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Abstract 
 

In this paper the dynamics of a set of ultra-high-speed (UHS) moving masses/loads traversing a 

continuous beam are explored. The proposed model is intended to simulate the dynamic response of 

continues bridges under the new Hyperloop/Transpod trains, which are proposed to travel at up to 

1200km/h. This speed introduces a range of dynamic responses that have hitherto not been observed in 

generic high-speed trains. The analytical results show that the dynamic amplification factors, due to 

train passage, are significantly larger than current trains. This is due to the combination of ultra-high-

speed and continuous beam construction, which is necessary to maintain a partial vacuum in the 

enclosed tube. Therefore, current design recommendations are not sufficient for these UHS trains.  

1 Introduction  
 

The Hyperloop Alpha [1, 2] and Transpod [3] are trains that travel at Ultra-High-Speeds (UHS trains). 

This UHS is achieved by having the train travel within a ‘vacuum’ tube as shown in figure 1. Traveling 

within these tubes, which are continuous beams, allows a train to circumvent the air resistance, drag 

forces, of conventional high-speed trains. In addition, this UHS conceptual design makes use of 

magnetic levitation and linear accelerators as a means of propulsion. Thus, the concept is to reduce 

friction, in all its forms to an extremely low level. The proposed working speed of around 970 km/h, 

with a top speed of 1,200 km/h has been suggested. This compares with an average working speed of 

270km/h for High-Speed trains (HS trains). The latest record for a conventional passenger train is held 

by an SNCF (France) TGV POS trainset, which reached 574.8 km/h (357.2 mph) in 2007. This speed 

was exceeded (in Japan on a national test track) by the unconventional seven-car L0 series trainset 

which attained a speed of 603 km/h (375 mph) in 2015.  

 

Figure 1: Initial conceptual design of prototype Hyperloop one. 
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The current state-of-practice for the design and assessment of railway bridges in the UK is 
comprehensively treated in [4]. This document considers the effect of impact, oscillation and track and 
wheel irregularities. It suggests that bridge dynamics only plays an important role at train speeds above 
160 km/h. Therefore, [4] recommends that the dynamic amplification factor (DAF) is 1 for train speeds 
below 160 km/h. This has been confirmed by other researchers in the assessment of existing railway 
bridges in the UK using nonlinear analysis techniques [5, 6]. Eurocode EN 1991-2 [7] has similar 
methods for calculation of the DAF for train speeds up to 200 km/h. However, [7] suggests more 
rigorous dynamic analysis is required to calculate the DAF for train speeds more than 200 km/h.  Thus, 
for conventional HS trains, there is a need to consider the dynamic amplification effects by more 
thorough and bridge/train specific analyses. Nevertheless, this dynamic amplification while important 
is still likely to be relatively small at speeds of 270 km/h.  

The UHS trains could travel at speeds more than four times the average speed of HS trains. This would 
be double the current world record speed. At these speeds the importance of dynamic amplification may 
be significant. This raises the new, currently unsolved, question of what is an appropriate DAF for this 
case. Furthermore, the Hyperloop/Transpod tubes will be supported by a series of piers which constrain 
the tube in the vertical direction but allow longitudinal slip for thermal expansion as well as dampened 
lateral slip to reduce the risk posed by earthquakes. The spacing of the Hyperloop piers retaining the 
tube is critical to achieve the design objective of the tube structure. The average spacing is 30 m, which 
means there will be near 25,000 piers between the proposed San Francisco-Los Angeles line [1, 2]. This 
imposes very large dynamic loading on the piers, which is currently not considered in any design 
standards. Therefore, exploring the impact of UHS train on the current DAF in the design standards is 
vital. 

The mathematics of a moving force was first discussed by [8] and in the excellent and thorough treatise 
[9] that discusses both moving force and mass problems of simple spans. However, only a very limited 
class of simply moving load problems can be solved analytically. Thus, numerical methods are 
necessary for more general moving load simulations [10]. Authors [11] present a good historical review 
of the code based dynamic amplification factors (DAF) caused with travelling loads in the context of 
road traffic. The DAF represents the increase in quasi-static peak deflections and/or stress caused by 
the dynamics of the travelling load. A significant component of the DAF, in this case of highway traffic, 
is due to the impulsive ‘shock’ loads of heavy vehicles traversing defects in the road surface. The true 
moving mass/load dynamic amplification is very minimal at the speeds of highway traffic. Therefore, 
larger values of DAF are observed in the cases of high speed trains. A similar concept is also considered 
in railway bridges due to misalignment and defects of tracks. However, this is not currently considered 
an issue in UHS trains, as they float inside a vacuum tube with minimum friction. Therefore, the main 
parameters affecting the DAF in UHS is the resonance response of the structural system to UHS 
dynamic loading. 

The theoretical and experimental study [12] elegantly transforms the problem of a moving force into 
the frequency domain however this cannot easily account for changes in system mass with time. Latterly 
many authors [13-17] seek to explore the dynamics of the bridge and sprung mass dynamics of the HS 
trains using finite element type formulations and experimental evidences. While these studies are 
important they are focused on very clearly defined engineering problems of specific trainsets traveling 
in relatively low speeds, across well-defined bridges.  Thus, the problem of the dynamics of ultra-high-
speed trains (UHS trains), such as the Hyperloop/Transpod, are unexplored to date.   

The aim of this paper is to explore the likely envelope in the dynamic behaviour of these 
Hyperloop/Transpod UHS trains passing across continuous, multi-span, bridges of any span length. We 
derive the system equations of motion for this problem, using a ‘tensorial’ Rayleigh-Ritz type 
formulation. After identifying all the key non-dimensional groups, we perform a systematic parametric 
exploration of this problem. Finally, we propose a likely upper bound to the dynamic amplification 
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factor (DAF) imposed on this class of bridges for a generic class of UHS trains.  Furthermore, we seek 

to determine whether the current design code recommendations are suitable for such UHS trains. 

 

2 Theory 
 

In this section we derive, from first principles, the equations of motion of a train composed of a set of 

moving masses/loads traveling at any speed across a continuous beam of any span length with any 

number of spans. Consider a set k  moving masses 
p
m  (at positions

p
x ) traveling at some group velocity 

v across a continuous beam of n spans of length L; shown in the figure 2. The beam has a uniform mass 

per unit length m and flexural rigidity EI.  

 

Figure 2, a train composed of set of k moving point masses traveling across an n span continuous 

beam 

2.1 Lagrangian formulation  

 

The kinetic energy Q for this system is composed of two terms; (i) is due to the kinetic energy of the 

bridge and (ii) is due to the kinetic energy of the train. Q is defined as follows  

 ( ) ( ){ }
2

21 1

2 2
0

1

d ,
knL

p p p

p

Q m y x m y x t xβ
=

= + ∑∫ ɺ ɺ  , (1) 

where ( ),y x t  is the spatiotemporal beam displacement. In UHS trains, the moving masses
i
m would 

correspond to the locations of the magnetic levitation bearings. In conventional HS trains, this would 

correspond to the wheelset locations. The boxcar function ( )xβ  ensures only travelling masses ‘on the 

beam’ are included in the energy considerations. This boxcar function can be defined as follows in 

terms of Heaviside functions ( )H x thus,  

 ( ) ( ) ( )x H x H x nLβ = − −   (2) 

To simplify the resulting equations of motion and to identify all the key non-dimensional parameter 

groups we introduce a non-dimensional coordinate ξ  where x Lξ=  and train moving mass positions 

are 
p p
x Lξ= .  Hence, equation (1) is re-stated as follows,  

 ( ) ( ){ }
2

2 1

2 2
0

1

d ,
kn

mL
p p p

p

Q y m y tξ ξ β ξ
=

= + ∑∫ ɺ ɺ  , (3) 

  

  

  

   

             0     nL 
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where the beam displacement is now ( ),y tξ .  Note that this change in coordinates x Lξ= changes the 

integral limits to 0 to n.  

The potential energy V of the system is also composed of two terms; (i) is the internal flexural strain 
energy of the beam and (ii) is external work done in moving the gravitational load of the train. V is 
defined as follows 

 ( ) ( ) ( ){ }
2

2

2
d1

2 d0
1

d ,
knL

y

p p px
p

V EI x f y x t xβ
=

= −∑∫  , (4) 

where the gravitational train loads are
p p
f m g= − .  As before we introduce non-dimensional coordinate 

ξ  where x Lξ= . Hence, beam curvature is redefined as follows, ( )2 2 2 2 2
d d 1 d dy x L y ξ= . We use 

the Newtonian prime notation ( ) 2 2
d dy ξ′′

• = and hence equation (4) is re-expressed as   

 

 ( ) ( ){ }3

2

2 0
1

d ,
kn

EI
p p pL

p

V y f y tξ ξ β ξ
=

′′= −∑∫  , (5) 

where the beam displacement is now ( ),y tξ . To use the minimum action principle (Euler-Lagrange 

equations of motion) we need to introduce a spatiotemporal expansion of the beam displacement of the 
following form,  

 ( ) ( ) ( ){ }
1

,

q

i i i i

i

y t u t uξ φ ξ φ
=

= =∑  , (6) 

where the spatial parts (shape functions) are defined by ( )
i
φ ξ and temporal parts are defined by the q 

degrees of freedom ( )
i
u t . We may choose any functions ( )

i
φ ξ that satisfy the beam support boundary 

conditions.  To ensure an accurate model of the system dynamics with a small number of dofs q the 

basis ( )
i
φ ξ is ideally a good approximation of the mode shapes of the system.  

In this expression we shall make use of tensorial notation (repeat suffixes imply summation in a product 
term [18, 19]). Also note that in this paper suffixes i  and j  are natural numbers and are in the range 1 

to q. And so we state the Lagrangian Π  (Kinetic minus potential energies) as follows  

 ( )1 1

2 2
d

ij ij i j ij i j i j
M N u u K u u F uΠ = + − − ∫ɺ ɺ  , (7) 

where 
i

u  are the system generalised coordinates (dofs) which are approximately modal amplitudes. The 

rank 2 tensors (Matrices) above are defined as follows 

 

( ) ( ) ( )( )

( ) ( )( )3

0
1

0
1

d ,

d ,

k
n

ij i j ij i p j p p

p

kn
EI

ij i j j p j p pL
p

M mL N

K F m g

φ φ ξ φ ξ φ ξ β ξ

φ φ ξ φ ξ β ξ

=

=

= =

′′ ′′= = −

∑∫

∑∫
 , (8) 

where ij
M  this bridge mass matrix, ij

N  is the time-varying mass matrix of the moving masses of the 

train, ij
K  is the bridge stiffness matrix and j

F  is the time-varying applied system loads. And so the 

Euler-Lagrange equation of motion is  
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 ( )ij ij i ij i ij i j
M N u C u K u F+ + + =ɺɺ ɺ ,    (9) 

where a term ij i
C uɺ has also been added to model the energy loses due to damping. A good approximation 

to modal basis for a multi-span (with equal spans) continuous beam is a Fourier sin series,  

 ( )sin
i

iφ πξ=   (10) 

Hence, the beam mass matrix ij
M and stiffness matrix ij

K are defined as follows 

 
4 41

2 31

2

:
,

0 :

ij ij ij

EI
n i i j

M nmL K L

i j

π
δ


=

= = 
 ≠

 ,  (11) 

where ij
δ  is the Kronecker delta tensor (that is tensorial form of the identity matrix). Hence the system 

natural circular frequencies are  

 2 4 4

4i

EI
i

mL
ω π=   (12) 

If we assume ij
C is an orthogonal damping matrix where the jth modal ratio of critical damping is j

γ   

then we can define ij
C as follows  

 { }2
ij i j j ij i

C u M uγ ω=ɺ ɺ   (13) 

In this paper, terms within braces  { }  do not imply a tensorial summation (inside or outside of the 

brace). The traveling load mass matrix ij
N  and forcing vector j

F  are defined as follows;  

 ( ) ( ) ( )( )
1

sin sin

k

ij p p p p

p

N m i jπξ πξ β ξ
=

=∑  , (14) 

 ( ) ( )( )
1

sin

k

j p p p

p

F m g jπξ β ξ
=

= −∑   (15) 

2.2 Non-dimensional form of equation of motion 

 

Finally, we seek to express equation (9) in a non-dimensional form, by scaling approximate modal 
amplitudes u and time t.  

 
2

1 1

1
,

g
u z t τ

ω ω

= =     (16) 

Additionally, we pre-multiply equation (9) by the inverse of beam mass matrix, thus 

 ( ) { } { }* 2 4 *
2

ij ij i j j j j
N z j z j z Fδ γ+ + + =ɺɺ ɺ  , (17) 

where the Newtonian dots ( ) τ• = ∂ • ∂ɺ  now signify derivative with respect to normalised time τ . Terms 

within braces such as  { }4j  are not tensorial summed with terms outside the brace. Hence, here the 
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tensorial suffix j is just raised to the power 4.  The term *

ij
N that couples the equations of motion is the 

mass matrix of the traveling mass (of the train) normalised with respect to the beam mass matrix, 

 ( ) ( ) ( ){ }*

1

2
sin sin

k

ij p p p p

p

N i j
n

α πξ πξ β ξ
=

= ∑  , (18) 

where 
p

α are the mass ratios of the pth traveling load/mass (wheel) to a beam mass of a single span, as 

follows 

 p

p

m

mL
α =   (19) 

Additionally, the normalised forcing vector *

j
F  is defined as  

 ( ) ( ){ }*

1

2
sin

k

j k p p

p

F j
n

α πξ β ξ
=

= − ∑   (20) 

In contrast, quasi-static analysis is performed by setting all damping and inertial terms in equations (17) 
to zero and hence we obtain the following 

 { }4 *

j j
z j F

−

=   (21) 

This equation (21) is still a time-dependant linear system. It is however, an algebraic rather than 
differential system. 

2.3 Non-dimensional moving load speed Ω   

 

Finally we define the moving loads position in terms of its group velocity v  and its starting position, at 

0t =  is 
p
s L  with respect to the origin. 

 
1

p

p p

s L vt v
s

L L
ξ τ

ω

+

= = +   (22) 

The non-dimensional position of the pth train load is defined by term 
p

jπξ  which is used in the added 

mass term *

ij
N   (equations (18)) and added load term *

j
F  (equation (20)). This term

p
jπξ  can be re-

expressed as ( )j τ θΩ + , where the primary excitation frequency for the travelling load, for the mode j, 

is jΩ  and phase angles jθ . These are defined as follows  

 
1

,

p

v
s

L

π
θ π

ω
Ω = =   (23) 

Thus, the non-dimensional speed Ω  is a key system parameter, and is a function of span length L , 

dimensional group velocity v and the fundamental circular frequency of the bridge 
1
ω  .  

Ref [20] suggested an empirical formula for the fundamental natural frequencies of highway bridges of 
different spans; while [4] suggests a low and upper bound to the fundamental natural frequency of 
railway bridges. Figure 3(a) display these empirical relationships for the fundamental natural frequency 
vs span for highway and railway bridges. These two graphs are not that significantly different given the 
observed scatter in the experimental dataset. The empirical relationship between span and frequency 



7 
 

for a Hyperloop/Transpod railway bridges is not determined yet since these have not been constructed. 
Nevertheless we will employ the mean frequency in [4] in conjunction with equation (23) to produce 

Figure 2(b). This figure describes the approximate variation of non-dimensional velocity Ω  vs moving 
load speed and span length for railway bridges and trains. The average high speed train achieves a value 

of non-dimensional speed range of 0 1 3<Ω≤  regardless of span while Hyperloop/Transpod trains 

have a proposed range 0 4 3<Ω≤ . 

          

Figure 3, (a) variation of fundamental bridge frequency vs span length (b) variation of non-
dimensional velocity Ω  with dimensional span and train speed for Railway Bridges. 

2.4 Dynamic amplification factor  η   

 

We can define the dynamic amplification factor η  (DAF) as the maximum absolute deflection at any 

point on the multi-span beam (for a given load set travelling at a normalised speed Ω ) divided by the 
maximum deflection in the quasi-static case ( 0Ω≃ ). Thus   

 
( )

( )
,

,

max ,

max ,

dynamic

quasi static

y

y

τ ξ

τ ξ

τ ξ
η

τ ξ
−

=   (24) 

Therefore, determining the DAF for beam subject to a set of moving masses/loads requires the solution 
of dynamic equations (17) and quasi-static equations (21). The system parameters for problem are as 
follows  

i. The normalised train speedΩ  
ii. The number of moving masses/loads k  
iii. The total number of spans n of length L in the continuous beam 

iv. The mass ratios 
k

α which are wheelset mass to beam single span mass. 

v. The delays (phasing) of loads 
k
s which depend on the carriage wheelset spacing  

vi. The ratio of critical damping j
γ for the jth mode  
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3 Analysis and results 
 

3.1 A single moving mass on multi-span beam 

The solutions of dynamic equations (17) and quasi-static equations (21), for the centre span location, 

are displayed in Figure 4(a). This is for system parameter 0.2, 0.05, 0.1
i k

γ αΩ= = = . The horizontal 

axis is scaled time 
d

τ τ  where 
1d
L vτ ω π= =Ω  is the non-dimensional time it takes for the moving 

mass to traverse the beam span L. Thus at 1
d

τ τ = the moving load has traversed the first span 

regardless of speed or span. The differences between quasi-static and dynamic solutions are apparent. 
The location and magnitude of the absolute dynamic amplification factors (DAF) are different. These 
graphs are comparable with specific results in ref [8-10]. Figure 4(b) displays the dynamic amplification 
factor, equation (24), which is the maximum absolute value at any point across the bridge (although this 
is normally close to the centre span).  

Figure 5 shows that the effect of going from single span to multi-span cases, is the same as moving 
from (i) a transient dynamics dominated response problem to (ii)  a steady-state resonance dominated 
problem. This figure is for the case of a single moving mass (k=1) on a continuous beam. We observe 
an increase in the maximum DAF because the periodic loading is in contact with the beam for far more 
cycles of loading. Hence, as the number of spans increase resonant response behaviour dominates. 

These DAF functions asymptotically tend towards the classical amplification of 1 2η γ≈ for a single 

degree of freedom system subjected to sinusoidal excitation [20]. It is fortunate that the current 
maximum speed for high speed trains (HS train) is below this resonance, and that continuous spans do 
not in practice extend to large n  without some thermal expansion joints. Note that the average 
maximum speed of in service HS trains world-wide is about 270km/h and this corresponds 

approximately to a range of non-dimensional speed 0 1 3<Ω≤  and this suggest a dynamic 

amplification factor, due to moving mass/load, is 1.4η ≤ .    

However, the Hyperloop/Transpod proposed train speed is fast enough to have to seriously consider the 
dynamic amplification effects of this resonance. Additionally, the need to maintain the vacuum might 
preclude the frequent use of expansion joints which would suggest a much larger number of spans n 
this would induce more dynamic vulnerability.    

 
Figure 4, (a) Normalised midspan deflection (quasi-static, dynamic) vs time (b) Dynamic 

amplification factor vs time.    
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Figure 5. dynamic amplification factors for single mass crossing multi-span continuous beam. 
0.05, 0.1

i k
γ α= =   

3.2 Effect of moving mass to bridge mass ratio 
k
a    

Figure 6 demonstrates the difference between a moving mass and a moving force on a two span 

continuous beam for a range of different mass ratios. At a mass ratio 0.01
k

α =  (the moving mass is 1% 

of the bridge span mass) we have the very little difference between a moving force and a moving mass 
problem. If the moving mass is a larger percentage of the mass of a bridge span then there is a significant 
difference between moving mass and moving force problems. Note that as the mass ratio increase so 
does the DAF for this case. Review paper [4] suggest that for road traffic the effect of mass ratio is 
difficult to detect experimentally. This is theoretically because the non-dimensional speed of road traffic 
(in the range 0 0.2< Ω < ) is such that the effect of mass ratios is small on the graph Figure 6.  

 

 

Figure 6, Influence of mass ratio (of moving load) on dynamic amplification factor for 
0.05, 2

i
nγ = =   

D
A
F
  

D
A
F
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3.3 A set of equispaced moving mass on multi-span beam 

Figure 7 displays the variation of the dynamic application factor vs non-dimensional train speed Ω  and 

mass (‘wheel load’) spacing for a train of 9 masses. In the case where 0
k
s =  we have the single point 

mass situation described in the previous section. While when 0.25
k
s = the train length equals 2L . The 

mass ratio of each mass is 0.2/9 which results in a total mass ratio for the train of 0.2.  

We observe that the maximum DAF is approximately equal to the single wheelset mass/load case (

0
k
s = ). Although the speed at which this maximum occurs is dependent on the spacing length

k
s .  As 

k
s increases we see that the speed at which this maximum occurs is higher. For conventional high speed 

trains this is very beneficial as it pushes this ‘resonant’ maximum further away from the operating 

speed. For the case of a Hyperloop system this effect is neither beneficial nor adverse as the operating 

speed range is so much larger than conventional high speed trains.  

 

Figure 7, Variation of dynamic amplification factor vs non-dimensional speed and spacing of masses. 

For case of 2 span continuous beam subjected to a train of 9 equidistance masses 

0.05, 0.2 / 9
i k

aγ = =     

4 Conclusions  

 

The proposed speed of Hyperloop/Transpod trains is such that it can introduce significant dynamic 

amplification due to the travelling masses/loads of the train. This factor, coupled with the suggested 

continuous beam structure, can result in a very large induced dynamic amplification factor. The 

maximum value of the DAF for these UHS trains could be as high as the classical resonant amplification 

of 1 2η γ= .  This value is so large that either the tubes would have to be very much stiffer than 

conventional design would suggest or that various vibration absorbing/mitigation devices would have 

to be included. The analysis also points out that limiting the continuous beam to only a few spans would 

be dynamically very favourable. However, this may introduce design problems associated with 

maintaining the vacuum within the tube.  

The current code based design regulations/recommendations, world-wide, are insufficient for the design 

of such systems.  
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This paper highlights the need to consider again the dynamics of a set of travelling masses. When the 
conceptual design of the train carriages, bridge spans, support arrangement are defined, more explicitly, 
then appropriate analyses of the type proposed in this paper can be undertaken to determine the optimal 
bridge section design.  Given the extremely large dynamic amplification it may be necessary to 
significantly stiffen the bridge spans and introduce large damping in the form of viscous and tuned mass 
dampers. The flexibility of the piers and the dynamics of a pair of parallel tubes are not considered in 
this paper. These are areas for future research as are the interactions between this UHS train-bridge 
dynamics and wind/earthquake loading.      
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