454

between different states which may persist for long periods of time, or exist only for brief 455

periods before dissipating. Perturbations within a highly polarised (P ≈ 1,M ≈ 0) school 456

may for example, result in a transient milling (rotating) state (M → 1, P → 0), before 457

reorganising into a well polarised configuration. For this reason, we capture the evolution of 458

transient dynamical states over extended periods by computing the time-series distributions 459

of each global observable. 460

We simulated trajectories (18× 20 min, Fs = 30 Hz) for both two-, and five-fish groups, 461

parametrised using the nominal, homogeneous set of individual parameters obtained via MLE 462

(Tab. 1), and interaction parameters estimated via force-mapping analysis (Tab. 2). For two 463

fish simulations however, we found polarisation to be exaggerated — with a corresponding 464

reduction in the propensity for milling configurations. To compensate for this, we reduced the 465

relative propensity of individuals to align by simulating model realisations with a weakened 466

alignment interaction strength by setting Kv = 8 for fish pairs. Similarly for five-fish shoals, 467

good agreement was obtained when setting Kv = 14. Animated visualisations of two- and 468

five-fish simulated shoals can be found in the online SI: videos V2 & V3 respectively. 469

Distribution histograms for each observable are shown in Figs. 12A and Figs. 12B with 470

comparison to the corresponding experimental values (denoted by grey bars). 471

Overall, our findings display remarkable similarities between the distributions measured 472

for experimental and simulated data for both fish shoals. By comparing experimental data 473
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for both the two- and five-fish populations, we find mean values for group cohesion (C), mean 474

nearest neighbour distance (MNND), and shoal elongation (E) are all noticeably lower in 475

the five fish group — also reflected in simulated data. From the cohesion (C) distribution 476

in particular, we note that for zebrafish and simulated pairs, there is a well defined peak 477

corresponding to a stable, equilibrium separation between individuals. The heavy left-sided 478

tail represents brief periods in which the two fish in the pair become separated. Both experi- 479

mental and simulated data for the five fish groups however, show a flattened, almost bimodal 480

C distribution, with evidence of a second, much smaller peak at C ≈ 0.25. Further analysis 481

of the experimental C(t) and M(t) time-series data for these shoals, suggests this additional 482

peak corresponds to the average value of cohesion when the shoal exhibits transient milling 483

behaviour (see Fig. S19). The primary peak (C ≈ 0.7) corresponds to the average value 484

of cohesion when the fish are swimming with sustained high polarisation. Importantly, this 485

subtle bimodal distribution is also evident in simulated data for the same reasons. 486

For both populations, we find that judicious adjustment of the parameter Kv regulating 487

alignment strength may be used to promote, or inhibit, polarised and rotational collective 488

phases. However, in conjunction with the previous force-mapping analysis, it is clear that 489

further tuning of the model parameters depends on what features of the experimental data 490

need to be captured with higher priority. Crucially, our results demonstrate that the model 491

is able to reproduce both the individual level interaction responses, and emergent collective 492

dynamics of multiple fish swimming together as a shoal. Similar analysis of collective dy- 493

namics for simulations in which we selectively remove individual interaction responses (via 494

Ks, Kp, and Kv) can be found in Fig. S8. 495

6. Summary 496

In this work, we have explored the dynamic structure of zebrafish interactions at the 497

individual-level by analysing their movement patterns in response to a neighbour. The ob- 498

served interaction behaviours include dynamic forward speed regulation, yielding both at- 499

tractive and repulsive interactions with respect to the relative position of the conspecifics. 500

Turning responses, interpreted from both the radial and angular acceleration components, 501

were found to be more complex; consisting of distance mediated attraction, repulsion and 502

alignment behaviours. In contrast to previous studies of golden shiners [21], we found strong 503

evidence that the alignment response between conspecifics is in fact an explicit component 504

of zebrafish interaction, rather than a purely emergent phenomenon. 505

The social force mappings revealed from data analysis were used to derive a novel model 506

framework which encapsulates both the unique locomotory patterns of individual zebrafish, 507

and a detailed description of the interactions between pairs. Data-driven methods were used 508

to calibrate and verify the consistency of the multi-agent model with respect to experimental 509

observations. In particular, a set of mean model parameters was derived able to reproduce 510

key features of both the individual-level interaction behaviours, and the emergent collective 511

dynamics of small zebrafish shoals. 512
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Supporting Information 525

S1. Zebrafish experiments 526

Experiments with live zebrafish were conducted at the Dynamical Systems Laboratory 527

(New York University Tandon School of Engineering, NY, USA) and were approved by the 528

University Animal Welfare Committee of New York University under protocol number 13- 529

1424. The animals and apparatus used to acquire trajectory data for swimming zebrafish 530

pairs, was broadly similar to those described previously in [13]. In the present study however, 531

a camera with higher spatial and temporal resolution was used to observe fish swimming in 532

the experimental tank. Where appropriate we also make use of recently published data 533

in [43], obtained under similar experimental conditions for isolated individuals and groups of 534

five zebrafish. 535

S1.1. Animals and environment 536

Wild-type zebrafish (Danio rerio) were bought online (LiveAquaria.com, Rhinelander, 537

WI, USA) and housed according to the description in [13]. At the time of the experiments, 538

fish were 6-8 months of age, with a mean body length of approximately 3 cm. A photoperiod 539

of approximately 12 hr light, 12 hr dark per day was automatically prescribed in accordance 540

with the natural circadian rhythm of zebrafish [44]. Water temperature and pH in the 541

holding tanks were maintained at 27 ± 1◦C and 7.2 respectively. Feeding with commercial 542

flake food (Hagen Corp./Nutrafin Max, USA) was carried out on a daily basis at 7 pm. In 543

total, 36 experimentally näıve individuals were used for this study, allowing for a ten day 544

acclimatisation period in holding tanks prior to experimentation. 545

S1.2. Apparatus 546

Experimental subjects were observed in a tank measuring 120×120×20 cm (10 cm water 547

depth). A ring of radius 45 cm placed inside the tank provides a barrier restricting the 548

freedom of movement of zebrafish to within the interior circular region. The bottom surface 549

of the tank, and the circular wall was covered with a white contact paper — enhancing the 550

contrast for automated tracking. The entire tank assembly was supported on an aluminium 551

frame, with diffused overhead provided by four 25 W fluorescent tubes (All-Glass Aquarium, 552

preheat aquarium lamp, U.K.). Opaque curtains surrounding the tank were used during 553

observations to provide shielding from the laboratory. 554

Video frames were recorded with a high-resolution, high-bandwidth Flea3 (USB 3.0) 555

camera (Point Grey Research, Richmond, Canada), mounted 80 cm above the water surface, 556

centred over the circular ring. The camera was configured to record full-colour frames at 557

30 Hz with 1280× 960 pixel resolution using high-quality MJPEG compression. 558
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S1.3. Experimental procedure 559

Observations were conducted for 18 unique pairs of experimentally näıve zebrafish. Before 560

each trial, two fish were hand-netted at random from the holding tanks. Test subjects were 561

transferred directly to a single 250 ml glass beaker, filled with water from the holding tank and 562

the experimental tank in roughly equal measures. The beaker was placed in the experimental 563

tank and after 10 min, it was gently tipped to release the fish in the experimental tank. 564

This procedure was selected to reduce any potential shock arising from differences in water 565

quality or temperature between the holding and experimental tanks. Video recording was 566

initiated shortly afterwards, filming for 30 min in total, which included an initial 10 min 567

period allowing for habituation to the novel environment [45] — discarded from subsequent 568

analysis. On completion of each 30 min observation, test subjects were retrieved with the 569

hand net and transferred to a separate holding tank. 570

S1.4. Tracking and trajectory reconstruction 571

Video image analysis and multi-target tracking was achieved using an in-house software 572

package (‘Peregrine’ [8]), identical to that used in our analysis in [13]. Tracking was performed 573

off-line enabling at the maximum video frame rate: Fs = 30 Hz. 574

Raw experimental data consisted of two-dimensional Cartesian positions xi(t) = [x, y]i(t) 575

for each fish i, measured in centimeters from the origin, positioned at the centre of the circular 576

tank. For this experiment, it is important that each fish can be uniquely identified throughout 577

each observation. By evaluating the size distribution of each fish, determined by the area of a 578

blob measured in pixels, the tracking software continuously monitored for occlusions — where 579

fish were found to overlap from the perspective of the camera. In frames where blobs were 580

found to be larger than 2 standard deviations of their mean size, an expectation-minimisation 581

algorithm was used to optimally fit Gaussian distributions to the larger, occluded blob [46]. 582

Using an off-line graphical user interface, trajectory data for each observation was then 583

manually verified in their entirety, to ensure that the unique identity of each fish was preserved 584

for the entire 20 min period, post habituation (as per [43]). Tracking errors such as an 585

unresolved occlusions, missing data or false detections could therefore be found and corrected 586

in all instances. 587

S1.5. Position smoothing 588

Prior to further analysis, raw position data x(t) was smoothed using a third-order Savitsky- 589

Golay (SG3) moving average filter [47], with a nominal moving average window of 15 samples, 590

equivalent to 0.5 s (using the built-in MATLAB smooth function with the ‘sgolay’ option). 591

From this smoothed time-series data, we then computed both the velocity v(t) and accelera- 592

tion a(t) in the tank-reference frame, numerically via successive (backwards) finite differences. 593

Instantaneous speed u(t) is given by the velocity vector norm: u(t) = ‖v(t)‖. Turn-rate ω(t) 594

is computed via an approximation of the trajectory curvature through a symmetric window 595

of position samples, assuming a path along the circumcircle prescribed by these positions. 596

Angular acceleration ω̇(t) = dω(t)/dt is computed similarly, via the central difference of the 597

approximated turn-rate. 598

Different from our previous analysis in [13], the velocity vectors of each fish are computed 599

as the time-derivative of position data, smoothed using a Savitsky-Golay (SG) filter, rather 600

than using Kalman filtered velocity data generated by the tracking software [8]. The SG filter 601
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works by convolving successive subsets of data, within a fixed sample window (w), fitted to a 602

low-degree (p) polynomial using the least-squares method. This alternative method provides 603

a simple and consistent means by which we can suppress the noise (measurement errors) 604

inherent in the automated visual tracking procedure. By adjusting the sample window size 605

of the SG filter, the degree to which the position data is smoothed can now be varied to 606

observe its effect on model parameter calibration. Since all other metrics (speed, turn-rate, 607

acceleration etc.) are estimated in some way using the position data, we also befit from a 608

single, controllable source of filtering such that its effects can be more easily characterised. 609

Later in this document (§S5), we provide a limited survey of the effects of smoothing, specif- 610

ically in relation to the sample window size w, choosing to fix the polynomial order p of the 611

SG filter. For a detailed study of optimal parameter {w, p} selection for SG filtering, we refer 612

the reader to the work of Krishnan et al. [48]. 613

S1.6. Velocity estimation 614

In the computations required to produce the force maps resolved in this analysis, we
suppress noise by applying a third-order (p = 3) Savitsky-Golay (SG3) filter to smooth
the tracked position data, nominally choosing a w = 15 sample moving-average window
equivalent to 0.5 s at 30 Hz. The velocity v(t), and acceleration a(t) are then computed from
successive finite differences using

v(t+ ∆t) = (x(t+ ∆t)− x(t)) /∆t

and
a(t+ ∆t) = (v(t+ ∆t)− v(t)) /∆t

respectively, where x(t) now refers to smoothed position values. The instantaneous (scalar) 615

speed u(t) is then calculated trivially from the vector norm of the velocity, where u(t) = ‖v(t)‖. 616

Selection of the SG filter parameters {w = 15, p = 3} is achieved heuristically and dis- 617

cussed later in §S5 where we further adjust w to calibrate model parameters. Alternative 618

methods which attempt to optimise the accuracy of velocity estimation from noisy position 619

data via adaptive sample windowing have been considered [49]. However, trial implemen- 620

tation of these methods have not yet proved successful using reasonable estimates of the 621

tracking noise. Whichever method is used, we should be mindful that every metric we 622

consider is derived solely from discretely sampled positions; for example, first and second 623

derivatives for velocity and acceleration. As such, position errors unavoidably propagate to 624

all measurements and will be magnified when computing higher order derivatives. 625

S1.7. Turn rate estimation: adaptive curvature method 626

In our previous study [13], we described a method of computing the turn-rate ω(t) time- 627

series from the (Kalman filtered) velocity v(t), in the absence of explicit information indicat- 628

ing the orientation of the fish (velocity method). Having now chosen to ignore the Kalman 629

filtering method in favour of SG smoothing of position vectors, we consider an alternative 630

method for computing ω(t), directly from the available position data. Extending a method 631

previously described in [40], we estimate the trajectory curvature as a (short) moving aver- 632

age through consecutive position samples to infer the angular deviations of the fish’s heading 633

(curvature method). 634
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At each time step, we compute the radius of a circumcircle described by three position 635

samples, symmetrically spaced in time around the position at time t. From this, we derive 636

the angle of arc ∆φ between the end points, estimating ω(t) from the central difference (see 637

Fig. S1). In general, to estimate the turn rate at time t, we construct the circumcircle defined 638

by vertices: x(t− n∆t), x(t) and x(t+ n∆t), and compute the angle ∆tφ describing the arc 639

from x(t − n∆t) to x(t + n∆t) about the circumcentre, giving ω(t) ≈ ∆tφ/(2n∆t). From 640

this approximated ω(t) time series, we can then also compute the angular acceleration ω̇(t) 641

via the (central) finite difference given the sample period ∆t. 642

Typically, the turn rate is approximated using a default symmetric window size of n = 1
samples, [14, 40], such that we compute the arc between position samples either side of
the position x(t). When the fish is found to be very slow moving, the random tracking
error in position samples becomes large in comparison to the true displacement between
successive samples, producing potentially large fluctuations in measured turn rate. If we
wish to continue estimation of turn rate during these very slow moving periods (excluded
from force mapping analysis — see §S2), we can adjust the window size n as a function of the
fish’s speed, smoothing out high-frequency tracking noise. A simple algorithm was therefore
implemented to increment n until the average speed along the trajectory between end points
x(t− n∆t) and x(t+ n∆t), exceeds a threshold umin, for each computation of the turn rate
ω(t) and time t, that is when the condition

1

n∆t

n∑
k=−n+1

‖x(t+ k∆t)− x(t+ (k − 1)∆t)‖ > umin (8)

is satisfied, where umin = 0.2 BL s−1, chosen heuristically to achieve adequate noise suppres- 643

sion. 644

For a comprehensive study comparing the velocity based method used in [13], the position 645

based method (n = 1), and an alternative solution for ω(t) in which orientations are obtained 646

directly shape-tracking measurements, we refer the reader to the recent work of Mwaffo et 647

al. [50]. 648

Figure S1: Position based (curvature) method for approximating turn rate. Turn rate ω(t) =
dφ/dt ≈ ∆φ/2n∆t at time t is estimated using the curvature of the trajectory segment (green) centred
on position sample x(t), about the circumcentre (blue circle) of three symmetrically time-spaced position
samples (red outlined circles) - example shown here with window size n = 2 samples.
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S2. Social-force mapping: methodology 649

To infer interactions between fish, we use a force mapping method similar to that described 650

by Katz et al. in [21] to compute the acceleration of a focal fish as a function of the relative 651

position and orientation of its neighbour. As in [21], the components of this acceleration are 652

referred to as social reaction ‘forces’, both tangential to the direction of motion (‘speeding 653

force’: a‖), and a radial component (‘turning force’: a⊥). In the present study, we perform 654

an additional analysis of the resultant angular acceleration, ω̇(t), and therefore adopt the 655

more specific terms: tangential, radial and angular acceleration accordingly. In this way, we 656

intentionally discriminate between turning interactions which incur changes in radial (left- 657

right axis) speed, and those which result in changes to the angular speed (turn-rate) of the 658

focal fish, ω(t). 659

Importantly, by computing both the angular and radial components of the fish’s accelera-
tion, we are able to distinguish between responses leading to a net change in position, that is
an attractive and repulsive force, and those which result in the specific alignment of the fish.
The first measure a⊥, indicates changes to the radial component of the fish’s velocity, that
is to say how much more has it moved to its left or right as a result of a turning manoeuvre.
The angular acceleration ω̇ is the rate of change of angular velocity, inferred from the vary-
ing curvature of the trajectory. Both measures are clearly related, not least because they
are both computed from the same trajectory position samples. More specifically, as the fish
changes its orientation, or heading angle, with turn-rate ω(t) (angular velocity), the radial
acceleration along its trajectory depends on the forward speed u(t), with an approximate
relationship given by:

a⊥(t) = lim
∆t→0

u(t)

∆t
sin (ω(t)∆t) ≈ u(t)ω(t) (9)

where ∆t is the small time increment between position samples. 660

The dependence of a⊥ on ω in (9) implies a phase lag between the radial acceleration 661

component and angular acceleration such that whilst the radial speed might be decreasing 662

(a⊥ < 0), the curvature of the trajectory in the same direction can still be increasing (ω̇ > 0). 663

Crucially for our analysis of the social interaction ‘forces’, the signs, or directions of a⊥(t) 664

and ω̇(t), can be opposed whilst consistently describing different features of how a fish turns 665

in response to a neighbour: its attraction or propensity to align. 666

In the present study, we consider a variety of dynamical relationships conferred by inter- 667

actions, explored in terms of different functions of the pair’s spatial and dynamical configu- 668

ration. The various constructions for the force-maps used to explore these relationships are 669

described in what follows. 670

S2.1. Spatial force maps 671

Spatial force maps are two-dimensional histograms, constructed using values of the ac- 672

celeration, a‖, a⊥, or ω̇ computed for a focal fish, given the relative position of its neighbour 673

at every sampled time frame. By expressing both the acceleration and relative position in 674

a moving reference frame aligned with the focal fish’s direction of motion, we can derive a 675

spatial mapping which is independent of the its position in the tank, as follows. 676
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For each data sample at time t, the acceleration ai = [ax, ay]i of a focal fish i, in the tank
reference frame, is decomposed into two components of a′i = [a‖, a⊥]i, describing the tangen-

tial acceleration a
‖
i parallel to the direction of the fish i’s motion, and a radial acceleration

a⊥i in the perpendicular direction. This simple transformation is accomplished by rotating
the tank frame vector ai by negative φi — fish i’s current heading angle with respect to the
x-axis, where

φi = atan2(vyi , v
x
i ) (10)

This is achieved by performing the rotation

a′Ti = RaTi (11)

where R is the rotation matrix:

R =

[
cosα − sinα
sinα cosα

]
;α = −φi (12)

and ‘atan2’ is the four-quadrant arctangent function providing the (signed) heading direction 677

[−π, π] from the positive x-axis, given the velocity 678

vi = [vx, vy]i of fish i in the tank reference frame. 679

The position dj of a neighbouring fish j is expressed in terms of its front-back distance
dFB and its left-right distance dLR, relative to the focal fish i placed at the origin with its
velocity vector aligned with the positive x-axis. Here, an identical rotation transformation is
performed:

dj = [dFB, dLR]Tj = R(xj − xi)
T (13)

giving us the required orthogonal components dFB and dLR with respect to the focal fish’s 680

orientation. A schematic diagram showing the construction of relative position and linear 681

reaction ‘forces‘ (a‖ and a⊥), is shown in Fig. 1. 682

To construct each of the ‘social-force’ (acceleration) maps, reported in this study, we
discretise the relative positional space around the focal fish into n2

b bins of equal width δd
defining a square grid, spanning ±dmax in both front-back and left-right axes. For each data
sample at time t, we determine the correct bin index (n(t),m(t)) by interpolating the pair
separation vector (dFB, dLR) in the focal fish reference frame across the coarse grid, that is

n(t) = [dLR(t)−mod(dLR(t), δd)] /δd (14a)

m(t) = [dFB(t)−mod(dFB(t), δd)] /δd (14b)

In separate histogram matrices, we accumulate the associated values of a‖, a⊥, or ω̇ of each 683

sample in the bin according to (14). A separate relative position density matrix (map) is 684

constructed trivially by incrementing the appropriate bin values by 1. This process is per- 685

formed twice for each set of observation data, once for each focal fish, producing composite 686

histograms for the entire data set of 18 (20 min duration) observation. Relative position den- 687

sity plots are normalised by the maximum bin occupancy, such that bin values are expressed 688

as a percentage of this value. Finally, bin values are averaged by the number of pair permu- 689

tations (36 focal fish comparisons). For linear components, further division by the average 690

fish body length (3 cm) provides accelerations in units of BL s−2. Additional smoothing is 691
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applied via numerical (bicubic) interpolation across the square grid, up-scaling by a factor 692

of ten, such that a 30× 30 grid of histogram bins becomes a 300× 300 grid of values. 693

To avoid potentially strong interactions with tank boundaries, data frames in which either 694

fish is closer than 2 BL to the boundary, regardless of their orientation, are rejected from 695

all force mapping analyses. Frames in which the speed of either fish u(t) < 0.2 BL s−1, 696

u(t) > 10 BL s−1 are also rejected to reduce spurious angular fluctuations which result from 697

tracking noise at low (or stationary) fish speeds. Note that at very low speeds, approximated 698

accelerations / forces become effectively zero. 699

S2.2. Semi-spatial force maps 700

In addition to the described spatial mappings, where histograms are binned according to
the relative position (dFB, dLR), we also consider alternative maps in terms of other perti-
nent variables. Specifically, we construct (a‖, a⊥, and ω̇) histograms maps for: the relative
orientation φij between interacting fish; and the swimming speed of either the focal fish uf ,
or neighbouring fish unb. Two-dimensional histograms, or semi-spatial maps, are constructed
in a similar way as before, where we now average over sample values of either dFB or dLR
depending on the relationship of interest. Here, the accumulated acceleration values are
binned with indexes (n(t),m(t)). Using an example of a⊥ mapped as functions of dLR and
φij (averaging over dFB), we have:

n(t) = [dLR(t)−mod(dLR(t), δd)] /δd (15)

m(t) = [φij(t)−mod(φij(t), δφ)] /δφ (16)

where bin width δφ is equal to 2π/nb (radians). 701

S3. Spatial structure of zebrafish alignment responses 702

Following our summary in the main text (§2.4), we provide a detailed description of the 703

angular (Fig. S2.A) and radial (Fig. S3.A) acceleration responses for clockwise rotations of 704

the focal zebrafish’s neighbour – with observations being identical for anti-clockwise oriented 705

neighbours, but mirrored in the dLR axis with ω̇ negated. Supporting our description in the 706

main text, we also provide comparison plots comparison for simulated pairs (Fig. S2.B & 707

Fig. S3.B). 708

When neighbours have a positive dFB velocity component with respect to the focal fish 709

(0 < φij < π/2), the spatial structure of ω̇ is generally isotropic such that the focal fish’s 710

angular acceleration is in the clockwise direction, to align with its neighbour. An exception 711

is in the front-right spatial quadrant in which the neighbour is moving away from the focal 712

fish, both in terms of its dFB and dLR velocity components. In this particular configuration, 713

where conspecifics are receding yet highly visible, it is possible that explicit alignment gives 714

way to (radial) attraction, found to be strong for these orientations in the same spatial region 715

(Fig. S3.A). 716

When neighbours velocities have a negative dFB component (π/2 < φij < π), the ω̇ 717

turning response of the focal fish is distinctly anisotropic with respect to the position of 718

the neighbour. For these neighbour orientations, the turning response is magnified in the 719

front-left quadrant where the neighbour’s velocity is directed towards the focal fish, and in 720

7



the rear-right quadrant where the neighbour’s velocity is approximately away from the focal 721

fish. The enhanced alignment response when the neighbour is ahead and oriented towards 722

the focal fish is a possible evidence of evasive manoeuvres where a focal fish adjusts its 723

orientation more rapidly to avoid a collision. Enhancement in the rear-right quadrant may 724

simply indicate that a more rapid turning response is required to maintain visibility of the a 725

posterior neighbour, moving away from the focal fish. 726

Opposite front-right and rear-left spatial quadrants indicate what appears to be ‘anti- 727

alignment’ behaviour, with significant regions where ω̇ < 0. In the rear-left quadrant, the 728

increased turning to the left (anticlockwise) may still be the consequence of an alignment 729

response, but one which better maintains visibility of a neighbour positioned initially behind 730

the focal fish. In other words, the focal fish chases the tail of its neighbour, turning to keep 731

it in its left visual field. In contrast, turning in the opposite direction (clockwise) may result 732

in more rapid alignment but at the expense of losing sight of the stimulus. The negative 733

(anticlockwise) region of ω̇ observed in the front-right quadrant is also well pronounced, 734

however we do not currently offer a reasonable hypothesis as to the possible causes underlying 735

this specific response. 736
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S4. Numerical implementation of shoal model 737

Simulated trajectories for multiple fish are computed by numerical integration of the 738

equations of motion for speed Ui(t) and turn rate Ωi(t) described by the SDEs in (1). Discrete 739

solutions are obtained using the Euler-Maruyama method [51, ch.10], where for each fish i 740

we have: 741

Ui(t+ ∆t) = Ui(t) + θu
(
µu + U∗i (t)− Ui(t)

)
∆t+ σu∆W (t) (17a)

with Ui(t) truncated between [0 . . . Umax], and

Ωi(t+ ∆t) = Ωi(t) + θω
(
Ω∗i (t) + fWi(t)− Ωi(t)

)
∆t+ σω∆Z(t) (17b)

with Ωi(t) truncated between [−Ωmax . . .Ωmax]. 742

Here ∆t is the (short) time step duration, with ∆W (t) and ∆Z(t) being independent 743

and identically distributed normal random variates with zero mean and variance
√

∆t. In 744

general for the group of N fish, we can define heterogeneous sets of parameters, such that 745

µu = µu[i=1..N ], θω = θω[i=1..N ], etc. are individually assigned for each fish i, to account for their 746

unique locomotory characteristics. However, for much of the comparative analysis presented 747

in this study, we obtain and prescribe a set of mean model parameters (homogeneous agents). 748

Each trajectory realisation is a two-dimensional (correlated) random walk in the plane, 749

where the heading angle φ(t) and position x(t) at time t are sequentially updated via Euler 750

integration using values of speed U(t) and turn rate Ω(t) generated, as follows. 751

• Heading angle update (wrapped within a range of [−π, π] radians):

φ(t) = ([φ(t−∆t) + π + Ω(t)∆t] mod 2π)− π (18a)

• Position update:

x(t) = x(t−∆t) + V(t)∆t, V(t) = U(t) [cos(φ(t)), sin(φ(t))] (18b)

For every realisation of N agents, initial positions {x(0)i}Ni=1, were uniformly distributed 752

within the circular virtual tank boundary (Rtank = 45 cm), with uniformly random head- 753

ing angles in [−π, π]. Initial speeds were set to the equilibrium speed parameter value, 754

{U(0)i}Ni=1 = µu, with turn-rate {Ω(0)i}Ni=1 = 0. For all numerical realisations of the model 755

described in this study, we set ∆t = 1/30 s (Fs = 30 Hz) — previously found to be sufficient 756

for accurate numerical integration [13]. Sample generation frequency is matched with the 757

experimental acquisition frequency for convenience. 758

S4.1. Computing the wall avoidance function (fW ) 759

The value of the wall avoidance term fW (t) in (3) is calculated at each time t by projecting
the velocity vector of a fish, from its current position, to its intersection with the circular
boundary (radius Rtank = 45 cm) of the virtual tank. For each sample with Cartesian position
and velocity components x(t) = [xx, xy](t) and v(t) = [vx, vy](t), the collision point at the
boundary xc is computed from the intersection of the (infinite) line extending through both
(xx, xy) and (xx + vx, xy + vy), with the circular boundary described by x2 + y2 = Rtank. This
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calculation yields two intersection points, of which we select only the point in front of the
fish. From the chosen intersection xc we compute the projected distance dW = ‖xc − x(t)‖,
and the corresponding collision angle φW according to:

φW = sgn
(
[xc × v(t)]z

)
cos−1

(
d2
W +R2

tank − ‖x(t)‖2

2dWRtank

)
(19)

Here, the (signum) function sgn[·]z provides the required sign given by the z component of 760

the cross product of the projected velocity with the normal vector at the collision point. 761

S5. Calibrating spontaneous motion via MLE 762

The parameters determining the locomotion individual fish are those required by the equa- 763

tions of motion, namely the speed (1a) and turn-rate (1b), in the absence of corresponding 764

interaction responses U∗ and Ω∗. With regard to the SDE governing forward speed U , the set 765

of parameters includes: the equilibrium swimming speed µu, the speed fluctuation variance 766

σu, and the relaxation (autocorrelation) rate θu. For the turn-rate process for Ω, we require: 767

the parameters of the coupling function (fc) governing the fluctuation variance, namely, αc 768

and βc; the associated relaxation rate θω; and also the parameters of wall avoidance function 769

(fW ), that is αW and βW . 770

Extending the method used in [13], we again use maximum likelihood estimation (MLE) 771

to obtain estimates for parameters of the updated individual-model. In this new approach, we 772

explicitly include the coupling between the SDEs to estimate parameter values characterising 773

this interaction, as well as approximations for the wall-avoidance, directly from the available 774

speed and turn-rate data. 775

In contrast to the analytical solutions employed in [13], we compute the value of the 776

likelihood function for all time-consecutive speed and turn-rate sample pairs which individu- 777

ally satisfy similar threshold criteria (minimum swimming speed, wall proximity, etc.). The 778

eight parameters of the individual-model, described above, are subsequently computed via 779

numerical optimisation to find values which maximise the log-likelihood. 780

S5.1. Deriving the likelihood function 781

The source data use to calibrate model parameters is discretely sampled, time-series data,
approximating the speed u(t) and turn-rate ω(t) of individual zebrafish. In order to derive
the corresponding likelihood functions, we therefore require discrete-time versions of the
equations of motion in (1), with linearised, continuous-time solutions given by

(OU process) dS = θ
(
µ− S

)
dt+ σdW (20)

where S is a mean-reverting stochastic process (mean µ and relaxation rate θ), with random 782

fluctuations generated by the standard Wiener process W with variance σ2. In this form, 783

S describes a stationary, Gaussian process with normally distributed solutions [52]. Unlike 784

the conventional linear OU process, the model equations have additional nonlinear terms 785

in (1b), which account for the coupling between speed and turn-rate given by fc, and the 786

wall avoidance function fW . However, over small time intervals, linear terms are expected to 787

dominate, provided we use a suitable discrete-time solution. 788

12



Here we use an exact, analytical solution of (20) which is independent of the time-step,
as derived in [53] — where for consecutive values Si and Si+1, spaced δ apart in time, we
have:

Si+1 = Sie
−θδ + µ(1− e−θδ) + σ

√
1− e−2θδ

2θ
N0,1 (21)

Here, Nµ=0,σ=1 indicates a standard normal random variate, with a probability density f(x)
given by:

f(x|µ, σ) =
1

σ
√

2π
exp

(
−(x− µ)2

2σ2

)
(22)

Extending this assumption of the probability density for both speed and turn-rate pro-
cesses, we derive the conditional probability of an observation of either state Si+1 given a
previous measurement Si, as

f(Si+1|Si, µ, σ, θ) =
1√

2πσ̂2
exp

[
−
(
Si+1 − Sie−θδ − µ(1− e−θδ)

)2

2σ̂2

]
(23)

where from (21), we have made the substitution for the normal probability density function
(pdf) variance

σ̂2 = σ2

(
1− e−2θδ

2θ

)
(24)

For a given parametrisation of the model η ∈ [µ, σ, θ] we can write the likelihood func-
tion as the joint density function, or product of the independent probabilities of successive
measurements, as follows

L(η|S = S1, . . . , Sn) =

(
1√

2πσ̂2

)n n∏
i=1

exp

[
−
(
Si+1 − Sie−θδ − µ(1− e−θδ)

)2

2σ̂2

]
(25)

Also we can write the corresponding log-likelihood function, as follows

L̂ := ln (L) = −n
2

ln (2π)− n ln (σ̂)− 1

2σ̂2

n∑
i=1

[
Si+1 − Sie−θδ − µ(1− e−θδ)

]2
(26)

where we wish to find the set of parameters ηmle which maximises L̂

{ηmle} ⊆ {arg max
η

L̂(η;S1, . . . , Sn)} (27)

The total log-likelihood, L̂′ = L̂u+L̂ω, is computed for our two equation model, where L̂u 789

and L̂ω are the log-likelihood values given by (26) for speed and turn-rate data respectively 790

— where δ = 1/Fs = ∆t. For computing the likelihood L̂u from speed data u, we make the 791

following value/parameter substitutions: 792

793

Si = u(t), i = 1, . . . , n : speed time series data
µ = µu : speed process mean-reversion
σ = σu : speed process volatility
θ = θu : speed process relaxation rate

794

795
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Similarly, for computation of L̂ω using turn-rate data ω(t), where we include nonlinear cou- 796

pling and wall-avoidance terms: 797

Si = ω(t), i = 1, . . . , n : turn-rate time series data
µ = sgn

(
φW (t)

)
αW exp

(
− βWdW (t)

)
: wall-avoidance function (fW )

σ = αc exp
(
− βcU(t)

)
: turn-rate coupling function (fc)

θ = θω : turn-rate process relaxation rate

798

799

By making the above substitutions, all of the required parameters, including those de- 800

scribing the SDE coupling (fc) and wall avoidance (fW ), are present in the description of the 801

likelihood function L. Note that the function fW takes the place of the equilibrium parameter 802

µ in Lω, acting as a bias to an equilibrium turn-rate of zero. Similarly, the σ parameter in Lω 803

is given by the coupling function with an explicit dependence on the speed u(t). In contrast 804

to our previous method in [13], the coupling parameters αc and βc are now estimated from 805

both u and ω with a consistent probability model, described below. 806

The likelihood functions above are derived from the discrete-time solution of the stan- 807

dard OU process where we have linearised the model equations in (1) and assumed a normal 808

probability density function. As we have discussed previously, the distributions of experi- 809

mental turn-rate values ω, have much heavier tails than would be achieved using a standard 810

OU equation possessing a normal distribution. The addition of the nonlinear coupling func- 811

tion fc somewhat mitigates this discrepancy by enhancing turn-rate values at low swimming 812

speeds, resulting in Ω distributions which compare more favourably to those found experi- 813

mentally. An alternative modelling approach which seeks to address this issue directly can 814

be found in [14]. The accuracy of the MLE calibrated parameter values depends on how well 815

the underlying SDE can be approximated by a suitable, linearised SDE whereby nonlinear 816

terms are held fixed over a single time step ∆t = 1/30 s. 817

We also note that measured values of forward speed u are strictly positive, contrasting 818

with the normal pdf — defined over all real numbers. For fish with low mean swimming 819

speeds, we therefore expect the distribution of experimental values u to exhibit heavier right 820

hand (positive) tails, truncated to the left at zero. In such cases, the MLE method may 821

perform poorly, fitting a (normal) distribution with exaggerated mean and reduced variance. 822

However, results of MLE calibration of synthetic trajectory data, discussed in the following 823

section, suggest that overall we are able to provide very good estimates for both µu and σu 824

using the method described. 825

S5.2. Procedure 826

Parameter calibration using MLE is performed by constructing a single objective function
equal to the sum of the log-likelihoods for both speed and turn-rate data, using two different
applications of (26) with the substitutions given above. Specifically the objective function
takes a trial set of input parameters

η̂ = {ηu} ∪ {ηω} = {µu, σu, θu, θω, αc, βc, αW , βW}

and returns the negative of the sum of both log-likelihoods, that is −L̂(η, U,Ω), which can 827

be numerically minimised. 828

Finding the set of parameters η̂ which minimises the objective function (maximises the 829

log-likelihood) is achieved using a local gradient search algorithm. For this procedure we 830
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employ the MATLAB R© fmincon function (Optimisation ToolboxTM, The Mathworks Inc) 831

using a parallel, multi-start solver to find global minimum values of ln(L̂), avoiding local 832

minima. Parameters values within the set η̂ are constrained between a lower bound of zero, 833

and upper bounded by the vector η̂ =[10, 20, 10, 10, 50, 1, 50,1], with corresponding units 834

[BL s−1, BL s−1, s−1, s−1, rad s−3/2, s cm−1, rad s−1, cm−1] – providing sufficient range for 835

realistic parameter values and a more robust optimisation procedure. The multi-start solver 836

is run using 20 initial parameters sets η̂0 with values uniformly distributed between the re- 837

spective upper and lower bounds. The resulting optimisation yields the set corresponding to 838

the smallest (scalar) value produced for −L̂(η̂, U,Ω). 839

840

The input data required for the MLE calibration of an individual fish with n consecutive
data samples, is a matrix of the form

M =


u(1) u(2) ω(1) ω(2) dW (1) φW (1)

u(2) u(3) ω(2) ω(3) dW (2) φW (2)
...

...
...

...
...

...
u(n−1) u(n) ω(n−1) ω(n) dW (n−1) φW (n−1)

 (28)

where each row of represents a consecutive pair of speed u and turn-rate ω measurements, 841

separated by the sampling period ∆t and the projected wall distance and incident angle 842

at time t. The objective function computes and sums the log-likelihood values via (26), 843

calculated for each row of M. 844

Using this pairwise construction of the input data allows us remove data pairs which 845

contain extremes that may adversely affect the convergence of L̂ — essentially by removing 846

entire rows, depending on the values of an individual element. In all calibrations, we chose 847

to remove any data pairs in which either speed is between defined thresholds such that 848

u > Umin = 0.2 BL s−1, and u < Umax = 10 BL s−1; or where ω > Ωmax = 20 rad s−1. When 849

calibrating on experimental data, we also remove sample pairs where dW < 3 BL such that 850

strong boundary effects are inhibited. With this final restriction, we are still able to estimate 851

the wall interaction parameters αW and βW , providing there is a reasonably strong interaction 852

beyond 3 BL, and that we have sufficient trajectory data where dW is close to this limit. 853

S5.3. MLE calibration results 854

Model parameters for the individual-model equations were calibrated, for each of the 855

36 individual zebrafish trajectories. Crucially, we find that the degree to which the raw 856

position data is smoothed via SG filtering has a strong impact on the resulting parameter 857

values. By definition, the smoothing process reduces the degree to which position values 858

deviate from a low-order polynomial function fitted to the trajectory (in a least-squares 859

sense). The effect of this filtering is therefore to reduce transient fluctuations in position, 860

and importantly for our calibration, in both the speed and turn-rate estimated from the 861

position data. The impact on calibrating equilibrium values (for example µu) is expected to 862

be minor; however SDE parameters describing the variance (σ) and autoregression (θ) should 863

be more strongly affected by smoothing. Before we can obtain a reasonable estimate for a 864

set of mean parameters from experimental data, we must first quantify the effects of position 865

smoothing on the calibration of each parameter. 866
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Figure S4: Effect of smoothing position data on calibrating SDE parameters of 18 observations
of zebrafish pairs. Position data is either unsmoothed (τ = 0 s), or smoothed using a third order Savitsky-
Golay filter with varying sample window size prior to computation of speed and turn-rate used for MLE
calibration. Mean values across all 36 individuals are reported with error bars showing associated standard
deviation (red). Nominal input parameters selected for simulations are shown (grey lines) where we chose
τ ≈ 1 s (29 sample window).

The plots shown in Fig. S4 report the mean values of each parameter, averaged over all 867

36 zebrafish, calibrated using position data which has been smoothed with increasing values 868

of the SG sample window size w, reported here in terms of the time duration spanning the 869

window τ = w∆t (s), with w = [5, 7, 9, . . . , 59]. As predicted, values corresponding to process 870

fluctuations σ and αc (variances around respective equilibria), and autocorrelation rates θu 871

and θω, are strongly affected by position smoothing. These values are found to decrease 872

with as we increase the smoothing window, noting that the rate of decrease of σu is very 873

similar to that of θu, and likewise for αc and θω. Process equilibria, namely µu and the wall 874

avoidance parameters αW and βW , are comparatively much less affected by increased position 875

smoothing. 876

From this analysis, the selection of the required smoothing window w is still non-trivial. 877

In general, mean values of σ (or αc) and θ decrease monotonically with increased w. The 878

choice of w therefore appears somewhat arbitrary with a risk of over-smoothing, masking 879

the intrinsic fluctuations of zebrafish motion, or under-smoothing and introducing artificial 880

(tracking) noise. With both of these considerations in mind, we pragmatically chose a sample 881

window w = 29 samples (τ ≈ 1 s). 882

S5.4. Nominal parameter selection 883

Having selected the appropriate level of smoothing, we report the parameters calibrated 884

for individual fish, group in pairs, for each of the 18 observations where position data 885

(Fig. S17). The mean values of each parameter, shown in respective figure panels, are chosen 886

as the nominal model parameters adopted for this study (Tab. 1). However, MLE calibration 887
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for wall avoidance parameters αW and βW is not always successful, resulting in the compar- 888

atively high standard deviation noted for these values in Fig. S4. For these parameters, we 889

selected nominal values close to the median, computed across all observations, with αW = 5 890

and βW = 0.15. Mean parameters values evaluated from our previous study of individual 891

zebrafish (final column of Tab. 1) are found to compare well with those found in this study. 892

S6. Estimating interaction parameters 893

The parameters which describe the interaction between a pair of fish are those required 894

by the speed response function U∗ in (5a), and the turning response Ω∗ in (5b). These 895

include the three interaction strengths Ks, Kp, and Kv, corresponding respectively to the 896

tangential (speeding) attraction and repulsion, the radial (turning) attraction and repulsion, 897

and the (turning) alignment. We also require the radii of the repulsive regions ru and rω 898

which define the extent of the tangential and radial repulsive regions. Finally, we estimate 899

the four parameters of the distance-decay functions which control the range and decay of the 900

speeding and turning responses, namely δu, λu, δω, and λω. 901

Interaction parameters are estimated by applying the same force mapping analysis to 902

simulated trajectory data. Initially, we compare the resulting axial projections (force profiles) 903

of a‖, a⊥, and ω̇, with experimental data (Fig. 7), to estimate parameter values using an 904

informed trial-and-error approach.2. The low dimensionality of the axial force/acceleration 905

projections, provides a simple means by which we can quantify the resulting features of each 906

interaction response – discussed in what follows. 907

S6.1. Repulsion radii 908

The repulsion radii ru and rω are estimated directly from the axial projections of a‖ and 909

a⊥ shown in Fig. 7. From these projections, we inferred the range of the repulsive regions as 910

the values of dFB and dLR where the accelerations a‖ or a⊥ respectively, cross the zero axis. 911

The projection of a⊥ (Fig. 7B) was found to be highly symmetric in the dLR axis, finding 912

zero-crossings (a⊥ = 0) when dLR = 0 and dLR ≈ ±0.6 BL. We therefore chose the radial 913

repulsion radius rω = 0.6 BL (1.8 cm) as the nominal parameter value. 914

The equivalent a‖ projection (Fig. 7A) indicated that repulsion in front of the fish (decel- 915

eration) is stronger than it is in the rear (acceleration) with an inflection that is not centred 916

exactly at the origin (dFB = 0). Rather, the inflection is displaced to negative dFB, such that 917

we observe deceleration when the neighbour is still slightly to the rear of the focal fish. In 918

our model, we chose to approximate the repulsive interaction at close proximity to the focal 919

fish with a symmetric response, centred at dFB = 0, selecting a value ru = 1.2 BL (3.6 cm), 920

which provides a satisfactory estimation of the radii to both the front and rear. 921

S6.2. Interaction strength and distance-decay 922

The coupled dynamics of the two-fish system makes the ab initio selection of the inter- 923

action strengths, and associated distance decay parameters, much less straightforward. In 924

2MLE calibration of individual and interaction parameters simultaneously from pair data, including ad-
ditional (nonlinear) likelihood terms for U∗ and Ω∗, was attempted. However, some interaction parameters
fail to converge on realistic (or known) values during the optimisation. Individual parameters (µ, σ, θ etc.)
were also adversely affected.
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this study, we take a heuristic approach: prescribing an initial set of interaction parameters, 925

which are then manually tuned according to the resulting force profiles (Fig. 7) computed 926

after full dynamical simulation of the model. Model realisations for different parametrisa- 927

tions are of a duration sufficient to explore a signification region of phase space so that we 928

reduce the statistical noise in the resulting force maps. In this context, we always simulate 929

18 realisations of 20 min duration (30 Hz sample generation frequency) such that we have 930

volume of data comparable with the experimental data set. 931

Experimentally, the amplitudes of a‖ and a⊥ are found to decay beyond distances of 932

≈ ±3 BL, towards zero at around dFB ≈ 7 BL and dLR ≈ 6 BL respectively, giving us an 933

indication of the range of attraction between conspecifics. However, from the position density 934

plot (Fig. 2A), the cohesion between zebrafish pairs is very strong, finding a rapid reduction 935

in the observed density beyond a similar range. The sparsity of data in this region, together 936

with the artificial containment of the fish in a small tank, diminishes our ability to accurately 937

estimate the range of either interaction. 938

For example, consider a hypothetical interaction in which attractive forces increases un- 939

bounded with distance. In this case, fish would be unable to stray further apart than a 940

distance, determined chiefly by their equilibrium speed. Beyond this distance, the relative 941

position density of a neighbour around a focal fish would rapidly decay to zero, with no 942

detectable force, even though the attraction continues to grow with distance. 943

For both speeding and turning responses, we fixed interaction cut-off parameters, δu = 944

7 BL (21 cm) and δω = 6 BL (18 cm), and selected combinations of the remaining interaction 945

parameters {Ks, λu} and {Kp, λω} to obtain adequate approximations to the experimentally 946

observed force response profiles in Fig. 7. When selecting the initial values of for the remaining 947

parameters, we therefore prioritised matching between the static model functions: 948

• tangential / speeding ‘force’:

a
‖
est(dij, θij) = fd[u]Ks(dij − ru) cos θij (29)

• radial / lateral ‘force’:

a⊥est(dij, θij) = fd[ω]Kp(dij − rω) sin θij (30)

and corresponding experimental a‖ and a⊥, in the attractive regions before the peak response, 949

where the neighbour position density was found to be highest (where dFB, dLR < 3 BL). 950

Through a process of trial-and-error to achieve best fits between resulting force profiles, we 951

chose Ks = 4 s−1 and λu = 22.5 cm for the speed response, and Kp = 6 rad s−2 and λω = 6 cm 952

for the (radial) turning response. Additionally, we selected Kv = 12 rad s−2 according to the 953

peak angular acceleration of the experimental ω̇ profile (Fig. 7C). For both speed and turning 954

reposes, the corresponding combination of K and λ selected, produces estimated force profiles 955

(red dashed trace) which overestimate the acceleration at distances beyond the experimental 956

peaks observed. In both cases, the resulting model dynamics leads to excellent agreement 957

with experimental force profiles. We also note, that although the sinusoidal dependence 958

we prescribed for the alignment interaction (Kv sinφij) somewhat overestimates the slope of 959

ω̇(φij) compared with the experimental profile, the overall dynamical response is very well 960

matched with model prediction. The complete set of interaction parameters described is 961

provided in Tab. 2. 962
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S6.3. Explicit vs. emergent alignment 963

To highlight the necessity of both radial attraction and alignment components of the 964

turning response, we produced acceleration projections for simulations in which either has 965

been selectively removed, that is setting Kp or Kv to zero respectively (Fig. S5). In particular, 966

we refer here to the findings of Katz et al. [21] in which the study found no evidence of an 967

explicit alignment interaction — assumed to emerge as a result of speed modulation and 968

radial attraction. 969

Eliminating either the radial or angular component, results in essentially flat (zero) re- 970

sponse profiles in terms of the associated acceleration projection, respectively: a⊥ as a func- 971

tion of left-right separation dLR, or ω̇ as a function of relative orientation φij. In both cases, 972

we find that the other response profiles, for a‖, and either a⊥ or ω̇, are only marginally 973

affected with respect to nominal profiles. This observation supports our assertion that an 974

explicit alignment rule is necessary to produce the observed angular acceleration response. 975

Similarly, we find that the separate inclusion of two distinct behaviour responses: (i) radial 976

attraction and repulsion in response on the position of a neighbour, and (ii) angular align- 977

ment in response to the orientation of a neighbour. Both observations can be justified in 978

terms of the resulting pair dynamics. 979

With respect to our specific model, we also do not observe any compelling evidence of 980

an emergent alignment response, resulting purely from position dependent attraction and 981

repulsion, that is when Kv = 0 rad s−2 (Fig. S5C3). As such, our observations potentially 982

contradict assumptions made in [21] for golden shiners, in which angular accelerations were 983

not considered. Studies in which alignment has been found to emerge without an explicit 984

description, include those with purely attractive interactions [54, 55]. In these models, the 985

formation of strongly polarised groups depends depends on precise combination of model 986

parameters. However, when a frontal interaction bias, or blind zone, is introduced, collective 987

patterns exhibiting strong local polarisation are dramatically enhanced. 988

To see whether frontally biased attractive (and repulsive) interactions leads to aligning in- 989

teractions in our model, additional (Kv = 0 rad s−2) simulations were performed, prescribing 990

a blind-zone behind the focal fish with a posterior arc φb = π/2 rad (quarter circle). Neigh- 991

bours within this cone, where |θij| > π−(φb/2), are rendered ‘invisible’ and thus do not elicit 992

a response. Interestingly, this data does in fact yield a weak ω̇ response as a function of φij 993

(Fig. S5D3), providing some evidence of an emergent alignment response. This result, and 994

those discussed in [54, 55], are clearly significant — indicating how the asymmetry of sensory 995

fields can influence the observed interaction dynamics and emergent collective behaviours. 996

From both Kv = 0 rad s−2 data sets (Figs. S5C,D), we still find very close matching for linear 997

acceleration responses (a‖ and a⊥). However, the strength of the experimental ω̇ response 998

greatly exceeds the emergent response due to sensory asymmetry, suggesting that an explicit 999

alignment may in fact be the dominant mechanism in zebrafish. 1000

The dynamic effects of removing the alignment response are also described in the following 1001

figures, in terms of the semi-spatial force maps in Fig. S6, the full spatial force maps in Fig. S7, 1002

and distributions of the collective dynamical observables (P,M,C,MNND,E) in Fig. S8. 1003

19



A1

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

dFB (BL)

a
‖
(B

L
s−

2
)

A2

−8 −6 −4 −2 0 2 4 6 8
−14

−10

−6

−2

2

6

10

14

dLR (BL)

a
⊥
(B

L
s−

2
)

A3

−180 −90 0 90 180
−15

−10

−5

0

5

10

15

φij(
◦)

ω̇
(r
a
d
s−

2
)

B1

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

dFB (BL)

a
‖
(B

L
s−

2
)

B2

−8 −6 −4 −2 0 2 4 6 8
−14

−10

−6

−2

2

6

10

14

dLR (BL)

a
⊥
(B

L
s−

2
)

B3

−180 −90 0 90 180
−15

−10

−5

0

5

10

15

φij(
◦)

ω̇
(r
a
d
s−

2
)

C1

−8 −6 −4 −2 0 2 4 6 8
−8

−6

−4

−2

0

2

4

6

8

dFB (BL)

a
‖
(B

L
s−

2
)

C2

−8 −6 −4 −2 0 2 4 6 8
−14

−10

−6

−2

2

6

10

14

dLR (BL)

a
⊥
(B

L
s−

2
)

C3

−180 −90 0 90 180
−15

−10

−5

0

5

10

15

φij(
◦)

ω̇
(r
a
d
s−

2
)

D1

−4 −3 −2 −1 0 1 2 3 4
−8

−6

−4

−2

0

2

4

6

8

dFB (BL)

a
‖
(B

L
s−

2
)

D2

−4 −3 −2 −1 0 1 2 3 4
−14

−10

−6

−2

2

6

10

14

dLR (BL)

a
⊥
(B

L
s−

2
)

D3

−180 −90 0 90 180
−15

−10

−5

0

5

10

15

φij(
◦)

ω̇
(r
a
d
s−

2
)

Figure S5: Axial force projections for simulated fish pairs with inhibited turning behaviours.
(A) Nominal parameters for radial attraction and alignment, i.e. with Ks = 4 s−1, Kp = 6 rad s−2 and
Kv = 12 rad s−2, (B) no radial attraction rule: Kp = 0 rad s−2, (C) no alignment rule: Kv = 0 rad s−2, and
(D) no alignment rule (Kv = 0 rad s−2) but also specifying a rear blind-zone with angle of φb = π/2 within
which agents do not contribute to interactions. Projections shown are for: (1) tangential acceleration a‖ in
the dLR = 0 axis, parallel to the focal fish’s direction of motion, (2) radial acceleration a⊥ in the dFB = 0
axis, perpendicular to the direction of motion, and (3) angular acceleration ω̇ as a function of the relative
heading angle φij between focal fish i and neighbour j. Data from simulated trajectories (red) are compared
to experimental zebrafish data (black). Parametrised input functions for each rule (speeding attraction,
turning attraction and alignment) are shown in respective panels (red dashed).
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Figure S6: Force maps plotted as a function of the relative heading angle between simulated
conspecifics with no alignment rule. Data mapped from simulated realisations (18× 20 min) of fish pair
with nominal parameters but with no explicit alignment interaction: Kv = 0 rad s−2. Panel descriptions as
per Fig. 3. From this data, we find that when explicit alignment is removed, angular acceleration depends
only on the perpendicular separation (B), with no detectable response to the relative orientation of the pair
(C) — as found experimentally.
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Best-fit parameters: Ks = 4 s−1, Kp = 6 rad s−2, Kv = 8 rad s−2
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Figure S8: Collective dynamics of simulated fish pair with inhibited interaction behaviours.
Distributions of global observables of experimental zebrafish pair data (grey) are compared with simulated
data (red), where pair interact with: (A) best fit parameters Ks = 4 s−1, Kp = 6 rad s−2 and Kv = 8 rad s−2,
(B) no alignment rule: Kv = 0 rad s−2, (C) no radial attraction rule: Kp = 0 rad s−2, (D) no tangential
attraction rule: Ks = 0 s−1, and (E) no interactions: Ks = Kp = Kv = 0. From left to right, histograms
report: (P )olarisation, (M)illing, (C)ohesion, Mean nearest-neighbour distance (MNND), and (E)longation.
Mean values shown by vertical dashed lines.
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S7. Social interaction network 1004

The primary motivation of this work is to explore the structure and function of interaction 1005

behaviours between pairs of zebrafish, such that the topology of the ‘network’ is essentially 1006

binary: either fish are interaction, or they are not. For a pair of conspecifics in our model 1007

(Fig. S9A), the range of interaction is limited by the largest of the two distance-decay cutoff 1008

parameters: max{δu, δω}. If this maximum value is the same for both fish, then the trivial 1009

network structure is described by a radial, metric topology, that is both fish are interacting 1010

only if dij < max{δu, δω}. However, if these cutoff values are heterogeneous, the simple 1011

network may be directed such that one fish is connected to the other but not vice versa. 1012

For small groups of fish N ≤ 3, the interaction network between individuals is defined
purely in terms of their individual range of perception (Fig. S9B). For populations exceed-
ing 3 individuals (see main text §5), more realistic interaction topologies can be enforced,
disconnecting pairs which might otherwise be within (radial) perceptive range. Here, for pop-
ulations of N > 3 individuals (Fig. S9C), we use the (undirected) Voronoi partition. In this
construction, we define regions around each individual, inside which another individual (p) is
closer to an individual that it is to any of its other neighbours [56]. A geometric description
corresponding to these regions is provided by the two-dimensional Voronoi tessellation, were
for N individuals with positions {x(t)i}Ni=1 ∈ R2 at time t, we obtain the i’th Voronoi cell
(polygon) Vi(t) as follows

Vi(t) = {p ∈ R2 | ‖x(t)i − p‖ ≤ ‖x(t)j − p‖ , ∀j 6= i, j ∈ V} (31)

Within this spatial partitioning, two individuals at x(t)i and x(t)j are first-shell neighbours
only if they share a Voronoi boundary, with elements of the adjacency matrix A = {aij}
given by:

(Voronoi adjacency): {aij} =

{
1 if Vi(t) ∩ V (t)j 6= ∅
0 otherwise

(32)

A B C

Figure S9: Interaction network topology for different population sizes.
(A) N = 2 fish interact via undirected, one-to-one coupling. (B) N = 3 fish interact via undirected, all-to-all
coupling. (C) N = 10 fish, all within radial perceptive range, interact via undirected topology derived from
the Voronoi tessellation of their positions (vertices of the Delaunay triangulation). Fish are represented by
polygons with front to back length equal to 1 BL, coloured according to their heading angle φi.
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i.e. where points of intersection are on the boundaries of both Voronoi cells [57, 58]. The 1013

corresponding interaction network is given by the dual representation, know as the Delaunay 1014

triangulation [59], where individuals sharing a Voronoi boundary are connected by a Delaunay 1015

Edge. 1016

With no impact on the resulting dynamics, we also apply an additional radial cutoff for 1017

homogeneous individuals according to distance-decay parameter δu/ω — setting elements of 1018

the network adjacency matrix aij = 0, where dij > max{δu, δω}. 1019

S8. Quantifying collective dynamics: global observables 1020

In what follows, we derive a set of scale invariant order parameters Polarisation and 1021

Milling, variations of which are typically used to describe the collective dynamical structures 1022

of fish schools [31, 38, 58, 60–62]. We also provide additional measures, Cohesion, Mean 1023

nearest-neighbour distance and Elongation, which together provide further quantification of 1024

the spatial arrangement, shape, and density of individuals within the group. Unlike polari- 1025

sation and milling, values of these observables depend on the spatial distribution, and metric 1026

distances between fish. 1027

The centre-of-mass (CoM) of a group of N individuals at time t, on a two-dimensional
plane is defined as the vector mean of their individual positions x(t) = {[x(t), y(t)]i}Ni=1, such
that

X(t) =
1

N

∑
xi(t) (33)

from which we derive the relative position vectors ri(t) of each fish with respect to the CoM,
where

ri(t) = xi(t)−X(t) (34)

In this frame of reference, the state of the collective system at time t is determined by 1028

three order parameters, with range [0, 1], which together describe the collective state of the 1029

shoal: (i) Polarisation P (t), the degree to which the orientations of the agents are aligned, 1030

maximised when fish orientations are aligned; (ii) Milling M(t), a measure of the group 1031

rotational momentum about the CoM, maximised when agents are rotating in a common 1032

sense of direction; and (iii) Cohesion C(t), providing a measure of the spread of agents about 1033

the CoM, with respect to a fixed scale-length. These order parameter are defined as follows. 1034

• Polarisation: P (t)

P =
1

N

∥∥∥∥∥
N∑
i=1

vi
‖ vi ‖

∥∥∥∥∥ (35)

Here we define the polarisation of the shoal by considering the Euclidean norm ‖.‖ 1035

of the mean (unit) velocity vector. Subsequently, P → 1 when all unit vectors are 1036

aligned, and P → 0 when unit vectors are equally distributed around the unit circle, 1037

independent of the speed ‖v(t)‖ of each fish. 1038

• Milling: M(t)

M =
1

N

∥∥∥∥∥
N∑
i=1

ri × vi
‖ ri ‖‖ vi ‖

∥∥∥∥∥ (36)
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In the above formula, we compute the (unit) cross product between the velocity of each 1039

fish vi(t), and the vector ri(t) pointing towards the CoM of the group. The normalised 1040

mean value of the resulting orthogonal vectors provides M → 1 when the velocity 1041

vectors are tangential to concentric circles centred on the CoM, rotating in the same 1042

directional sense. Correspondingly, the milling observable vanishes, M → 0, when the 1043

net angular momentum about the CoM is zero. 1044

• Cohesion: C(t)

C =
1

N

∑
exp (− ‖ ri ‖ /rcoh)) (37)

Here, C represents the spread of positions around the CoM in terms of the distances 1045

‖ri‖, scaled by a fixed length rcoh = 3 BL – constant throughout this work and defined 1046

as per [60]. The function describes an exponential decay from unity to zero, where 1047

C = 1 only when all positions are superimposed (unrealistic for larger groups), and 1048

C → 0 with a rate dependent on rcoh. For our choice of rcoh = 3 BL, C ≈ 0.5 when 1049

the fish are on average 2 BL from the CoM, reducing to C ≈ 0.1 when the separation 1050

average increases to approximately 7 BL. 1051

Unlike order parameters P and M described above, values of C and the additional global 1052

observables defined here, provide values which depend crucially on the spatial distribution 1053

of individual fish positions. For example, the polarisation of a shoal is independent of the 1054

spatial arrangement of the individuals — only their orientation is considered, regardless of 1055

the individual positions. As such, a polarised shoal (P ≈ 1), equally describes fish swimming 1056

side-by-side, or in single-file configuration. In this case, we differentiate between these two 1057

formations, and any intermediate configuration, by introducing a measure of the shoal elon- 1058

gation E(t), along the group average heading direction [63]. The varying spatial dimensions 1059

of a coherent shoal implies local (shoal) density fluctuations, even though the total (environ- 1060

mental) population density in a confined environment remains constant. A useful indication 1061

of this local density, providing the average separation between individuals, is obtained from 1062

the mean nearest-neighbour distance MNND. These two additional spatial observables are 1063

derived as follows: 1064

• Elongation: E(t)

E =
l‖〈vn〉

l⊥〈vn〉
(38)

The elongation of a shoal is computed as the aspect ratio of the minimal bounding box 1065

containing agents at x where l‖ and l⊥ are respectively the side lengths parallel and 1066

perpendicular to the mean group velocity 〈vn〉. Accordingly, E > 1 when the shoal is 1067

elongated in its direction of motion, and 0 < E ≤ 1 otherwise. Noting that by this 1068

measure E is essentially unbounded, we set a maximum value of E = 20 for highly 1069

elongated shoals. 1070

• Mean-nearest neighbour distance: MNND(t):

MNND =
1

N

N∑
i=1

min ({‖ xi − xj ‖}i 6=j) (39)
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The above formula calculates the separation between each individual i and its closest 1071

neighbour j, returning the average (mean) value over each of the N members of the 1072

shoal. The resulting MNND defines the average shortest distance between fish at time 1073

t, generally expressed in multiples of BL. Note that for experiments with N = 2 fish, 1074

the MNND is equivalent to the pair separation dij(t) ≡ d1,2 ≡ d2,1. 1075

From this description, it is apparent that for shoals which maintain a constant local den- 1076

sity, the relative separation between individuals, given by the MNND should also remain 1077

constant, independent of the population size N . By comparison, group Cohesion (C) mea- 1078

sured with respect to the CoM, decreases for larger N at constant local density as the spatial 1079

size of the shoal grows. We note that whilst the order parameter C offers a useful indication 1080

of the spread of positions around the CoM, its value is consistent only for comparing popu- 1081

lations of the same population size. The MNND however, provides a consistent indication of 1082

group density, regardless of the population size. 1083
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S9. Additional figures 1084
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Figure S10: Mean swimming speed of zebrafish in isolation and in pairs. Plots indicate the mean
swimming speed of individuals, (A) for 18 observations of zebrafish pairs — data from this study, and (B) for
9 observations of zebrafish swimming in isolation — data from [43]. Identical experimental conditions were
maintained for both data sets using experimentally näıve fish for all observations. Group mean for each data
set is shown as black dashed line .
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Figure S13: Comparing joint distribution of speed and turn-rate for experimental and simulated
trajectories. (A) Analysing the ensemble of 9 individual zebrafish trajectories (data from [43]) reveals the
speed dependence of the turn-rate distribution. The variance and range of the turn-rate is found to increase
at low speeds, noting that tails of the turn-rate distribution are most affected, becoming progressively fatter.
(B) Ensemble of 9 simulated trajectories, individually calibrated on the respective zebrafish observation,
using model with speed coupled turn-rate variance fc. By coupling the variance of the turn-rate fluctuations
at time t (exponentially) to the speed U(t), we achieve a reasonable approximation to the experimental data.
The distribution of the simulated turn-rate is however less sharply peaked with thinner tails. (C) Ensemble
of 9 simulated trajectories, calibrating parameters assuming fixed turn-rate variance parameter σω for each
realisation. The resulting joint-normal distribution fails to capture the increasing range and variance of the
turn-rate at lower speeds.

A B C

Figure S14: Spatial mapping of model bias functions as functions of the relative pair separation
without dynamics (static model). Panels show histograms of the expected acceleration of a focal fish
in orthogonal components with respect to its orientation, using the nominal parameter set given in Tab. 2,

with Kp = 5 rad s−2 and λω = 18. (A) tangential acceleration a
‖
est. (B) radial acceleration a⊥est. (C) resultant

magnitude of linear accelerations with arrows indicating the vector field [a
‖
est, a

⊥
est].
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Figure S15: Static model estimation of linear and angular accelerations as a function of relative
position and pair orientation φij. Panels (A) and (C) show respectively the tangential and radial
acceleration maps as functions of dFB , dLR, and φij computed via (29) and (30), where position data in
the missing spatial coordinate in all panels are randomised uniformly between the axis limits. Nominal
parameters given in Tabs. 1 & 2 are to compute values at pixel coordinate. Panels (B) and () report the total
angular acceleration (ω̇ ≈ θωΩ∗) computed via (5b). The angular acceleration estimate in panel (D) predicts
the continuous distance-dependent weighting between the attraction and alignment turning responses. At
short range (dLR < 2 BL) alignment dominates where ω̇ varies principally as a function of φij . Beyond this
distance, attraction starts to dominate with the sign of the acceleration dependent primarily on whether the
neighbour is on the left or right of the focal fish (sign of dLR).
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Figure S16: Static model estimation of angular accelerations as a function of relative pair po-
sition for neighbours with different relative orientations. Maps show the static model estimation
of the average angular acceleration ω̇est = θωΩ∗ of the focal fish, as a function of the relative position of a
neighbour. Angular acceleration is computed via (5b) at each pixel coordinate, using nominal parameters
from Tabs. 1 & 2. Panels show value computed using orientation (φij) values uniformly randomised within
ranges corresponding to four quadrants: (top-left) −π2 < φij ≤ 0, (top-right) 0 < φij ≤ π

2 , (bottom-left)
−π < φij ≤ −π2 , (bottom-right) π

2 < φij ≤ π, where positive values indicate neighbour is rotated clockwise
with respect to the focal fish. Positive angular accelerations, or radial forces (red) indicate increased (clock-
wise) turning or acceleration to the right, negative angular accelerations or radial forces indicate increased
(anti-clockwise) turning or acceleration to the left.
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Figure S17: Estimating mean parameters from observations of interacting zebrafish swimming in
pairs. Model parameters for 18 observations of zebrafish pairs are estimated using MLE for each individual
fish (red and blue). Position data for all individuals was smoothed with a 29 sample window (τ ≈ 1.0 sec.)
SG3 filter. The overall mean value for each parameter is given in each panel and marked (black dashed lines)
- median values shown for αW , βW due to outliers where MLE procedure did not converge.
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Figure S18: Force mapping as a function of the focal fish speed (simulated data). Trajectory data
obtained from a simulated pair (1x360 min realisation) with nominal parameters. Force maps showing (A)
the tangential acceleration a‖ as a function of front-back separation dFB , (B) radial acceleration a⊥ as a
function of left-right separation dLR, and (C) angular acceleration ω̇ as a function of the relative orientation
φij , each as functions of the speed of the focal fish Uf . Contours show the population density of neighbours
relative to the most common configuration.
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Figure S19: Cohesion and milling time-series for N = 5 fish shoals. Traces indicate C(t), and M(t)
time-series for an observations of a five zebrafish shoal (top), and a simulated model realisation (bottom).
In both instances we find that transient periods of rotational milling (M → 1), are associated with reduced
cohesion. The distribution of C is therefore subtly bimodal, exhibiting an additional small peak at low C
corresponding to the value associated with transient rotational mills. Note that this features is not observed
in N = 2 fish data since the milling radius is more comparable to the nominal pair separation — as such, the
value of C is much less affected.
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