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Abstract 

Transport of heat and mass and the thermodynamics of porous microreactors with thermal diffusion and 

radiation effects are investigated analytically. The examined configuration includes an axisymmetric, thick-

wall microchannel with an iso-flux thermal boundary condition imposed on the external surfaces. The 

microchannel is filled with porous materials and accommodates a zeroth order homogenous chemical 

reaction.  Internal radiative heat transfer is modelled in addition to heat convection and conduction, while 

the local thermal non-equilibrium approach is taken within the porous section of the system. The transport 

of species is coupled with that of heat via the inclusion of thermodiffusion or Soret effect. Two-dimensional 

heat and mass transfer differential equations are solved analytically. The results are subsequently used to 

predict the thermodynamic irreversibilities inside the reactor and a thorough analysis of local and total 

entropy generation rates is performed. Also, the changes in Nusselt number, calculated on the internal walls 

of the microreactor, versus various parameters are reported. It is shown that the radiation effects can 

impact the temperature of the solid phase of the porous medium and lead to alteration of Nusselt number. 

It is further observed that the transfer of mass is the main source of irreversibility in the system. The 

findings are of particular use for the design and analysis of the microreactors with homogenous chemical 

reactions and can be also used for the validation of computational models. 

Keywords: Microreactors; Coupled heat and mass transfer; Advection-diffusion-reaction model; Radiative 

heat transfer; Exact solution; Entropy generation. 
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𝑎𝑠𝑓  Interfacial area per unit volume of porous 

media, m-1 
𝑄 Wall heat flux ratio 

𝐵𝑖 Biot number 𝑞1
′′ Wall heat flux (W m-2) 

𝐵𝑟′ Modified Brinkman number 𝑅𝑒 Reynolds number 

𝐶 Mass species concentration (kg m-3) 𝑅 Specific gas constant (J K-1 kg-1) 

𝐶0 Inlet concentration (kg m-3) 𝑆 Shape factor of the porous medium 

𝐶𝑝,𝑛𝑓 Specific heat capacity (J K-1 kg-1) 𝑆̇𝐷𝑖
′′′ Volumetric entropy generation due to mass 

diffusion (W K-1 m-3) 

𝐷 Effective mass diffusion coefficient (m2 s-1) 𝑆̇𝐹𝐹
′′′  Volumetric entropy generation due to fluid 

friction (W K-1 m-3) 

𝐷𝑎 Darcy number 𝑆̇𝑛𝑓
′′′  Volumetric entropy generation in the 

nanofluid (W K-1 m-3) 

𝐷𝑇  Coefficient of thermal mass diffusion (kg K-

1 m-1 s-1) 
𝑆̇𝑠

′′′ Volumetric entropy generation in the porous 

solid (W K-1 m-3) 

ℎ1 Half-thickness of the microchannel (m) 𝑆̇𝑤
′′′ Volumetric entropy generation rate of the 

wall (W K-1 m-3) 

ℎ2 Half-height of the microchannel (m) 𝑆𝑟 Soret number 

ℎ𝑠𝑓 Interstitial heat transfer coefficient (W K-1 m-

2) 
𝑇 Temperature (K) 

𝐻𝑤 Wall heat transfer coefficient (W K-1 m-2) 𝑢 Nanofluid velocity (m s-1) 

𝑘 Effective thermal conductivity ratio of the 

nanofluid and the porous solid 
𝑢̅ Average velocity over cross-section (m s-1) 

𝑘1 Thermal conductivity of wall  (W K-1 m-1) 𝑋 Dimensionless axial coordinate 

𝑘𝑒1 Ratio of thermal conductivity of wall 1 and 

thermal conductivity of the porous solid 
𝑥 Axial coordinate 

𝑘𝑒𝑛𝑓  Effective thermal conductivity of the 

nanofluid phase (W K-1 m-1)  
𝑌 Dimensionless transverse coordinate 

𝑘𝑒𝑠  Effective thermal conductivity of the solid 

phase of the porous medium (W K-1 m-1)  
𝑦 Transverse coordinate 

𝑘𝑟 Reaction rate constant (kg m-3 s-1)  Greek symbols 

𝐿 Length of the microchannel (m) 𝜇 Dynamic viscosity (N s m-2) 

𝑀 Viscosity Ratio 𝜅 Permeability (m2) 

𝑁𝐷𝐼 Dimensionless diffusive irreversibility 𝜌 Density (kg m-3) 

𝑁𝐹𝐹  Dimensionless fluid friction irreversibility 𝜃 Dimensionless temperature 

𝑁𝑖𝑛𝑡 Dimensionless interstitial (interphase) heat 

transfer irreversibility 
𝛷 Dimensionless concentration 

𝑁𝑛𝑓 Dimensionless nanofluid and interstitial 

(interphase) irreversibility 
𝜉 Aspect ratio of the microchannel 

𝑁𝑛𝑓,ℎ𝑡 Dimensionless nanofluid heat transfer 

irreversibility 
𝜀 Porosity of the porous medium 

𝑁𝑠 Dimensionless porous solid and interstitial 

(interphase) irreversibility 
𝛾 Damköhler number 

𝑁𝑠,ℎ𝑡 Dimensionless heat transfer irreversibility 𝜔 Dimensionless heat flux 

𝑁𝑤 Dimensionless wall irreversibility 𝜑 Irreversibility distribution ratio 

𝑁𝑝𝑚 Dimensionless total porous medium 

irreversibility 

 Subscripts 

𝑁𝑇𝑜𝑡 Dimensionless total entropy 𝑠 Porous solid 

𝑁𝑢 Nusselt number 𝑛𝑓 Nanofluid 

𝑝 Pressure (Pa) 1 Wall 

𝑃𝑒 Peclet number w Wall 

𝑃𝑟 Prandtl number   

 

1. Introduction 

With the provision of less costly and commercial micro manufacturing techniques, micro process 

engineering facilities are becoming more popular in both academia and industry [1]. Amongst these, 
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microreactors are one of the recently growing tools [2][3]. They have a broad range of applications from 

distributed fuel production [4] and methanol steam reforming [5] to process intensification [3] and 

nanoparticle generation [6]. In comparison with traditional reactors, microreactors occupy smaller volumes 

and feature other advantages such as performance enhancement, better temperature control and operation 

under continuous flow mode [7][8]. Hence, there exist major incentives for the development of micro-

structured chemical reactors [9][10]. However, due to their smaller size, micro-structured reactors are 

rather sensitive to the changes in the surrounding temperature and thermal modifications of their external 

boundaries can affect their performance [3][4]. This is due to the fact that their heat and mass transfer 

characteristics are strongly coupled with their thermal boundary conditions as well as the details of internal 

transport mechanisms. These points have been emphasised in the recent studies on the effects of boundary 

conditions upon the energetic and entropic performances of microreactors [11][12] and also the influences 

of Soret effect on the concentration of species in microreactors [13]. 

 Microreactors normally consist of a bundle of microchannels [14]. By filling these microchannels with 

porous materials, the microreactor provides a more uniform temperature distribution compared with the 

non-porous ones [15][16]. Further, the porous medium is often added as a means of introducing catalysts 

[17]. Recent examples can be found in continuous flow hydrogenation systems [18][19]. At the same time, 

porous microreactors can be an efficient tool for processes with large heat of reactions as they offer highly 

improved ability to transport heat by their massive surface to volume ratio [20]. It has been demonstrated 

that the internal heat transfer mechanisms could drastically impact the energetic and entropic 

performances of porous microchannels [21][22]. Hence, it is important to include all participant modes of 

heat transfer in the thermal analysis of these systems. The release of a large heat of reaction within the 

porous medium of the microreactor significantly increases the temperatures of both porous solid and fluid 

phases. This magnifies the role of thermal radiation [23] and warrants the inclusion of this mechanism of 

heat transport in thermal analysis of the microreactor. 

 To analyse a single porous reactor there are two well-known volume average approaches to follow [16]. 

The first traditional approach is to consider the porous solid and the fluid phases as a single phase material 

and specify average thermophysical properties to each point of the porous section of the reactor [13][24]. 

As this approach is not accurate enough in media with internal heat generations, a second method has been 

practiced recently. In this relatively new approach, the solid and fluid phases within the porous medium are 

analysed separately, and specific thermophysical properties are assigned to each phase [11][12]. The 
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transport of heat in solid and fluid phases of the porous medium are co-related through an internal heat 

exchange, and hence their differential equations are coupled. In general, the second approach, called the 

two-energy or local thermal non-equilibrium (LTNE) model, is more costly than the first one, i.e., local 

thermal equilibrium (LTE) model. However, due to its higher accuracy, LTNE approach is deemed more 

suitable in micro systems [25]. As in many microreactors the transfer of mass and heat are coupled [13], 

employing LTNE model can also provide a better prediction of the species concentration within the system. 

 So far, the analyses of porous microreactors and microchannels have been mainly concerned with 

temperature calculations [11][12]. A number of scholars have explored the effects of various phenomena 

including viscous dissipation [26], interface boundary conditions [27] and inclusion of nanoparticles 

[28][29] on the temperature fields and entropy generation rate inside porous micro systems. These studies 

have been recently extended to take into account the effects of solid walls of the microchannel on their first 

and second law performances [12][24][30]. However, so far, there has been only one investigation on the 

thermo-diffusion of microreactors [13]. In a one-dimensional analytical work, Torabi et al. [13] investigated 

the temperature field and entropy generation of double diffusive forced convection in a porous 

microchannels with the inclusion of Soret effect. In this work, the solid walls of the microchannel were 

considered in the mathematical model and two types of boundary conditions were imposed on the external 

surface of the microchannel. As an imperative shortcoming, currently, multi-dimensional double diffusive 

analyses of microreactors cannot be found in the open literature. 

 Zeroth order kinetic behaviour is prevalent in biological systems such as enzyme-catalysed reactions 

[31]. A catalytic surface may also cause reactions to exhibit zero order kinetics [31] due to limited 

availability of active sites. This is not, however, only a feature of large catalytic surfaces (such as channel 

wall catalysts) but is also the case when the catalyst is a small particle (as is the case in a slurry) [32]. With 

such systems in mind, the kinetics chosen for this study are zeroth order. 

 The preceding survey of literature reveals that there is now significant evidence showing that the solid 

body of micro-structured reactors should be included in the thermal analyses of these systems. Further, 

accurate performance prediction of microreactors with highly exothermic reactions is subject to conduction 

of comprehensive thermal analyses which take into account thermal radiation. However, theoretical 

examinations of radiative effects in porous microreactors are scarce. Finally, the existing studies on coupled 

heat and mass transfer and entropy generation in microreactors are all one-dimensional and multi-

dimensional theoretical studies are yet to be conducted. To fill these gaps, the present work puts forward a 
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two-dimensional investigation on the influences of thermal radiation upon heat and mass transfer, and 

entropic behaviour of porous microreactors with thick walls. 

 The rest of this paper is organised as follows. Section 2 provides the details of the configuration under 

investigation together with the assumptions and governing equations. In Section Error! Reference source 

not found. the governing equations are non-dimensionalised. This is followed by Section 3, which gives the 

analytical solution methodology. Temperature and concentration fields, as well as the Nusselt number and 

entropy generations are discussed in Section 4, while Section 5 summarises the main findings. 

2. Theoretical methods 

2.1. Problem configuration and assumptions 

Figure 1 shows the porous microreactor under investigation with thick walls and symmetric isoflux thermal 

boundary condition. It is assumed that the process in the microreactor can include high temperature 

reactions. Thus, the internal radiation plays an important role in the overall heat transfer process. For the 

purposes of the following analysis, Rosseland approximation has been used to model the thermal radiation. 

As LTNE model is adopted in this investigation, internal convective heat exchanges between the fluid and 

solid phases of the porous medium have been also considered in the mathematical model. The thicknesses 

of the solid walls of the reactor are incorporated in the model and the mass diffusion has been coupled with 

temperature field of the fluid through assuming a finite Soret number [13]. The other assumptions include 

steady, laminar, fully developed and incompressible fluid flow. Homogeneity of the properties of the 

materials, existence of no sharp reaction zones, absence of gravitational effects [11] [12], and reversibility 

of the homogenous chemical reaction are also assumed. In the current setting the heat of reaction may 

appear as a constant source term in the energy equation of the fluid phase. Nonetheless, this has been 

extensively studied in a number of previous investigations [11][12] [22][30][33] and hence it is not further 

considered in the current work. Thus for the purposes of this study heat of reaction has not been included. 

Further, in the followings the fluid phase is assumed to be a nanofluid. This is not an essential element of 

the analysis and can be readily removed by setting the volume fraction of nanoparticles to zero. 

Nonetheless, it has been added to the analysis to make it applicable to the microreactors that involve 

nanoparticles [6][34]. 

 

 

2.2. Governing Equations 
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Definition of the parameters introduced in this and the proceeding sections can be found in the 

nomenclature. The Darcy-Brinkman model of transport of momentum describes the hydrodynamics of the 

flow in microreactor. That is  

−
𝜕𝑝

𝜕𝑥
+ 𝜇𝑒𝑓𝑓

𝑑2𝑢

𝑑𝑦2
−

𝜇𝑛𝑓

𝜅
𝑢 = 0 

0 ≤ 𝑦 < ℎ1 (1) 

 The differential energy equations for the solid walls of the microreactor and the solid and fluid phases 

of the porous section of the system are expressed by the followings [11,35]. 

𝑘1

𝜕

𝜕𝑦
[
𝜕𝑇1

𝜕𝑦
] = 0, ℎ1 < 𝑦 ≤ ℎ2 (2a) 

𝑘𝑒𝑛𝑓

𝜕2𝑇𝑛𝑓

𝜕𝑦2
+ ℎ𝑠𝑓𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓) +

𝜇𝑛𝑓

𝜅
𝑢2 + 𝜇𝑒𝑓𝑓 (

𝑑𝑢

𝑑𝑦
)

2

=  𝜌𝑛𝑓𝐶𝑝,𝑛𝑓𝑢
𝜕𝑇𝑛𝑓

𝜕𝑥
, 0 ≤ 𝑦 < ℎ1 (2b) 

𝑘𝑒𝑠

𝜕2𝑇𝑠

𝜕𝑦2
− ℎ𝑠𝑓𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓) −

𝜕𝑞

𝜕𝑦
= 0. 0 ≤ 𝑦 < ℎ1 (2c) 

Appendix A shows how the nanofluid thermophysical properties are calculated based on those of the base 

fluid and nanoparticles. It should be clarified that the third and fourth terms in the energy equation of the 

nanofluid phase account for the heat generation by viscous dissipation [35]. 

 The radiation parameter in Eq. (2c) takes the form of 

𝑞𝑟 =
−4 𝜎∗

3 𝜅∗

𝜕𝑇𝑠
4

𝜕𝑦
. 

(3) 

 Using Rosseland approximation [36] the last term of the energy equation for the solid phase of the 

porous section of the microchannel is transformed to: 

𝜕𝑞𝑟

𝜕𝑦
=  −

16𝜎∗𝑇0
3

3 𝜅∗

𝜕2𝑇𝑠

𝜕𝑦2
. 

(4) 

 The radiative heat flux from the solid phase of the porous medium is caused by the solid phase having 

the ability to lose (or absorb) heat through radiation. In the current model, the fluid is assumed to be 

transparent to radiation, which is readily justifiable by considering the fact that most fluids are optically 

highly transparent [36]. Of course, that is not to say that the fluid phase is unaffected by the radiative heat 

loss form the solid phase, merely that the effect is indirect. Examination of the equations (2b) and (2c) reveal 

the terms for interstitial heat transfer between the phases, i.e., hsfasf(Ts-Tnf). We have also considered the 

radiation heat transfer on the walls by including the radiation effect on the boundary condition Eq. (6b). 

 The production and transport of chemical species in the reactor is governed by the following advection-

diffusion-reaction model for a zeroth order, homogenous, temperature indifferent chemical reaction. The 
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model takes into account the contributions from the Soret effect in addition to the Fickian diffusion of 

species [37]. 

𝑢
𝜕𝐶

𝜕𝑥
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐷𝑇

𝜕2𝑇𝑛𝑓

𝜕𝑦2
+ 𝑘𝑟 

0 ≤ 𝑦 < ℎ1 (5) 

 It is recalled that depending on the relative size of the diffusive molecules and those of the base fluid, 

Soret number can be either positive or negative [37]. In Eq. (5) negative thermodiffusion coefficient is 

presented by a negative sign in front of a positive 𝐷𝑇 . 

 The following boundary conditions are necessary for the closure of the momentum and energy 

equations of the system [11,35]: 

𝑦 = ℎ2: 𝑘1

𝜕𝑇1

𝜕𝑦
|

𝑦=ℎ2

= 𝑞1
′′ 

(6a) 

𝑦 = ℎ1: 𝑢𝑛𝑓 = 0, 𝑇𝑛𝑓 = 𝑇𝑠 = 𝑇𝑤 , 

𝑞1
′′ = 𝑘𝑒𝑛𝑓

𝜕𝑇𝑛𝑓

𝜕𝑦
|

𝑦=ℎ1

+ (𝑘𝑒𝑠 +
16𝜎∗

3 𝜅∗ )
𝜕𝑇𝑠

𝜕𝑦
|

𝑦=ℎ1

 

(6b) 

𝑦 = 0:  
𝑑𝑢𝑛𝑓

𝑑𝑦
= 0,     

𝜕𝑇𝑛𝑓

𝜕𝑦
|

𝑦=0
=

𝜕𝑇𝑠

𝜕𝑦
|

𝑦=0
= 0, (6c) 

 For a zeroth order chemical reaction, the imposed conditions for the concentration of chemical species 

are the followings. 

𝑥 = 0, 𝑦 = ℎ1 
   𝐶 = 𝐶0 (7a) 

𝑦 = 0 
𝜕𝐶

𝜕𝑦
= 0 

(7b) 

It is recalled that in the current problem the terms in energy transport equation are generally much larger 

than those in mass transport equation. As a result, the relatively small contribution of Dufour effect with 

the energy balance has been ignored. However, the influence of Soret effect upon mass transport equation 

remains noticeable and therefore it has been taken into account. This argument has been already made in a 

number of previous investigations, see for example [38][39][40][41]. 

3. Dimensionless parameters and non-dimensionalised equations 

The following dimensionless parameters are introduced to enable universal analysis of the system under 

investigation. 
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𝜃𝑖 =
(𝑇𝑖 − 𝑇𝑤,𝑖𝑛)𝑘𝑒𝑠

𝑞1
′′ℎ2

 , 

𝑌 =
𝑦

ℎ2

, 

𝑌1 =
ℎ1

ℎ2

, 

𝑋 =
𝑥

𝐿
, 

𝜉 =
ℎ2

𝐿
, 

 𝑈 =
𝑢

𝑢𝑟

,           

𝑢𝑟 = −
ℎ2

2

µ𝑓

𝜕𝑝𝑛𝑓

𝜕𝑥
,    

𝐷𝑎 =  
𝜅

ℎ2
2,     

𝑀 =
𝜇𝑒𝑓𝑓

𝜇𝑛𝑓

 ,       

𝑆 =
1

√𝑀𝐷𝑎
 ,   

𝑃𝑟 =
𝐶𝑝,𝑛𝑓𝜇𝑒𝑓𝑓

𝑘𝑒𝑛𝑓

 

 

𝐵𝑖 =
ℎ𝑠𝑓𝑎𝑠𝑓ℎ2

2

𝑘𝑒𝑠

, 

𝐵𝑟′ =
𝜇𝑒𝑓𝑓𝑢̅2

𝑞1
′′ℎ2

,    

𝑘𝑒1 =
𝑘1

𝑘𝑒𝑠

,     

𝛷 =
𝐶

𝐶0

, 

𝑅𝑑 =
16 𝜎∗

3 𝜅∗𝑘𝑒𝑠
 

𝛾 =
𝑘𝑟ℎ1

2

𝐷𝐶0

, 

𝑆𝑟 =
𝑞1

′′ℎ1𝐷𝑇

𝐶0𝑘𝑛𝑓𝐷
, 

𝑘 =
𝑘𝑒𝑛𝑓

𝑘𝑒𝑠

=
𝜀𝑘𝑛𝑓

(1 − 𝜀)𝑘𝑠

, 

𝑅𝑒 =
2ℎ2𝜌𝑛𝑓𝑢̅2

𝜇𝑒𝑓𝑓

, 

𝑃𝑒 =
𝑢̅ℎ1

𝐷
, 

(8) 

where the dimensionless temperature follows the labelling convention of i= 1, s , nf. 

 The transport of momentum (Eq. (1)) is non-dimensionalised using the parameters defined in Eqs. (8), 

resulting in 

𝑀
𝑑2𝑈

𝑑𝑌2
−

𝑈

𝐷𝑎
+ 1 = 0. 

0 ≤ 𝑌 < 𝑌1 (9) 

 The no slip boundary condition at the solid-porous interfaces and the condition due to the axial 

symmetry at 𝑌 = 0 can be expressed in non-dimensional form as 

𝑈(𝑌1) = 0, (10a) 

𝑈′(0) = 0. (10b) 

 Solution of Eq. (9) results in the following expression for the non-dimensional flow velocity 

𝑈 = 𝐷𝑎 (1 −
cosh(𝑆𝑌)

cosh(𝑆𝑌1)
). 

0 ≤ 𝑌 < 𝑌1 (11) 

 Using Eq. (11), the dimensionless average velocity across the channel reduces to  

𝑈 = 𝐷𝑎 (1 −
tanh(𝑆𝑌1)

𝑆𝑌1

). 
(12) 

 By combining Eqs. (11) and (12) the following ratios are formed 

𝑢
𝑢̅⁄ = 𝑈

𝑈̅
⁄ =

𝑆𝑌1(cosh(𝑆𝑌1) − cosh (𝑆𝑌))

𝑆𝑌1 cosh(𝑆𝑌1) − sinh (𝑆𝑌1)
. 

(13) 

 Due to the assumption of fully developed flow the following conditions hold [35], 

𝜕𝑇𝑛𝑓

𝜕𝑥
=

𝑑𝑇̅𝑛𝑓

𝑑𝑥
=

𝜕𝑇𝑠

𝜕𝑥
=

𝑑𝑇̅𝑠

𝑑𝑥
=

𝑑𝑇𝑤

𝑑𝑥
= 𝛺 = constant. 

(14) 

 Equations (14) allows for the following form of the solution to be sought for the temperature field, 
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𝑇𝑖(𝑥, 𝑦) = 𝑓𝑖(𝑦) + 𝛺𝑥        𝑖 = 1, 𝑠, 𝑛𝑓, (15) 

where 𝑓𝑖(𝑦) is a function to be determined by solving Eqs. (2a) to (2c) in association with the given 

boundary conditions. In order to solve the transports of thermal energy in the porous medium, first it is 

necessary to add Eqs. (2b) to (2c) and then integrate the resultant equation over the cross-section of the 

microchannel. Substituting in the heat flux boundary condition from Eq. (6a) yields 

𝑞1
′′ +

𝜇𝑛𝑓

𝜅
∫ 𝑢2

ℎ1

0

𝑑𝑦 +  𝜇𝑒𝑓𝑓 ∫ (
𝑑𝑢

𝑑𝑦
)

2ℎ1

0

𝑑𝑦 = 𝜌𝑛𝑓𝐶𝑝,𝑛𝑓 ∫ 𝑢
𝜕𝑇𝑛𝑓

𝜕𝑥

ℎ1

0

𝑑𝑦. 
(16) 

 Rearranging Eq. (13) allows for the substitution for 𝑢 into Eq. (16). Applying the non-dimensional 

parameters, as defined in Eqs. (8), facilitates the integration process and reveals: 

𝑑𝑇̅𝑛𝑓

𝑑𝑥
=

1

𝜌𝑛𝑓𝐶𝑝,𝑛𝑓𝑢̅ℎ1ℎ2

[ℎ2𝑞1
′′ +

𝜇𝑒𝑓𝑓𝑆3𝑢̅2𝑌1
2cosh (𝑆𝑌1)

𝑆𝑌1 cosh  (𝑆𝑌1) − sinh (𝑆𝑌1)
] = 𝛺, 

(17) 

where the bulk mean temperature of the nanofluid is given by, 

𝑇̅𝑛𝑓 =
1

𝑢̅ℎ1

∫ 𝑢𝑇𝑛𝑓

ℎ1

0

𝑑𝑦. 
(18) 

 Combining Eqs. (9), (13) and (17) results in the non-dimensional form of Eqs. (2a-c): 

𝑘𝑒1𝜃1
′′ = 0 𝑌1 < 𝑌 ≤ 1 (19a) 

𝑘𝜃𝑛𝑓
′′ + 𝐵𝑖(𝜃𝑠 − 𝜃𝑛𝑓) + 𝐷2 cosh(2𝑆𝑌) + 𝐷3 cosh(𝑆𝑌) + 𝐷4 = 0 0 ≤ 𝑌 < 𝑌1 (19b) 

(1 + 𝑅𝑑)𝜃𝑠
′′ − 𝐵𝑖(𝜃𝑠 − 𝜃𝑛𝑓) = 0 0 ≤ 𝑌 < 𝑌1 (19c) 

 Through an algebraic manipulation of Eqs. (19b) and (19c), the following relations are developed. 

𝑘(1 + 𝑅𝑑)𝜃𝑛𝑓
′′′′ − 𝐵𝑖(1 + 𝑘 + 𝑅𝑑)𝜃𝑛𝑓

′′ + (4𝑆2(1 + 𝑅𝑑) − 𝐵𝑖)𝐷2 cosh (2𝑆𝑌)

+ (𝑆2(1 + 𝑅𝑑) − 𝐵𝑖)𝐷3 cosh (𝑆𝑌) −𝐵𝑖𝐷4 = 0, 

(20a) 

𝑘(1 + 𝑅𝑑)𝜃𝑠
′′′′ − 𝐵𝑖(1 + 𝑘 + 𝑅𝑑)𝜃𝑠

′′ − 𝐵𝑖(𝐷2 cosh  (2𝑆𝑌) + 𝐷3 cosh  (𝑆𝑌) +𝐷4) = 0. (20b) 

These provide decoupled solid and fluid energy equations in the porous medium. Particular solutions of 

Eqs. (19a) and (20a-b) require 10 boundary conditions as given by the followings. 

𝜃𝑛𝑓(𝑌1) = 𝜃𝑠(𝑌1) = 0  (21a,b) 

𝜃𝑠
′′(𝑌1) = 0 𝜃𝑛𝑓

′′ (𝑌1) = −
1

𝑘
(𝐷2 cosh (2𝑆𝑌) + 𝐷3 cosh(𝑆𝑌) +𝐷4) 

(21c,d) 

𝜃1(𝑌1) = 0 𝑘𝑒1𝜃1
′(1) = 1 (21e,f) 

𝜃𝑛𝑓
′ (0) = 𝜃𝑠

′(0) = 0 𝜃𝑛𝑓
′′′ (0) = 𝜃𝑠

′′′(0) = 0 (21g,h) 

Appendix B provides explicit expressions for the constant coefficients in Eqs. (21a-h). 
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3. Solution of momentum, energy and dispersion equations-calculation of entropy generation 

Applying the boundary conditions given by Eqs. (21a-h) allows the analytical solutions of the system of Eqs. 

(19a) and (20a-b) to be found. The resulting closed-form dimensionless temperature profiles in the 

transverse direction are: 

𝜃1(𝑌) = 𝐸1 + 𝐸2𝑌 𝑌1 < 𝑌 ≤ 1 (22a) 

𝜃𝑛𝑓(𝑌) = 𝐸3 cosh(2𝑆𝑌) + 𝐸4 cosh(𝑆𝑌) + 𝐸5 cosh(𝛼𝑌) + 𝐸6𝑌2 + 𝐸7𝑌 + 𝐸8 0 ≤ 𝑌 < 𝑌1 (22b) 

𝜃𝑠(𝑌) = 𝐸9 cosh(2𝑆𝑌) + 𝐸10 cosh(𝑆𝑌) + 𝐸11 cosh(𝛼𝑌) + 𝐸6𝑌2 + 𝐸7𝑌

+ 𝐸12 

0 ≤ 𝑌 < 𝑌1 (22c) 

in which 

𝛼 = √
𝐵𝑖(1+𝑘+𝑅𝑑)

𝑘(1+𝑅𝑑)
. 

(23) 

 Through substitution of the dimensionless axial and transverse temperature profiles into Eq. (15), and 

incorporating Eq. (17) the two-dimensional temperature fields can be obtained. These are given by the 

following expressions. 

𝜃1(𝑋, 𝑌) =
2 𝑋 [1 + 𝐵𝑟′𝐷1 𝑆2 cosh(𝑆𝑌1)]

𝑅𝑒 Pr 𝑘 𝑌1𝜉
+ 𝐸1 + 𝐸2𝑌 

𝑌1 < 𝑌 ≤ 1 (24a) 

𝜃𝑛𝑓(𝑋, 𝑌) =
2 𝑋 [1 + 𝐵𝑟′𝐷1 𝑆2 cosh(𝑆𝑌1)]

𝑅𝑒 Pr 𝑘 𝑌1𝜉
+ 𝐸3 cosh(2𝑆𝑌)

+ 𝐸4 cosh(𝑆𝑌) + 𝐸5 cosh(𝛼𝑌) + 𝐸6𝑌2 + 𝐸7𝑌 + 𝐸8 

0 ≤ 𝑌 < 𝑌1 (24b) 

𝜃𝑠(𝑋, 𝑌) =
2 𝑋 [1 + 𝐵𝑟′𝐷1 𝑆2 cosh(𝑆𝑌1)]

𝑅𝑒 Pr 𝑘 𝑌1𝜉
+ 𝐸9 cosh(2𝑆𝑌)

+ 𝐸10 cosh(𝑆𝑌) + 𝐸11 cosh(𝛼𝑌) + 𝐸6𝑌2 + 𝐸7𝑌 + 𝐸12 

0 ≤ 𝑌 < 𝑌1 (24c) 

 Similar to the previous section, the explicit form of the constant parameters are given in Appendix B. 

To calculate the Nusselt number on the microchannel wall, the heat transfer coefficient should firstly be 

evaluated. The heat transfer coefficient at the top wall of the microchannel is defined as 

𝐻𝑤 =
𝑞1

′′

𝑇𝑤 − 𝑇̅𝑛𝑓

 
(25) 

 Thus, Nusselt number on the basis of the channel height ℎ1 is expressed by 

𝑁𝑢𝑤 =
2𝐻𝑤ℎ1

𝑘𝑒𝑛𝑓

=
− 2 𝑌1

𝑘𝜃̅𝑛𝑓

. 
(26) 

 The dimensionless bulk mean temperature of the nanofluid, 𝜃̅𝑛𝑓 can be found by determining a 

dimensionless form of Eq. (18) and then integrating over the microchannel. This results in 



11 

𝜃̅𝑛𝑓 =
𝐷1

2 𝑌1

∫ 𝜃𝑛𝑓[cosh(𝑆𝑌1) − cosh(𝑆𝑌)] 𝑑𝑌.
𝑌1

0

 
(27) 

 To evaluate the concentration profile first a control volume over a section of the microchannel should 

be considered. By doing so and applying a mass balance to this the following equation is obtained, 

𝑢̅
𝜕𝐶

𝜕𝑥
= 𝑘𝑟. 

(28) 

 The solution of Eq. (28) is 

𝐶(𝑥) =
𝑘𝑟 𝑥

𝑢̅
. 

(29) 

 Thus, the concentration field in the axial direction is independent of the profile in the transverse 

direction and therefore the form of solution for the concentration field is similar to that of the 

temperature field: 

𝐶(𝑥, 𝑦) = 𝑔(𝑦) + ℎ(𝑥). (30) 

 Using the dimensionless parameters defined in Eqs. (8), Eq. (29) can be non-dimensionalised in the 

following form. 

𝛷(𝑋) =
𝛾 𝑋

𝑃𝑒 𝑌1𝜉
. 

(31) 

Substitution of Eq. (29) into Eq. (5) gives 

𝑢 
𝑘𝑟

𝑢̅
= 𝐷

𝜕2𝐶

𝜕𝑦2
− 𝐷𝑇

𝜕2𝑇𝑛𝑓

𝜕𝑦2
+ 𝑘𝑟 . 

(32) 

 By employing the dimensionless parameters from Eqs. (8), Eq. (32) is first non-dimensionalised and 

then rearranged in the form of, 

𝛷′′(𝑌) − (
𝑢

𝑢̅
− 1)

𝛾

𝑌1
2 =

𝑆𝑟 𝑘

 𝑌1𝜀
𝜃𝑛𝑓

′′ (𝑌). 
(33) 

 Since 𝜃𝑛𝑓
′′ (𝑌) is determined from Eq. (24b) only the boundary conditions given by Eqs. (7a) and (7b) 

need non-dimensionalisation. These are expressed by, 

𝛷′(0) =0, (34a) 

𝛷(𝑌1) = 1. (34b) 

 Through applying Eqs. (34a) and (34b), Eq. (33) can be solved analytically to obtain the dimensionless 

concentration profile in the transverse direction. This reads 

𝛷(𝑌) = 𝐹1 cosh(2𝑆𝑌) + 𝐹2 cosh(𝑆𝑌) + 𝐹3 cosh(𝛼𝑌) + 𝐹4𝑌2 + 𝐹5. (35) 
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Finally, substituting Eqs. (31) and (35) into Eq. (30) gives the dimensionless, two-dimensional  

concentration field: 

𝛷(𝑋, 𝑌) =
𝛾 𝑋

𝑃𝑒 𝑌1𝜉
+ 𝐹1 cosh(2𝑆𝑌) + 𝐹2 cosh(𝑆𝑌) + 𝐹3 cosh(𝛼𝑌) + 𝐹4𝑌2 + 𝐹5. 

(36) 

 Appendix B provides analytical expressions for the constants appearing in the above equations. It 

should be noted that when resolving in the x direction Eq. (31) shows the analogous form to the x 

component of Eq. (24). In Eq. (24), θ(x) = 0 at x = 0 and similarly for Eq. (31), Φ(x) = 0 at x = 0 holds. 

 To calculate the local entropy generation rate the velocity, temperature and concentration equations 

should be incorporated into the fundamental entropy generation equations. The volumetric local entropy 

generation for the system are expressed by [11,13,35], 

𝑆̇𝑤
′′′ =

𝑘1

𝑇1
2 [(

𝜕𝑇1

𝜕𝑥
)

2

+ (
𝜕𝑇1

𝜕𝑦
)

2

], 
(37a) 

𝑆̇𝑆
′′′ =

𝑘𝑒𝑠

𝑇𝑆
2 [(

𝜕𝑇𝑆

𝜕𝑥
)

2

+ (
𝜕𝑇𝑆

𝜕𝑦
)

2

] −
ℎ𝑠𝑓𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓)

𝑇𝑆

, 
(37b) 

𝑆̇𝑛𝑓
′′′ =

𝑘𝑒𝑛𝑓

𝑇𝑛𝑓
2 [(

𝜕𝑇𝑛𝑓

𝜕𝑥
)

2

+ (
𝜕𝑇𝑛𝑓

𝜕𝑦
)

2

] +
ℎ𝑠𝑓𝑎𝑠𝑓(𝑇𝑠 − 𝑇𝑛𝑓)

𝑇𝑛𝑓

, 
(37c) 

𝑆̇𝐹𝐹
′′′ =

𝜇𝑛𝑓

𝜅 𝑇𝑛𝑓

𝑢2 +
𝜇𝑒𝑓𝑓

𝑇𝑛𝑓

(
𝑑𝑢

𝑑𝑦
) ,2 

(37d) 

𝑆̇𝐷𝐼
′′′ =

𝑅 𝐷

𝐶
[(

𝜕𝐶

𝜕𝑥
)

2

+ (
𝜕𝐶

𝜕𝑦
)

2

] +
𝑅 𝐷

𝑇𝑛𝑓

[(
𝜕𝐶

𝜕𝑥
) (

𝜕𝑇𝑛𝑓

𝜕𝑥
) + (

𝜕𝐶

𝜕𝑦
) (

𝜕𝑇𝑛𝑓

𝜕𝑦
)], 

(37e) 

 In Eqs. (37), entropy generation terms have been split into contributions from different sources of 

irreversibility. The term 𝑆̇𝑤
′′′ accounts for the entropy generation in the thick wall. Entropy generation in the 

solid phase of the porous medium due to heat transfer is accounted by 𝑆̇𝑠
′′′, similarly 𝑆̇𝑛𝑓

′′′  represents the 

entropy generation rate in the nanofluid phase. The contribution made by irreversibility in the nanofluid 

due to fluid friction is expressed by 𝑆̇𝐹𝐹
′′′ . The term 𝑆̇𝐷𝐼

′′′ is the entropy generation by the combination of 

concentration gradients and also that by mixed thermal and concentration gradients. 

 To non-dimensionalise Eqs. (37a-e) the following parameters are required. These are the 

dimensionless entropy generation, dimensionless heat flux and an irreversibility distribution ratio 

respectively. 

𝑁𝑖 =
𝑆̇𝑖

′′′ℎ2
2

𝑘𝑒𝑠

,       𝑖 = 𝑤, 𝑠, 𝑛𝑓, 𝐹𝐹, 𝐷𝐼 
(38) 
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𝜔 =
𝑞1

′′ℎ2

𝑘𝑒𝑠𝑇𝑤,𝑖𝑛
, (39) 

𝜑 =
𝑅𝐷𝐶0 

𝑘𝑒𝑠
. (40) 

 The resultant non-dimensionalised forms of Eqs. (37a-e) are: 

𝑁𝑤 =
𝑘𝑒1𝜔2

(𝜔𝜃1 + 1)2
[(

𝜕𝜃1

𝜕𝑋
)

2

+ (
𝜕𝜃1

𝜕𝑌
)

2

] 
𝑌1 ≤ 𝑌 < 1 (41a) 

𝑁𝑠 =
𝜔2

(𝜔𝜃𝑠 + 1)2
[𝜉2 (

𝜕𝜃𝑠

𝜕𝑋
)

2

+ (
𝜕𝜃𝑠

𝜕𝑌
)

2

] −
𝐵𝑖 𝜔 (𝜃𝑠 − 𝜃𝑛𝑓)

(𝜔𝜃𝑠 + 1)
 

0 ≤ 𝑌 < 𝑌1 (41b) 

𝑁𝑛𝑓 =
𝑘 𝜔2

(𝜔𝜃𝑛𝑓 + 1)
2 [𝜉2 (

𝜕𝜃𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕𝜃𝑛𝑓

𝜕𝑌
)

2

] +
𝐵𝑖 𝜔 (𝜃𝑠 − 𝜃𝑛𝑓)

(𝜔𝜃𝑛𝑓 + 1)
 

0 ≤ 𝑌 < 𝑌1 (41c) 

𝑁𝐹𝐹 =
𝐷2𝜔

(𝜔𝜃𝑛𝑓 + 1)
[cosh2(𝑆𝑌1) − 2 cosh(𝑆𝑌) cosh(𝑆𝑌1) + cosh (2𝑆𝑌)] 

0 ≤ 𝑌 < 𝑌1 (41d) 

𝑁𝐷𝐼 =
𝜑

𝛷
[𝜉2 (

𝜕𝛷

𝜕𝑋
)

2

+ (
𝜕𝛷

𝜕𝑌
)

2

]  

+
𝜑𝜔

(𝜔𝜃𝑛𝑓 + 1)
[𝜉2 (

𝜕𝛷

𝜕𝑋
) (

𝜕𝜃𝑛𝑓

𝜕𝑋
) + (

𝜕𝛷

𝜕𝑌
) (

𝜕𝜃𝑛𝑓

𝜕𝑌
)] 

0 ≤ 𝑌 < 𝑌1 (41e) 

 To facilitate the study of entropy generation and compare the contributions from different sources of 

irreversibility, the equations for the nanofluid and the solid phases of the porous medium are separated. 

This provides the following equations for the irreversibility of heat transfer in the system. 

𝑁𝑠,ℎ𝑡 =
𝜔2

(𝜔𝜃𝑠 + 1)2
[𝜉2 (

𝜕𝜃𝑠

𝜕𝑋
)

2

+ (
𝜕𝜃𝑠

𝜕𝑌
)

2

], 
(42a) 

𝑁𝑛𝑓,ℎ𝑡 =
𝑘 𝜔2

(𝜔𝜃𝑛𝑓 + 1)
2 [𝜉2 (

𝜕𝜃𝑛𝑓

𝜕𝑋
)

2

+ (
𝜕𝜃𝑛𝑓

𝜕𝑌
)

2

]. 
(42b) 

 By adding the components of Eqs. (41b) and (41c) the inter-phase volumetric entropy generation term 

can be expressed by, 

𝑁𝑖𝑛𝑡 =
𝐵𝑖 𝜔2(𝜃𝑛𝑓 − 𝜃𝑠)

2

(𝜔𝜃𝑠 + 1)(𝜔𝜃𝑛𝑓 + 1)
. 

(43) 

 The volumetric entropy generations for the porous insert, 𝑁𝑝𝑚 is simply the sum of the equations that 

are applicable to the porous medium. This is a function defining the entropy generation for the combined 

processes of heat transfer, viscous dissipation, and concentration gradients for any given points (X, Y). 

𝑁𝑝𝑚 = 𝑁𝑠,ℎ𝑡 + 𝑁𝑛𝑓,ℎ𝑡 + 𝑁𝑖𝑛𝑡 + 𝑁𝐹𝐹 + 𝑁𝐷𝐼 . (44) 
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To calculate the total entropy generation, the sum of the parts of volumetric entropy generation is 

integrated over the volume of the microchannel with the inclusion of contributions from the walls. This 

yields a numerical value for the total entropy and is obtained by the following equation: 

𝑁𝑇𝑜𝑡 = 2 ∫ ∫ ∑ 𝑁𝑖 𝑑𝑋𝑑𝑌,              𝑖 = 𝑤, 𝑠, 𝑛𝑓, 𝐹𝐹, 𝐷𝐼.     
1

0

1

0

 
(45) 

4. Results and Discussion 

This section is divided into three subsections. The first subsection illustrates the effects of various 

parameters such as radiation parameter and thermal conductivity ratio on the temperature fields of the 

solid and nanofluid phases and Nusselt number. The second subsection provides information on the 

influences of Damköhler number and thickness of the wall on the concentration field. The third subsection 

discusses the local and total entropy generation rates within the microchannel. Table 1 shows the default 

values of the parameters used throughout this section. To ensure about the correctness of the present 

solution procedure, it has been validated against that provided by Ting et al. [35] in Appendix C. This 

involves reducing the wall thicknesses to zero and ignoring thermal radiation and mass transfer.   

4.1. Temperature fields and Nusselt number 

Figure 2 shows the effects of widening the porous microchannel on the dimensionless temperature contours 

of the nanofluid (left column) and porous solid (right column) phases. It should be noted that in this figure, 

and also in other figures of this section, the walls have been excluded and only the interior part of the 

microchannel is depicted. As Fig. 1 indicates, increasing the non-dimensional parameter 𝑌1 =
ℎ1

ℎ2
 leads to 

decreasing the wall thickness and hence widening the microchannel. It is also recalled that here the 

dimensionless temperature has been defined on the basis of the inlet wall temperature (see Eq. (8)). 

Therefore, the numerical value of the temperature can vary from a negative quantity to a positive value. The 

internal heat generation due to nanofluid friction and the heat flux boundary condition imposed on the walls 

are the reasons for increasing the temperature to a positive value. Figure 2 shows that variations in the 

width of the microchannel impart significant effects upon the temperature fields. For instance, a comparison 

between Figs. 2a and 2c shows that for a fixed point inside the microchannel increasing Y1 results in 

decreasing the absolute value of the dimensionless temperature of nanofluid. The same trend is observed 

in the non-dimensional temperature of the porous solid shown in Figs. 2b, 2d and 2f. This behaviour can be 

explained physically. The wall acts as a thermal resistance against the transfer of heat from the external 

surface of the reactor. It follows that in the current isoflux system, decreasing the wall thickness reduces 
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the required temperature difference for the transfer of a fixed heat flux. By comparing the left and right 

columns in Fig. 2, it is also seen that decreasing the wall thickness of the microchannel reduces the 

temperature difference between the solid and nanofluid phases. This is an important observation and 

implies that utilisation of LTNE model is an essential necessity in thick wall microchannels. It is further in 

keeping with the earlier one dimensional findings [42] and extends those to the current two-dimensional 

configuration. Furthermore, it is clear in Fig. 2 that the solid and nanofluid temperatures increase along the 

microchannel due to the internal heat generation resulting from nanofluid friction and absorption of 

external heat flux. 

 Figure 3 demonstrates the impact of thermal conductivity ratio, k, on the temperature of nanofluid and 

porous solid phases when the values of other thermophysical parameters are kept constant. This figure 

shows that as the thermal conductivity ratio increases, the magnitude of the dimensionless temperature 

contours in both porous solid and nanofluid phases decreases. This behaviour has been also reported in the 

previous investigations of forced convection of nanofluids in porous media [28,33]. It can be attributed to 

the fact that increasing the thermal conductivity of nanofluid enables the nanofluid phase of the system to 

absorb more heat from the solid component of the porous medium. Nevertheless, Fig. 3 does not imply that 

increasing the thermal conductivity ratio can majorly affect the temperature difference between the solid 

and fluid phases temperature. 

 The effects of radiation parameter on the temperature contours in the solid and nanofluid phases have 

been shown in Fig. 4. Figures 4a and 4b correspond to the microchannel without radiation effect and Figs. 

4e and 4f represent a case with Rd=2. It is seen that augmenting the radiation parameter, increases the heat 

absorption by the solid phase of the porous medium from the walls. Hence, the temperature of the solid 

phase increases, while the temperature of the nanofluid phase decreases. 

 Figure 5 illustrates the effects of radiation parameter and wall thickness of the microchannel on the 

Nusselt number. As shown in Fig. 4, increasing the radiation parameter reduces the temperature of the 

nanofluid, and hence increases the ability of the nanofluid to convect the heat from the surface of the wall. 

Therefore increasing the radiation parameter magnifies the Nusselt number as depicted in Fig. 5a. However, 

Fig. 5b indicates that when the dimensionless wall thickness of the microchannel is more than 0.5, 

increasing the radiation parameter has only a marginal effect on the value of Nusselt number. Both Figs. 5a 

and 5b show that decreasing the wall thickness increases the Nusselt number. As already shown in Fig. 2, 
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this is due to the fact that through reducing the wall thickness the nanofluid dimensionless temperature 

within the microchannel decreases. 

4.2. Concentration profiles 

Figures 6 and 7 illustrate the effects of Damköhler number and wall thickness on the concentration field 

within the porous section of the microchannel. Figure 6 shows the dimensionless concentration contours 

for the entire length of the microchannel (Fig. 6a) and for the second half of the microchannel with different 

values of Damköhler numbers (Figs. 6b, c, d). A comparison between Figs. 6b to 6d reveals that decreasing 

the value of Damköhler number smoothen the concentration field and makes it more uniform. This is to be 

expected and is because of the fact that Damköhler number is directly related to the chemical reaction rate. 

Hence, decreasing Damköhler number represents weakening of the homogenous reaction and production 

of the species. 

 Figure 7 shows the effects of wall thickness on the concentration distribution. Examination of Figs. 7b 

to 7d confirms that decreasing the wall thickness of the microreactor reduces the numerical values of the 

dimensionless concentration contours. As already discussed, reducing the wall thickness of the 

microchannel decreases the temperature of the nanofluid phase and subsequently affects the concentration 

field through thermal diffusion effect. Although not shown here the impact of radiation parameter on the 

concentration field is quite marginal. Radiation affects the temperature field to some extent but only the 

second derivative of temperature appears in the mass transfer Eq. (46). This smears out the effects of 

thermal radiation and renders the concentration field rather indifferent to variation in radiation parameter. 

 Figures 6 and 7 further show that due to the axial advection and production, the species are washed 

away from the entrance of the channel. Thus, in moving from the entrance of the microreactor towards the 

exist plane, the dimensionless concentration is constantly increasing. Further, the concentration of species 

appears to be higher in the vicinity of the walls of microreactor compared to that on the centreline. As the 

nanofluid temperature near the wall is always higher than the temperature around the centre of the 

microchannel, the thermo-diffusion effects generate the observed transversal gradient in the species field. 

4.3. Entropy generation and performance evaluation criterion 

Figures 8-12 illustrate the effects of different thermophysical parameters on the local and total entropy 

generation rate within the microreactor. In all of the local entropy generation illustrations in this section, 

the contributions from different sources of irreversibility are shown in subfigure a to e, and the overall local 

entropy generation is plotted in sub-figure f. Figure 8 shows the local entropy generation for the porous 
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section of the microreactor calculated for the default values given in Table 1. This provides a basis to 

compare the effects of different parameters. Through a simple comparison between the different sources of 

irreversibility, it is clear that the diffusive irreversibility is the main source of entropy generation and is 

followed by that of nanofluid friction. It is also observed that the solid and nanofluid entropy generation 

rates are smaller around the centre of the microreactor. However, the inter-phase volumetric entropy 

generation rate is larger at the centreline. Figure 8d further indicates that by moving transversally from the 

walls of the reactor towards the centreline, the local entropy generation by nanofluid friction first decreases. 

It then reaches a minimum value and again hits a high value at the centre of the microreactor. 

 The entropic effects of Sort and Damköhler numbers are further analysed in Fig. 9. In this figure, the 

values of Soret and Damköhler number were reduced to 0.01 and 0.3 respectively, which represent a 

significant reduction in comparison to their default values shown in Table 1 and used in Fig. 8. A comparison 

between Figs. 8e and 9a reveals that by decreasing the numerical value of Soret number from 0.7 to 0.01 

the mass transfer irreversibility decreases by about 40%. Yet, reduction of Damköhler number from 1 (in 

Fig. 8e) to 0.3 (in Fig. 9c) results in 75% reduction in the mass transfer irreversibility. A very similar 

reduction in overall entropy generation can be seen in Figs. 9b and 9d in comparison with Fig. 8f. As already 

discussed this is due to the fact that irreversibility of the process is dominated by the entropy generation 

through mass transfer. Figure 9 clearly shows that while both Soret and Damköhler number are rather 

influential in determining the irreversibility of the process, Damköhler number seems to be of higher 

significance. 

 Figure 10 depicts the effects of varying the wall thickness on the local entropy generation rates. This 

figure shows that increasing the thickness of the wall through changing the value of Y1 from 0.8 to 0.6 has a 

marginal effect on the nanofluid friction part of the entropy generation. However, it drastically increases 

the entropy generation by mass transfer. Comparing the values of overall entropy generation rates in Figs. 

8 and 10 shows that increasing the thickness of the microchannel wall by two times, has increased the 

entropy generation rate by almost tenfold. This is a very important result and clearly demonstrates the 

significance of wall thickness in the level of irreversibility encountered within the microreactor. 

 Figure 11 illustrates variations of the total entropy generation rate versus radiation parameter, and 

Soret and Damköhler numbers. This figure shows that, as expected, increasing either of Soret or Damköhler 

number would increase the total entropy generation within the microreactor. It also shows that increasing 

the radiation parameter leads to the reduction of the total entropy generated in the system. Strengthening 
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the thermal radiation intensifies the internal heat exchanges between the components of the reactor and 

hence leads to smaller temperature gradients. This tends to suppress the thermal and mass transfer 

irreversibilities and therefore reduces the total entropy generation of the reactor. Figure 11 further shows 

an interesting relation between the radiation parameter and total entropy in which initial increases of 

radiation parameter from zero result in noticeable reduction in the total entropy. However, further increase 

in the radiation parameter causes only minor decreases of the total entropy. Increasing the values of Sort 

and Damköhler numbers widens the range over which the total entropy is affected by thermal radiation. 

 The combined effects of wall thickness and Soret and Damköhler numbers upon the total entropy 

generation are illustrated by Fig. 12. This figure clearly shows that regardless of the values of Soret and 

Damköhler numbers reducing the wall thickness (i.e., increasing Y1) causes substantial decreases in the total 

irreversibility of the system. Figure 12 further shows that such reduction features a highly nonlinear 

relation with Y1. It is also clear that total entropy generation in thick wall microreactor is majorly dependent 

upon the Damköhler number and is affected by Soret number to a lesser extent. For instance, at Y1=0.5 by 

increasing the value of Damköhler number from 0.8 to 1.2, the value of the total entropy generation grows 

for nearly 80%. However, this influence decreases sharply as the wall becomes thinner. 

5. Conclusions 

A porous microreactor accommodating a homogenous chemical reaction and featuring thick walls was 

investigated. The axisymmetric system was subject to thermal load in the form of constant heat flux. Two-

dimensional convection of heat together with the conjugate heat transfer in the walls was tackled 

analytically. This included the internal generation of heat through viscous dissipation of flow kinetic energy. 

Further, a two-dimensional advection-diffusion-reaction model with zeroth order chemical reaction was 

employed to represent the production and transfer of the chemical species. This was coupled to the 

transport of heat through thermal diffusion of mass. The resultant coupled heat and mass transfer problem 

was solved analytically. The calculated temperature and concentration fields were then used to predict the 

local and total entropy generation within the microreactor. The main findings of this study can be 

summarised as follows. 

 Decreasing thicknesses of the microreactor walls, provides more uniform temperature distribution 

within both solid and nanofluid phases of the system. 
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 Increasing the radiation parameter, increases the solid phase temperature and decreases the 

nanofluid phase temperature. This causes a decrease in the total entropy generation of the 

microreactor. 

 As the dimensionless temperature of the nanofluid decreases by increasing the radiation 

parameter, the nanofluid gains more power to wash away heat from the surface of the walls and 

hence the Nusselt number increases. 

 Increasing Damköhler and Soret numbers intensifies the concentration of species, and magnifies 

the mass transfer component of the entropy generation rate. 

 In general, the mass transfer part of the entropy generation dominants exergy destruction within 

the microreactor, although depending on the numerical values of other parameters the nanofluid 

friction part of the entropy generation can be of comparable significance. 

 The total irreversibility appears to be strongly dependent upon the wall thickness and is also 

affected by the moderate values of radiation parameter. 
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Appendix A: Nanofluid thermo-physical properties 

Following Brinkman [43], the effective viscosity for a nanofluid is modelled as a dilute suspension of small 

rigid spheres in a base fluid, 

𝜇𝑛𝑓 =
𝜇𝑓

(1 − 𝜙)2.5
. (A1) 

 The ratio of the effective thermal conductivity of the nanofluid to the thermal conductivity of the base 

fluid allows the former to be approximated using the Maxwell-Garnetts model [44]. 

𝑘𝑛𝑓

𝑘𝑓
=

𝑘𝑝+2𝑘𝑓−2𝜙(𝑘𝑓−𝑘𝑝)

𝑘𝑝+2𝑘𝑓+𝜙(𝑘𝑓−𝑘𝑝)
, (A2) 

while the effective density and specific heat are defined as follows [44]. 

𝜌𝑛𝑓 = 𝜌𝑓(1 − 𝜙) + 𝜌𝑝, (A3a) 

(𝜌𝐶𝑝)𝑛𝑓 = (𝜌𝐶𝑝)
𝑓

(1 − 𝜙) + (𝜌𝐶𝑝)
𝑝

𝜙. (A3b) 

Appendix B: Closed form constants 
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 Provided here is a list of the closed form constants 𝐷1 − 𝐷4, 𝐸1 − 𝐸12, and 𝐹1 − 𝐹5: 

𝐷1 =
𝑆𝑌1

𝑆𝑌1 cosh(𝑆𝑌1) − sinh (𝑆𝑌1)
 

(B1a) 

𝐷2 = 𝐵𝑟′𝐷1
2𝑆2 (B1b) 

𝐷3 =
𝐷1

𝑌1

− 𝐷2cosh (𝑆𝑌1) 
(B1c) 

𝐷4 = −
𝐷1

𝑌1

cosh(𝑆𝑌1). 
(B1d) 

𝐸1 =
−𝑌1

𝑘𝑒1

 , 𝐸2 =
1

𝑘𝑒1

 , 
(B2a,b) 

𝐸3 =
𝐵𝑖𝐷2 − 4𝐷2𝑆2 − 4𝐵𝑖𝐷2𝑆2𝑅𝑑

16𝑘(1 + 𝑅𝑑)𝑆4 − 4𝑘(1 + 𝑅𝑑)𝑆2𝛼2
 , 𝐸4 =

𝐵𝑖𝐷3 − 𝐷3𝑆2

𝑘(1 + 𝑅𝑑)𝑆4 − 𝑘(1 + 𝑅𝑑)𝑆2𝛼2
 , 

(B2c,d) 

𝐸5 =
−[𝐷4 + 2𝐸6𝑘 + (𝐷3 + 𝐸4𝑘𝑆2) cosh(𝑆𝑌1) + (𝐷2 + 4𝐸3𝑘𝑆2) cosh(2𝑆𝑌1)]sech (𝛼𝑌1)

𝑘𝛼2
 , 

(B2e) 

𝐸6 =
−𝐵𝑖𝐷4

2𝑘(1 + 𝑅𝑑)𝛼2
 , 

𝐸7 = 0, (B2f,g) 

𝐸8 =
1

2𝑘(1 + 𝑅𝑑)𝛼2
[2𝐷4 + 2𝐸6𝑘(1 + 𝑅𝑑)(2 − 𝑌1

2𝛼2)

+ 2(𝐷3 + 𝐸4𝑘(1 + 𝑅𝑑)(𝑆2 − 𝛼2)) cosh(𝑆𝑌1)

+ 2(𝐷4 + 𝐸3𝑘(1 + 𝑅𝑑)(4𝑆2 − 𝛼2)) cosh(2𝑆𝑌1)] , 

(B2h) 

𝐸9 =
𝐵𝑖𝐷2

16𝑘(1 + 𝑅𝑑)𝑆4 − 4𝑘(1 + 𝑅𝑑)𝑆2𝛼2
 , 𝐸10 =

𝐵𝑖𝐷3

𝑘(1 + 𝑅𝑑)𝑆4 − 𝑘(1 + 𝑅𝑑)𝑆2𝛼2
 , 

(B2i,j) 

𝐸11 =
−[2𝐸6 + 𝐸10𝑆2 cosh(𝑆𝑌1) + 4𝐸9𝑆2 cosh(2𝑆𝑌1)]sech (𝛼𝑌1)

𝛼2
 , 

(B2k) 

𝐸12 =
1

2𝛼2
[4𝐸6 − 2𝐸6𝑌1

2𝛼2 + 2𝐸10(𝑆2 − 𝛼2) cosh(𝑆𝑌1) + 2𝐸9(4𝑆2 − 𝛼2) cosh(2𝑆𝑌1)] , 
(B2l) 

𝐹1 =
𝐷2𝑘(𝐵𝑖 − 4(1 + 𝑅𝑑)𝑆2)𝑆𝑟

4𝑆2𝑌1𝜀(−𝐵𝑖(1 + 𝑘 + 𝑅𝑑) + 4𝑘(1 + 𝑅𝑑)𝑆2)
 

(B22) 

𝐹2 =
𝐷3𝑘(𝐵𝑖 − (1 + 𝑅𝑑)𝑆2)𝑆𝑟

𝑆2𝑌1𝜀(−𝐵𝑖(1 + 𝑘 + 𝑅𝑑) + 𝑘(1 + 𝑅𝑑)𝑆2)
−

𝛾

𝑆𝑌1
2(𝑆𝑌1 cosh(𝑆𝑌1) − sinh(𝑆𝑌1))

 
(B23) 

𝐹3 =
𝐸5𝑘𝑆𝑟

𝑌1𝜀
 

(B24) 

𝐹4 = −
𝐷4𝑘𝑆𝑟

2𝑌1𝜀(1 + 𝑘 + 𝑅𝑑)
−

𝛾(𝑆(𝑌1 − 1) cosh(𝑆𝑌1) − sinh(𝑆𝑌1))

2𝑌1
2(𝑆𝑌1 cosh(𝑆𝑌1) − sinh(𝑆𝑌1))

 
(B25) 



21 

𝐹5 =
𝐸8𝑘𝑆𝑟

𝑌1𝜀
+

(2𝛾 + 𝑆2𝑌1
2(𝑌1(2 + 𝛾) − 𝛾)) cosh(𝑆𝑌1) − 𝑆𝑌1

2(2 + 𝛾) sinh(𝑆𝑌1)

2𝑆𝑌1
2(𝑆𝑌1 cosh(𝑆𝑌1) − sinh(𝑆𝑌1))

−
𝑘𝑆𝑟

𝑌1𝜀
[𝐸8 −

𝐷4𝑌1
2

2(1 + 𝑘 + 𝑅𝑑)
+

𝐷3(𝐵𝑖 − (1 + 𝑅𝑑)𝑆2) cosh(𝑆𝑌1)

𝑆2(−𝐵𝑖(1 + 𝑘 + 𝑅𝑑) + 𝑘(1 + 𝑅𝑑)𝑆2)

+
𝐷2(𝐵𝑖 − 4(1 + 𝑅𝑑)𝑆2) cosh(2𝑆𝑌1)

4𝑆2(−𝐵𝑖(1 + 𝑘 + 𝑅𝑑) + 4𝑘(1 + 𝑅𝑑)𝑆2)
+ 𝐸5 cosh(𝛼𝑌1)] 

(B26) 

Appendix C: Validation 

To validate the mathematical model developed in Sections 2-3, it is demonstrated here that when the wall 

thickness and thermal radiation tend to zero, the analytical form of the temperature fields reduce to those 

presented by Ting et al. [35] with no internal heat generation term. To produce a system equivalent to that 

of Ref. [35], we set ℎ1 = ℎ2 , 𝑞 = 0 and 𝑞1
′′ = 𝑞2

′′. That is in terms of non-dimensional parameters; 𝑌1 =

1 , 𝑅𝑑 = 0, 𝑄 = 1 and also 𝑞𝑔𝑒𝑛
′′′ = 0, which renders 𝛺𝑔𝑒𝑛 = 0. The momentum Eqs. (11)-(13) can clearly be 

seen to reduce to the corresponding equations. 

 By utilising the above parameters Eq. (17) become, 

𝑑𝑇̅𝑛𝑓

𝑑𝑥
=

1

𝜌𝑛𝑓𝐶𝑝,𝑛𝑓𝑢ℎ2
2 [ℎ2𝑞1

′′ +
𝜇𝑒𝑓𝑓𝑆3𝑢2cosh (𝑆)

𝑆 cosh  (𝑆)−sinh (𝑆)
] = 𝛺𝑇 . (C1) 

 Next, the radial thermal equations can be determined from Eqs. (19b) and (19c) using the given 

conditions to yield the coupled equations: 

𝑘𝜃𝑛𝑓
′′ + 𝐵𝑖(𝜃𝑠 − 𝜃𝑛𝑓) + 𝐷2

′ 𝑐𝑜𝑠ℎ(2𝑆𝑌) + 𝐷3
′ cosh(𝑆𝑌) + 𝐷4

′ = 0, 0 ≤ 𝑌 < 1 (C2a) 

𝜃𝑠
′′ − 𝐵𝑖(𝜃𝑠 − 𝜃𝑛𝑓) = 0, 0 ≤ 𝑌 < 1 (C2b) 

where the modified coefficients (which are shown by use of a prime) are: 

𝐷1
′ =

𝑆

𝑆 cosh(𝑆) − sinh (𝑆)
 

(C3a) 

𝐷2
′ = 𝐵𝑟′𝐷1

′2𝑆2 (C3b) 

𝐷3
′ = 𝐷1

′ − 𝐷2
′ cosh (𝑆) (C3c) 

𝐷4
′ = −𝐷1

′ cosh (𝑆) (C3d) 

 The coefficients 𝐷1
′ − 𝐷4

′  are the same as those calculated by Ting et al. for the coupled thermal 

equations investigated therein under the previously stated conditions. Thus, it follows that the final 

nanofluid and porous solid thermal equations, Eqs. (22b) and (22c) may be reproduced as follows. 

𝜃𝑛𝑓(𝑌) = 𝐸3
′ cosh(2𝑆𝑌) + 𝐸4

′ cosh(𝑆𝑌) + 𝐸5
′ cosh(𝛼𝑌) + 𝐸6

′ 𝑌2 + 𝐸7
′ 𝑌 + 𝐸8

′  0 ≤ 𝑌 < 1 (C4a) 

𝜃𝑠(𝑌) = 𝐸9
′ cosh(2𝑆𝑌) + 𝐸10

′ cosh(𝑆𝑌) + 𝐸11
′ cosh(𝛼𝑌) + 𝐸6

′ 𝑌2 + 𝐸7
′ 𝑌 + 𝐸12

′  0 ≤ 𝑌 < 1 (C4b) 

where the new coefficients are defined as: 



22 

𝐸3
′ =

𝐷2
′ (4𝑆2 − 𝐵𝑖)

4𝑆2(−4𝑘𝑆2 + 𝐵𝑖𝑘 + 𝐵𝑖)
 , 𝐸4

′ =
𝐷3

′ (𝑆2 − 𝐵𝑖)

𝑆2(𝑘𝛼2 − 𝑘𝑆2)
 , 

(C5a,b) 

𝐸5
′ =

−[𝐷4
′ + 2𝐸6

′ 𝑘 + (𝐷3
′ + 𝐸4

′ 𝑘𝑆2) cosh(𝑆) + (𝐷2
′ + 4𝐸3

′ 𝑘𝑆2) cosh(2𝑆)]sech (𝛼)

𝐵𝑖(𝑘 + 1)
 , 

(C5c) 

𝐸6
′ =

−𝐷4
′

2(𝑘 + 1)
 , 

𝐸7
′ = 0, (C5d,e) 

𝐸8
′ =

1

2𝑘𝛼2
[2𝐷4

′ + 2𝐸6
′ 𝑘(2 − 𝛼2)

+ 2(𝐷3
′ + 𝐸4

′ 𝑘(𝑆2 − 𝛼2)) cosh(𝑆) + 2(𝐷4
′ + 𝐸3

′ 𝑘(4𝑆2 − 𝛼2)) cosh(2𝑆)] , 

(C5f) 

𝐸9
′ =

𝐵𝑖𝐸3
′

𝐵𝑖 − 4𝑆2
 , 𝐸10

′ =
𝐵𝑖𝐸4

′

𝐵𝑖 − 𝑆2
 , 

(C5g,h) 

𝐸11
′ =

−[2𝐸6
′ + 𝐸10

′ 𝑆2 cosh(𝑆) + 4𝐸9
′𝑆2 cosh(2𝑆)]sech (𝛼)

𝛼2
 , 

(C5i) 

𝐸12
′ =

1

2𝛼2
[4𝐸6

′ − 2𝐸6
′ 𝛼2 + 2𝐸10

′ (𝑆2 − 𝛼2) cosh(𝑆) + 2𝐸9
′(4𝑆2 − 𝛼2) cosh(2𝑆)] , 

(C5j) 

 With the appropriate rearranging of terms, the above coefficients indicate that Eqs. (C4a) and (C4b) are 

analytically identical to the nanofluid and porous solid thermal equations in the work by Ting et al. [35] 

with a temperature at the upper wall equal to 0 due to the equality of the external heat flux at the bottom 

and top walls. 
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Fig. 1. Schematic view of the investigated microreactor. 
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Fig. 2. Dimensionless temperature contours for varying wall thickness, 𝑌1, for the nanofluid and porous solid phase. Nanofluid 

phase is shown in a), c), and e) with 𝑌1values of 0.5, 0.7 and 0.9, respectively. Porous solid phase is shown in b), d), and f) with 𝑌1 

values of 0.5, 0.7 and 0.9 respectively. 
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Fig. 3. Dimensionless temperature contours for varying thermal conductivity, 𝑘, for nanofluid and porous solid phases. Nanofluid 

phase is shown in a), c), d) and e) with 𝑘 values of 0.03, 0.05, 0.07, respectively. Porous solid phase is shown in b), d), and f) with 

𝑘 values of 0.03, 0.05, 0.07, respectively. 
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Fig. 4. Dimensionless temperature contours for varying radiation parameter, 𝑅𝑑, for nanofluid and porous solid phases. 

Nanofluid phase is shown in a), c), d) and e) with 𝑅𝑑 values of 0, 1, 2, respectively. Porous solid phase is shown in b), d), and f) 

with 𝑅𝑑 values of 0, 1, 2, respectively. 
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Fig. 5. Variation of Nusselt number with a) the wall thickness and b) radiation parameter. 
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Fig. 6. Dimensionless concentration contours for varying Damköhler number,𝛾, a) showing the full microchannel for = 1.1 , b) 

mid-section of microchannel for 𝛾 = 1.1, c) mid-section for 𝛾 = 0.9, and d) mid-section for 𝛾 = 0.7. 
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Fig. 7. Dimensionless concentration contours for varying wall thickness, 𝑌1, a) showing the full microchannel for 𝑌1 = 0.5 , b) mi-

section of microchannel, for 𝑌1 = 0.5 , c) mid-section for 𝑌1 = 0.7 , and d) mid-section for 𝑌1 = 0.9. 
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Fig 8. Local entropy generation contours for the base configuration showing a)𝑁𝑠,ℎ𝑡  , b) 𝑁𝑓,ℎ𝑡 , c)𝑁𝑖𝑛𝑡 , d)𝑁𝐹𝐹 , e)𝑁𝐷𝐼 and f)𝑁𝑝𝑚. 
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Fig. 9. The effects of Soret and Damköhler numbers on the local entropy generation, top row:  𝑆𝑟 = 0.01, a)𝑁𝐷𝐼 and 

b)𝑁𝑝𝑚, bottom row: 𝛾 = 0.3, c)𝑁𝐷𝐼 and d)𝑁𝑝𝑚. 
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Fig. 10. Local entropy generation contours for the wall thickness of 𝑌1 = 0.6, showing a)𝑁𝑠,ℎ𝑡   , b) 𝑁𝑓,ℎ𝑡 , c)𝑁𝑖𝑛𝑡 , d)𝑁𝐹𝐹 , e)𝑁𝐷𝐼 and 

f)𝑁𝑝𝑚. 
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Fig. 11. Total Entropy generation graphs for varying radiation parameter, 𝑅𝑑, with various values of a) Soret number, 𝑆𝑟 and b) 

Damköhler number, 𝛾. 
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Fig. 12. Total Entropy graphs for varying wall thickness, 𝑌1 with different values of a) Damköhler number, 𝛾, and b) Soret 

number, 𝑆𝑟. 
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Table 1. List of base parameters values used in the production of all graphs 

except where otherwise stated. 

Symbol Value 

𝐵𝑖 1 

𝐵𝑟′ 0.01 

𝛾 1 

𝐷𝑎 0.1 

𝑃𝑒 10 

𝑃𝑟 5 

𝑅𝑒 150 

𝑆𝑟 0.7 

𝜖 0.95 

𝑘 0.05 

𝑘𝑒1 0.5 

𝜔 0.001 

𝜑 0.01 

𝑌1 0.8 

𝜉 0.05 

𝑅𝑑 2 

 




