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51 Abstract

52 Greenhouse gases emissions from biomass burning have been given a little attention, 

53 especially the spatiotemporal features of biomass burning sources and greenhouse 

54 gases emissions have not been comprehensively uncovered. This research undertook 

55 IPCC bottom-up inventory guideline to estimate Chinese greenhouse gases emissions 

56 from biomass burning and applied geographical information system to reveal biomass 

57 burning emissions spatiotemporal features. The purposes were to quantify greenhouse 

58 gases emissions from various biomass burning sources and to uncover the spatial and 

59 temporal emissions features so to deliver future policy implications in China. The 

60 results showed that the average annual biomass burning emissions in China from 

61 2000-2012 were 880.66 Mt for CO2, 96.59 Mt CO2-eq for CH4, and 16.81 Mt CO2-eq 

62 for N2O. The spatial pattern of biomass greenhouse gases emissions showed about 

63 50 % of national emission were in the east and south-central regions. The majority of 

64 biomass burning emissions were from firewood and crop residues, which accounted 

65 for more than 90 % of national biomass burning emissions. All types of biomass 

66 burning emissions exhibited similar temporal trends from 2000-2012, with strong 

67 inter-annual variability and fluctuant increase. The large grassland and forest fires 

68 induced the significant greenhouse gases emissions peaks in the years of 2001, 2003 

69 and 2006. We found that biofuel burning, with low combustion efficiency, is the 

70 major emission source. Open burning of biomass was widespread in China, and east 

71 and south-central regions were the major distribution of biomass burning greenhouse 

72 gases emission. Optimized design for improving the efficiency of biomass utilization 

73 and making emission control policy combination with its spatiotemporal features will 

74 be the effective way to reduce the biomass burning emissions. 

75 Keywords: Greenhouse gases emission, Biomass burning, Biofuel, Open burning
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76 1. Introduction 

77 Biomass burning is the burning of living and dead vegetation. It often refers to 

78 forest fires, grassland fires, field burning of crop residue, burning of crop residue as 

79 fuel and fuel wood (Yan et al., 2006). Biomass burning is a significant source of 

80 Greenhouse Gases (GHGs) (Shi and Yamaguchi, 2014), contributing 20-50 % of 

81 global GHGs emissions (Yadav et al., 2017), and greatly impacting local, regional and 

82 global atmospheric chemistry and climate change (Weldemichael and Assefa, 2016). 

83 Biomass burning is also one important reason that induce the inter-annual variability 

84 in the growth rate of some trace gases (Langenfelds et al., 2002) and the uncertainty in 

85 atmospheric transport simulations of trace gases (Bian et al., 2007). In many policies 

86 and regulations, biomass combustion is always considered as “carbon-neutral” due to 

87 the released CO2 refixation by vegetation in the next growth cycle (Searchinger et al., 

88 2009). However, this refixation is not a comforting balance because the short cycle 

89 CO2 cannot be rapidly removed by vegetation regrowth, and biomass burning CO2 in 

90 the atmosphere has been monitored by satellite (Yan et al., 2006). If the burnt 

91 ecosystem is not regrown, the liberated CO2 remain in atmosphere for long time, 

92 thereby affecting the global CO2 budget (Yadav et al., 2017). Together with the 

93 relative long cycle of CH4 and N2O in atmosphere (Koppmann et al., 2005), the 

94 effects of GHGs emissions from biomass burning on global climate change cannot be 

95 ignored (Haberl et al., 2012). Accurately evaluating GHGs emissions from biomass 

96 burning at both global and regional levels is urgently needed to better understand the 

97 interactions between anthropogenic GHGs emissions and climate change (Shi et al., 

98 2015). 

99 Studies on GHGs emissions from biomass burning are limited (Koppmann et al., 

100 2005). Existing studies were mostly focus on open burning of forest fires, grassland 
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101 fires, and field burning of crop residues (e.g., EDGAR, 2011; Gadde et al., 2009), 

102 lacking of biofuel burning. Biofuel burning is popular in countries with rural 

103 population, such as China. Biofuel as major energy takes up 54 % of the total rural 

104 life energy (Hu, 2008). Short of biofuel burning estimation may dramatically 

105 underestimate biomass burning emissions in China. The relevant studies in China are 

106 few, and the disparity in the estimates of burned biomass amount and the emission 

107 factors have resulted in differences in biomass burning emission inventories (Yan et 

108 al., 2006). Streets et al. (2003) estimated that CO2 and CH4 emissions from biomass 

109 open burning were approximately 300 Mt CO2-eq. Cao et al. (2005) and Lu et al. 

110 (2011) extended biomass burning to biofuel, and the emissions increased to more than 

111 800 Mt CO2-eq in the same year. Yan et al. (2006) first considered N2O emission 

112 from biofuel and open burning sources, and the GHGs emission was approximately 

113 759 Mt CO2-eq. Tian et al. (2011) and Zhao et al. (2012) extended the CO2 and CH4 

114 emissions from an individual year to temporal changes. The widely available biomass 

115 burning emission database of EDGAR v4.2 (2011) provides multi-year GHGs 

116 emission inventory; however, the database only focuses on open field biomass 

117 burning, lacking the part of biofuel that is important in Chinese rural life energy (Li 

118 and Xu, 2010). 

119 Overall, there are few studies on the inventories of GHGs emissions from all types 

120 of biomass burning. The existing studies in China only focused on a specific year or a 

121 narrow temporal scale, with limited biomass burning sources, lacking detail 

122 spatiotemporal information. The underrepresented expression of biomass burning 

123 GHGs emissions in China is inevitable (Shi and Yamaguchi, 2014). Comprehensively 

124 uncovering the features of biomass burning emissions from the perspectives of 

125 complete biomass burning sources and a spatiotemporal scale is essential (Yan et al., 



ACCEPTED MANUSCRIPT

6

126 2006). In this study, a bottom-up estimate of biomass burning emission in China using 

127 statistical data was conducted. The spatiotemporal features of biomass burning 

128 emission analysis were performed by Geographical Information System (GIS). Open 

129 burning emissions from forest fire, grassland fire and field burning of crop residues, 

130 biofuel burning emissions from crop residues, firewood and livestock excrement, and 

131 emissions from biomass-based electricity generation were considered. The outcomes 

132 of the study will help to understand Chinese biomass burning GHGs emissions and 

133 make a scientific basis for policy implementations.  

134 2. Material and Methods

135 Biomass burning emission is estimated based on the activity data of burned 

136 biomass and emission factors using Eq. (1) (Eggleston et al., 2006). Activity data 

137 were calculated from the official statistics Yearbook. Emission factors were based on 

138 China’s specific values and the default value provided by IPCC bottom-up inventory 

139 guideline (Eggleston et al., 2006) (Table 1).

140                         Qi=  Mj EFi,j 10-3                        (1)∑  ⋅   ⋅  

141 i was the type of GHG (CO2, CH4 or N2O); j was the type of biomass; Qi was the total 

142 amount of i emission each year, t/y; Mj was the amount of j burned biomass each year, 

143 t/y or kWh/y; and EFi,j was the i emission factor of biomass j, g/kg or g/kWh.

144 Biomass burning types include forest and grassland fires, firewood, crop residue 

145 burning, livestock excrement burning and biomass-based electricity generation. The 

146 activity data calculation methods are listed in the following sections. 

147 2.1 Forest and grassland fires

148 The amounts of biomass burning from forest and grassland fires are calculated 

149 using Eq. (2).

150                             M1 =A D F                        (2) ⋅   ⋅  
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151 M1 was the amount of burned biomass each year, t/y; A was the burned area each year, 

152 m2/y; D was the biomass density, t/m2; and F was the burning efficiency.

153 The burned forest and grassland areas from 2000–2012 for each province were 

154 from the China Forestry Yearbook (NFB, 2001-2013) and China Husbandry 

155 Yearbook (EBCHY, 2001-2013). Biomass density was estimated by Fang et al. 

156 (1996) for forest and by Yan et al. (2006) for grassland. The burning efficiency was 

157 0.33 for forest and 0.95 for grassland (Yan et al., 2006).

158 2.2 Firewood

159 Firewood includes energy forest, forestry production logging slash, wood and 

160 bamboo manufacturing residues, forest intermediate cutting, civil firewood cutting, 

161 and sideway trees (Liu and Shen, 2007). Based on the statistical data from the China 

162 Forestry Yearbook (NFB, 2001-2013), the firewood production was calculated using 

163 Eq. (3) (Liu and Shen, 2007).

164                       M2 = Qfi  ri mi                                 (3)∑𝑛
𝑖 = 0 ⋅  ⋅  

165 i was the biomass type; M2 was the actual amount of firewood each year, t/y; Qfi was 

166 the resource amount of wood i each year, and the unit was the volume of m3/y, area of 

167 m2/y or numbers/y; ri was the ratio of wood i used as fuel; and mi was the weight 

168 coefficient, t/m3, m2/m3 or t/individual. For the associated parameters, see the study by 

169 Liu and Shen (2007).

170 According to the felling forest data, the forestry production logging slash was 

171 approximately 40 % of the forest biomass, including timber forests, shelter forests, 

172 and special forests that reach the felling standard. Wood and bamboo processing 

173 residues constituted approximately 34.4 % of log and bamboo production. The 

174 intermediate cutting times in middle-aged and young trees were approximately 2 to 3 

175 during their growing periods.
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176 2.3 Crop residues burning

177 Crop residues can be burned as household energy and directly burned in field. The 

178 burning amount of crop residues was calculated using Eq. (4) (Lu et al., 2011).

179                   M3 = Pi Ni C B F                 （4）(∑𝑛
𝑖 = 0  ⋅  ) ⋅  ⋅  ⋅  

180 i was the crop type; M3 was the amount of crop residue burning each year, t/y; Pi was 

181 crop i production each year, t/y; Ni was the residue/crop ratio of crop i; C was the 

182 collected coefficient; B was the burning ratio; and F was the burning efficiency. 

183 Detailed crop production data were collected from the China Statistical Yearbooks 

184 (NBSC, 2001-2013). The residue/crop ratios were available from the studies of Lu et 

185 al. (2011) and Yevich and Logan (2003). The collected coefficient of crop residues 

186 was 0.881 (Yevich and Logan, 2003). The percentage of crop residues burned in the 

187 field was 19.4 % (Yan et al., 2006) and 47 % for biofuel (Chen et al., 2017). The 

188 burning efficiency for the crop residue was approximately 92.5 % (Lu et al., 2011).

189 2.4 Livestock excrement burning

190 Livestock excrement burned as fuel in China is small and only distributes in the 

191 pastoral and semi-pastoral areas of Inner Mongolia, Xinjiang, Tibet, Qinghai and 

192 Ningxia provinces. The amount of livestock excrement burning was calculated using 

193 Eq. (5) (Lu et al., 2011).

194 M4 = Si Yi C R                          (∑𝑛
𝑖 = 0  ⋅  ) ⋅  ⋅  

195 （5）

196 Where i was the large livestock type; M4 was the amount of livestock excrement 

197 burning each year, t/y; Si was the numbers of large livestock i at the end of the year; Y 

198 was the excrement production per one large livestock i during its feeding period 

199 (approximately 365 d), t/individual/y; C was the large livestock excrement dry matter 

200 content; and R was the ratio of livestock excrement direct burned as fuel.



ACCEPTED MANUSCRIPT

9

201 The numbers of large livestock were collected from the China Statistical Yearbooks 

202 (NBSC, 2001-2013). The excrement coefficients of large livestock were estimated by 

203 He (2012). The dry matter content of large livestock excrement was 18 %, and its 

204 direct burning as fuel was 20 % (Tian et al., 2011).

205 2.5 Biomass-based electricity generation

206 The development of biomass-based electricity generation in China is late, and the 

207 available data began in 2006. From the Clean Development Mechanism project 

208 database and methodology (AM0006) (CDM, 2014), we can obtain the estimated 

209 average GHGs reduction (CO2-eq, t/y), the approved date, the location, and the 

210 calculation method of GHGs reduction. According to the GHGs reduction coefficient 

211 of 1.79 kg CO2-eq/kWh (Shafie et al., 2014), the electricity generation was calculated 

212 using Eq. (6).

213 M5 = RGHG /1.79                           (6)

214 M5 was the biomass-based electricity generation each year, kWh/y; and RGHG was the 

215 GHGs emission reduction each year, kg/y.

216 3 Results and Discussions

217 3.1 The GHGs emissions from biomass burning on national scale

218 Biomass burning GHGs emissions showed increase trend from 822.69 Mt CO2-

219 eq in 2000 to 1,088.18 Mt CO2-eq in 2013, with an average annual growth rate of 

220 2.4 %. CO2 was the overwhelmingly largest contributor (88 %), followed by CH4 

221 (10 %) and N2O (2 %) (Table 2). The three types GHGs presented similar variations 

222 with strong inter-annual variability and fluctuant increase over time, even though their 

223 emission magnitudes differed greatly (Table 2). The contributions of biomass burning 

224 sources were similar for the three GHGs types (Fig. 1). Crop residues burned as fuel 

225 was the biggest contributor. Biofuel of firewood and crop residues burned in field 
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226 were the other two major emission sources. The top three biomass burning sources 

227 accounted for approximately 86-98 % of the total biomass burning emissions (Fig. 2), 

228 which was consistent with other study (Lu et al., 2011). The remaining biomass 

229 burning emissions (approximately 2-14 %) was mainly from forest fires, with small 

230 peaks in 2003 and 2006. The contribution of grassland fires was small, while its peak 

231 amount in 2001 increased its share to 11 % (Fig. 2). The decreased biomass burning 

232 amount from forest and grassland fires over time indicated that more attention to 

233 control of wildfires had a good effect (Yan et al., 2006). Livestock excrement burned 

234 as fuel was the least contributor of biomass burning. 

235 Biomass burning as life energy was the dominant burning type in rural China 

236 (Yevich and Logan, 2003). In this study, biofuel burning emission (crop residues, 

237 firewood and livestock excrement burned as fuel) was the main biomass burning 

238 GHGs emissions in China, taking up approximately 77-81 % of the total emissions. 

239 Biomass open burning emission (field burning of crop residue and forest and 

240 grassland fires) constituted only 25 % of biofuel burning. Its temporal change was 

241 consistent with biofuel emissions but fluctuated more moderately. The annual average 

242 of open field burning of crop residues was 162 Tg CO2-eq, which was consistent with 

243 other study (Li et al., 2016). Compared to crop residues, emissions from forest and 

244 grassland fires were small, but the obvious peak emissions resulted from large 

245 grassland and forest fires cannot be neglected (Fig. 2). Biomass-based electricity 

246 generation emission was not large, while it increased obviously from 2006 to 2012 

247 (with annual 73 % growth rate). The swift increases were derived from its ability of 

248 energy saving and GHGs emission reduces as well as government promotion (Xu et 

249 al., 2016). The development of new and efficient biomass-to-electricity technologies 

250 and consideration of logistical component of biomass should be promoted to improve 
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251 the economic and GHGs emissions reduction outcomes (Liu et al., 2017).

252 3.2 The spatiotemporal GHGs emissions from biomass burning on regional scale

253 Biomass burning emissions were mainly distributed in east and south-central 

254 regions of China (Table 2; Fig. 4), accounting for half of the total emissions. The 

255 southwest region, northeast region, and north-central region separately took up 

256 approximately 10-15 %, with less than 10 % in the northwest region. The regional 

257 GHGs emissions presented various temporal changes, with a fluctuating decrease in 

258 east and south-central regions, a parabolic increase and then decrease in southwest 

259 region, a rapid increase in northeast region, and a steady increase in north-central 

260 region. The national GHGs emission peaks in 2001, 2003, and 2006 due to large 

261 grassland and forest open fires (Fig. 2) were mainly distributed in the south-central 

262 region and northeast region. The large open fires separately caused GHGs to take up 

263 35-54 % and 32-53 % of the regional emissions. 

264 The contribution of biomass burning source to regional GHGs emissions was 

265 different (Fig. 3). In the north-central, northeast, and east regions, crop residues 

266 burned as fuel were the largest contributor, accounting for more than 50 % of the 

267 regional GHGs emissions. In the south-central and northwest regions, crop residues 

268 burned as fuel and firewood separately took up approximately 30% of the regional 

269 emissions. Since three (Xinjiang, Qinghai and Ningxia provinces) of the five pastoral 

270 and semi-pastoral areas are in northwest region, livestock excrement played an 

271 important role in GHG emissions, especially for the N2O emission (constituting 37 % 

272 of the regional emission). In the southwest region, firewood became the largest 

273 contributor. The different biofuel utilization among various regions depends on local 

274 natural resources and economy (Wang and Feng, 2004). The different biomass 

275 burning type contribution to regional GHGs emissions indicated that the mitigation 
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276 potential and related strategies and policies should be different in various regions.

277 3.3 The GHGs emissions from biomass burning on provincial scale

278 From the provincial GHGs emissions during 2000-2012 period (Fig. 4), we found 

279 that more than 40 Mt CO2-eq emissions were major in Jiangsu, Anhui, Shandong, 

280 Henan, Hubei, Hunan, Hebei, Heilongjiang, Sichuan, and Guangxi provinces. High 

281 population density, increased consumption of firewood and crop residue as life 

282 energy, and serious crop residues burned in the field were the main cause of large 

283 emissions (Cao et al., 2008). The lower GHGs emissions were mostly in Beijing, 

284 Tianjing, Shanghai, Hainan, Tibet, Qinghai, and Ningxia provinces (Fig. 4). Beijing, 

285 Tianjing and Shanghai municipalities have rapid urbanization, while Hainan, Tibet, 

286 Qinghai, and Ningxia provinces have smaller population. The demand of biomass 

287 burning as life energy in these areas was relatively lower (Cao et al., 2008).

288 From the temporal changes during 2000-2012 period (Fig. 4), the relative emission 

289 growth rates in some interior provinces, including Jilin, Heilongjiang, Inner 

290 Mongolia, Ningxia, and Xinjiang provinces, were obviously higher than those of 

291 coastal provinces in the east and south-central regions, although the absolute 

292 emissions in these interior provinces were generally small. The smallest emission 

293 growth rate appeared in Shanghai, then the coastal provinces of Jiangsu, Zhejiang, 

294 Guangdong and Hainan provinces. The disparity in the provincial emission growth 

295 rates mainly resulted from different energy structure (Cao et al., 2008). In the less-

296 developed rural areas of the west region and the abundant biomass resource of 

297 northeast provinces, the inexpensive and easily obtained firewood and crop residues 

298 were consistently important energy (Yevich and Logan, 2003). In contrast, in the 

299 developed coastal provinces, other high-grade energy sources, such as gas, coal, and 

300 electricity were used widely. Making related mitigation strategies and policies should 
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301 consider not only high GHGs emission provinces but also include higher emission 

302 growth rate provinces.

303 3.4 Chinese biomass burning GHGs emission contribution

304 In this study, the annual GHGs emissions from biomass burning in China during 

305 2000-2012 period were 993 Mt CO2-eq/y, equivalent to approximately 10 % of the 

306 national total GHGs emissions from fossil fuel combustion and cement production. 

307 The biomass burning GHGs emissions in China accounted for approximately 8 % of 

308 global (Watson et al., 2001), 22 % of developing world, and 34 % of Asia biomass 

309 burning GHG emissions (Yevich and Logan, 2003). The emissions of CH4 and N2O 

310 accounted for approximately 7 % of the global biomass burning non-CO2 GHGs 

311 emissions (Montzka et al., 2011). Annual open biomass burning GHGs emissions 

312 were approximately 210 Mt CO2-eq/y, taking approximately 17 % of Asia (Streets et 

313 al., 2003) and 2-3 % of the world open biomass burning emissions (Van der Werf et 

314 al., 2006). Compared to other main contributors of open biomass burning emission in 

315 Asia (Yevich and Logan, 2003), this study was lower than the estimated 238-688 Mt 

316 CO2-eq/y in India (Venkataraman et al., 2006) and 240 Mt CO2-eq/y in Southeast 

317 Asia (Shi and Yamaguchi, 2014) but significantly higher than the 58 Mt CO2-eq/y in 

318 Indonesia (Permadi and Oanh, 2013). 

319 3.5 Emission uncertainties

320 Biomass burning emissions were associated with the amount and types of biomass 

321 burning and related emission factors. It was true that some types of biomass burning 

322 were very little known. This inventory in such cases relied heavily on inferences of 

323 activity data from statistical information and the emission factors. According to 

324 previous studies, the activity data of each biomass type was within an uncertainty 

325 range of approximately±50 % around the mean value (Saatchi et al., 2011), and the 
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326 typical uncertainty of related emission factor was on the order of 20-30 % 

327 (Hoelzemann et al., 2004). Based on the IPCC guidelines for national greenhouse gas 

328 inventories (2006) and the method of Streets et al (2003), we estimated the 

329 uncertainty of biomass burning emissions, and considered seven types of burning 

330 sources and three chemical species. The estimated emission ranges were 264.20-

331 1,585.19 Mt CO2 /y, 28.98-173.86 Mt CO2-eq /y for CH4, and 5.04-30.26 Mt CO2-eq 

332 /y for N2O. 

333 3.6 Policy implication

334 Biomass resources in China are abundant (Chen et al., 2017). Rational utilization of 

335 biomass resources can significantly reduce GHGs emissions and alleviate both energy 

336 and air quality concerns (Weldemichael and Assefa, 2016). Based on above findings, 

337 several policy implications should be raised for a health and environmental policy 

338 interventions:

339   It is urgent to promote efficient biomass energy utilization in Chinese rural areas. 

340 Biomass as an important life energy in rural China will not change in the near future. 

341 Considering rural resident preference for conventional energy usages, it is important 

342 to develop clean and efficient combustion technologies for household use. Widely 

343 disseminating clean-burning household stove use accompanied by some subsidy 

344 programs can be piloted in the high biomass use as life energy region and then 

345 promoted nationwide. Appropriate bioenergy planning according to regional 

346 conditions is crucial. In the abundant biomass regions such as east and south-central, 

347 biomass power generation may be a good choice for governments to fulfill emissions 

348 reduction considering comprehensive benefits. Optimizing biomass power plant 

349 layout and minimizing logistics costs should be paid to insure biomass power under a 

350 good operation status (Liu et al., 2017). The market of biomass-based clean and 
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351 efficient energy (such as power generation, biomass briquettes, biogas production) 

352 should be expanded to rural areas to thoroughly address rural conventional energy 

353 structure. Strengthening the awareness of rural residents on their willing to choose and 

354 use such clean biomass energy efficiently for air pollution reduction is also in demand 

355 (Sun et al., 2016). 

356 It is critical to put forward effective measures to prohibit open field burning of crop 

357 residues. Now, central and local governments have recognized the negative effects of 

358 crop resides field burning and took some control actions to ban open field burning of 

359 crop residues (MEP, 1999). For instance, to define the government responsibility, to 

360 monitor fire spots by meteorological and environmental satellite, to strengthen the 

361 inspection of illegal activities, etc. (Zhang et al., 2017). The key point is strengthening 

362 the enforcement of these good regulations in the northeast, east and south-central 

363 regions. In addition to administrative control measures from the government, the 

364 integrated utilization of crop resides initiatives such as returning straw to soil to 

365 increase soil texture and fertility (Sun et al., 2016), making crop residue as efficient 

366 energy by advanced technology to partially replace fossil energy (Zhang et al., 2017), 

367 and using straw as feed supply to animal and raw material to plate-making and 

368 charcoal making (Zhang et al., 2017) are another valid control measures. The crop 

369 residues utilization efficiency improvement needs government supports from aspects 

370 of fund, policy, technology, education, etc..

371   It is important to consider spatiotemporal features when making biomass burning 

372 GHGs emission control policy. The key control areas are in east and south-central 

373 regions, especially for the contributions of biofuel of crop residues in east region and 

374 biofuel of crop residues and firewood in south-central region. Mitigation strategies 

375 and policies should consider both provinces with high biomass burning GHGs 
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376 emission and provinces with higher emission growth rate. The provinces with high 

377 biomass burning emission potential can reduce the emissions by increasing biomass in 

378 energy structure optimization and adopting advanced biomass technology. The forest 

379 and grassland open fire control have had a good effect on biomass burning GHGs 

380 emissions reduction in recent years. Government should continue to strengthen the 

381 monitoring and preventing of anthropogenic forest and grassland fires, especially in 

382 the south-central region and northeast region. 

383 4. Conclusions 

384 The GHGs emissions from biomass burning increased in China from 2000 to 2012. 

385 The majority of biomass burning emissions were from firewood, crop residues burned 

386 as fuel, and crop residues field burning, which accounted for more than 90 % of the 

387 national biomass burning emissions. The large grassland and forest open fires resulted 

388 in obvious emission peaks in several years. The obvious emission peaks resulted from 

389 large grassland and forest fires mainly distributed in the south-central region and 

390 northeast region. Half of biomass burning GHGs emissions were mainly distributed in 

391 the east and south-central regions. The biomass burning GHGs emissions in coastal 

392 provinces were higher than the interior provinces, while the relative emission growth 

393 rates presented a contrary trend. Future research on obtaining more accurate biomass 

394 burning data, improving the quality of statistics as well as combination of model 

395 simulation and prediction would be definitely necessary for feature identification of 

396 regional and global biomass burning GHGs emissions and policy making.
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601

602

603 Table 1 Emission factors for biomass burning in China

Field burning Biofuel Electricity 
generationEmission 

factors
(g/kg)

forest 
fire

grassland 
fire

crop 
residue

firewood crop 
residue

livestock 
excrement

biomass-based
(g/kWh)

CO2 1,599.3[1] 1,613[1] 1,445.76[1] 1,658[2] 1,437.97[3] 1,060[4] 3,602[5]

CH4 4.7[1] 2.3[1] 3.90[1] 5.2[2] 5.2[2] 4.14[4] 16.32[5]

N2O 0.26[6] 0.21[6] 0.07[7] 0.0624[6] 0.12[8] 0.3132[6] 0.2862[5]

604 Note: superscript numbers indicate references. [1] indicates Lu et al., 2011; [2] indicates Yan et al., 2006; [3] 

605 indicates Zhao et al., 2012; [4] indicates Tian et al., 2011; [5] indicates Koppmann et al., 2005; [6] indicates 

606 Eggleston et al., 2006; [7] indicates Gadde et al., 2009; [8] indicates Liu, 2011.

607

608

609

610

611

612

613

614

615
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Table 2 The inventories of GHGs emissions from biomass burning during 2000-2012 period (Mt CO2-eq)
Regions Year
　 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012
CO2

North-central 68.54 76.81 78.40 92.84 87.29 90.93 95.15 91.93 97.05 94.62 98.11 102.35 103.45 
Northeast 75.79 86.09 89.23 121.34 106.79 103.05 122.04 104.45 117.04 116.40 127.80 139.97 146.29 
East 209.20 213.25 232.01 217.89 229.87 200.21 208.14 207.69 225.83 231.77 228.26 229.63 236.22 
South-central 208.99 303.94 196.44 189.56 217.26 222.56 240.87 232.43 236.68 236.30 234.81 236.24 236.79 
Southwest 104.56 152.78 159.12 162.78 133.80 149.56 137.15 129.56 137.31 129.48 130.09 124.42 128.39 
Northwest 50.09 66.64 55.94 53.53 63.39 58.65 63.91 66.52 71.57 73.06 71.72 77.09 78.19 
National 729.01 898.43 824.77 890.00 858.85 849.70 902.31 854.92 909.67 907.84 914.77 939.40 961.11 
CH4 (CO2-eq)
North-central 7.72 8.62 8.83 10.31 9.84 10.24 10.75 10.44 11.08 10.79 11.33 11.89 12.17 
Northeast 8.59 9.75 10.19 13.32 12.06 11.70 13.68 12.07 13.67 13.52 15.08 16.59 17.47 
East 23.39 23.84 25.81 24.19 25.60 22.44 23.39 23.60 25.70 26.53 26.16 26.35 27.45 
South-central 23.01 26.95 21.62 20.82 23.84 24.44 26.47 25.56 26.20 26.31 26.28 26.55 26.79 
Southwest 11.73 16.82 17.53 17.91 14.86 16.54 15.16 14.38 15.22 14.41 14.46 13.88 14.36 
Northwest 5.71 5.92 6.36 6.11 7.18 6.70 7.25 7.56 8.11 8.28 8.15 8.74 8.88 
National 79.91 91.84 90.21 96.35 93.73 92.81 98.49 94.25 100.81 100.87 102.24 105.39 108.75 
N2O (CO2-eq)
North-central 1.55 1.60 1.67 2.21 1.88 2.04 2.19 2.03 2.18 2.13 2.21 2.33 2.40 
Northeast 1.60 1.91 1.90 3.54 2.39 2.28 3.05 2.19 2.47 2.55 2.70 2.98 3.13 
East 4.14 4.11 4.29 3.98 4.41 3.98 4.12 4.12 4.46 4.58 4.47 4.56 4.71 
South-central 3.72 7.66 3.52 3.43 3.96 4.00 4.17 4.13 4.32 4.29 4.27 4.30 4.35 
Southwest 2.01 2.58 2.65 2.79 2.43 2.67 2.48 2.36 2.65 2.45 2.56 2.29 2.39 
Northwest 1.39 1.40 1.49 1.48 1.61 1.61 1.65 1.66 1.72 1.75 1.76 1.84 1.89 
National 13.77 18.66 14.81 18.36 16.08 15.97 17.58 15.79 17.06 17.18 17.23 17.73 18.32 
Note: North-central including Beijing and Tianjin municipalities, Hebei, Shanxi, and Inner Mongol provinces; Northeast including Liaoning, Jilin and Heilongjiang provinces; East including 
Shanghai municipality, Jiangsu, Zhejiang, Anhui, Fujian, Jiangxi and Shandong provinces; South-central including Henan, Hubei, Hunan, Guangdong, Guangxi and Hainan provinces; Southwest 
including Chongqing municipality, Sichuan, Guizhou, Yunnan and Tibet provinces; Northwest including Shaanxi, Gansu, Qinghai, Ningxia, Xinjiang provinces.
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Figure captions

Fig. 1. The contribution of biomass burning types to greenhouse gases emissions 

during 2000-2012 period

Fig. 2. The biomass burning amount changes in China during 2000-2012 period

Fig. 3. The relative percentage of different biomass burning types to average regional 

greenhouse gases emissions during 2000-2012 period

Fig. 4. Spatial distribution of China’s biomass burning greenhouse gases emissions 

(Mt CO2-eq) during 2000-2012 period and the relative emission growth rate from 

2000 to 2012. 



ACCEPTED MANUSCRIPT

28

Fig. 1



ACCEPTED MANUSCRIPT

29

Fig. 2



ACCEPTED MANUSCRIPT

30

Fig. 3



ACCEPTED MANUSCRIPT

31

Fig. 4


