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Species-specified VOC emissions 
derived from a gridded study in the 
Pearl River Delta, China
Ziwei Mo1,2, Min Shao3,1, Ying Liu1,4, Yang Xiang1, Ming Wang5, Sihua Lu1, Jiamin Ou6,  
Junyu Zheng3,7, Meng Li8, Qiang Zhang8, Xuemei Wang3,9 & Liuju Zhong3

This study provides a top-down approach to establish an emission inventory of volatile organic 
compounds (VOC) based on ambient measurements, by combining the box model and positive 
matrix factorization (PMF) model. Species-specified VOC emissions, source contributions, and spatial 
distributions are determined based on regional-scale gridded measurements between September 2008 
to December 2009 in the Pearl River Delta (PRD), China. The most prevalent anthropogenic species 
in the PRD was toluene estimated by the box model to be annual emissions of 167.8 ± 100.5 Gg, 
followed by m,p-xylene (68.0 ± 45.0 Gg), i-pentane (49.2 ± 40.0 Gg), ethene (47.6 ± 27.6 Gg), n-butane 
(47.5 ± 40.7 Gg), and benzene (46.8 ± 29.0 Gg). Alkanes such as propane, i-butane, and n-pentane were 
2–8 times higher in box model than emission inventories (EI). Species with fewer emissions were highly 
variable between EI and box model results. Hotspots of VOC emissions were identified in southwestern 
PRD and port areas, which were not reflected by bottom-up EI. This suggests more research is needed 
for VOC emissions in the EI, especially for fuel evaporation, industrial operations and marine vessels. 
The species-specified top-down method can help improve the quality of these emission inventories.

Volatile organic compounds (VOCs) have raised growing public concerns due to their crucial role in the forma-
tion of ground-level ozone. Reducing these VOC emissions is essential in the Pearl River Delta (PRD), China, 
where the region is battling ground-level ozone (O3) pollution during the past decade1. A 10% increase of annual 
ozone concentrations was observed, from 48 μg/m3 in 2006 to 53 μg/m3 in 20152. Quantitative determination of 
the VOC emissions and their source contributions is needed to develop effective pollution control strategies.

Emission inventory (EI), often compiled using a bottom-up calculation estimate, is a widely-used and 
easily-defined approach to track VOC emissions at a global scale3,4, regional scale5,6 and city-scale7. A high quality 
emission inventory has detailed source categories and spatial-temporal variation, requiring considerable amounts 
of time and money to compile. Even so, developing accurate EI is challenging and fraught with large uncertain-
ties, primarily resulting from non-local emission factors and coarse activity data8,9. Unlike other pollutants (e.g., 
carbon monoxide [CO], sulfur dioxide [SO2], nitrogen oxides [NOx]), VOC emission estimates are more complex 
and difficult to accurately detail due to their many varied species and wide array of sources. The individual species 
emissions might have an order of magnitude difference when allocating non-local source profiles6,10.

Validations of emission inventories have been conducted using different top-down approaches, such as apply-
ing inverse modeling techniques to satellite retrieval11,12 and ground-based observations13, as well as applying an 
emission ratio (ER) method to ground-level online measurements14,15 and gridded measurements16,17. Satellite 
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retrieval of glyoxal showed EI might underestimate aromatic emissions by a factor of 10–2012, while a recent study 
claimed there was a good agreement between the satellite retrievals and EI in the PRD18.

The PRD is a rapidly urbanized and highly industrialized region in China, recognized as a hotspot of VOC 
emissions19,20. Much effort has been put to advance our understandings of VOC emissions in this region5,21,22. 
A highly resolved (with a grid size of 3 km × 3 km) speciated VOC emission inventory in the PRD is estab-
lished5,23,24, and several national-scale inventories also cover this region6,10,25. The total anthropogenic VOC 
emissions in the PRD were estimated to be 850.7 Gg in 2006 by Zheng et al.5, 1174.0 Gg in 2010 by Yin et al.23, 
814.8 Gg in 2006 by Intercontinental Chemical Transport Experiment Phase B (INTEX-B) project19, 1156.6 Gg 
in 2008 and 1283.8 Gg in 2010 by Multi-resolution Emission Inventory (MEIC)6. However, large difference in 
emission estimates exists for key VOC species in most current PRD EI. For example, benzene emissions varied 
from 8 Gg to 54 Gg and toluene from 44 Gg to 181 Gg reported by Regional Emission Inventory in Asia (REAS)25, 
Representative Concentration Pathways Scenario 2.6 (RCP2.6)26, Ou et al.24, and MEIC6. An inverse modelling 
technique was deployed to constrain the emissions of benzene (44 Gg) and toluene (131 Gg) in this region, 
indicating that INTEX-B largely underestimated (by a factor of ten) the toluene emissions in the PRD for 2006. 
These results show that emissions of individual species still exhibit large discrepancies among EI estimates, while 
the uncertainties for total VOC emissions may appear to be reduced. Source contributions to total emissions 
were also evaluated by chemical mass balance (CMB) and positive matrix factorization (PMF) models in the 
PRD21,22. Good agreement was observed for vehicular emissions between EI (with a contribution of 41.5%)5 and 
receptor modelling results (31.2–52.6%)21,22. However, large difference was found in contributions of liquefied 
petroleum gas (LPG) emissions (4.9–16.3% in receptor modelling and 0.4% in EI)5,21. A comprehensive valida-
tion of species-specified VOC emissions is needed to gain a better understanding of the priority species and key 
sources in the PRD.

The main purpose of this study is to evaluate species-specified VOC emissions using ground-based measure-
ment data from gridded sampling campaigns between 2008 and 2009 in the PRD. The speciated VOC emissions 
are calculated using a simple chemistry box model, and their source apportionments and spatial distributions are 
determined by PMF model. Combining the results from box model and PMF model, this study provides a new 
approach to examine species-individual VOC emissions, and validate the bottom-up emission inventory at a level 
of species emissions and their spatial distribution at a regional scale. The ground observation-derived EI can give 
suggestions and directions of re-evaluating the long-term emission estimates and updating the bottom-up EI, 
which provide support for policy-making and benefit air quality management.

Results and Discussions
Species-specified VOC emissions and their uncertainty. Species emissions. Figure 1 shows the 
annual emissions (average emissions for the year of 2008 and 2009) of species-specified VOC in PRD estimated 
by box-model, VOC/CO ratio method, and available emission factor-derived EI, including 2006 Zheng EI5, 2010 
Zheng EI24, 2008 MEIC and 2010 MEIC6. Emission inventories which only reported the total emissions or limited 
VOC species were not considered25,26. Here, we look into the comparisons of inert species and different groups 
of VOC species. For CO emissions which have less uncertainty in EI and their estimates by box model were not 
significantly affected by chemical term, the box model result (4.1 × 103 Gg) was proved reasonable and reliable, 
which was comparable with inventory estimates (3.8 × 103–4.9 × 103 Gg). Halocarbon emissions estimated by box 
model were in reasonable agreement (difference <60%) with VOC/CO ratio calculation and the previous study16 
(Table S1 in the Supplementary Information, SI).

For NMHCs, the most prevalent compound found was toluene, whose annual emissions in the PRD were 
167.8 ± 100.5 Gg and 176.6 ± 132.6 Gg estimated by box model and VOC/CO ratio method, respectively. The 
higher emissions estimated by VOC/CO method mainly attributed to a larger regression slope (VOC/CO ratio) 
because of high concentrations occasionally measured during sampling. These results are significantly larger 

Figure 1. Comparisons of annual VOC emissions (bottom) and their difference (upper) between box model 
and VOC/CO ratio, bottom-up emission inventories (The species were listed in the sequence of reaction rate 
coefficient, kOH).
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than those in Zheng EI (103.1 Gg in 2006 and 70.7 Gg in 2010), and much closer to the MEIC (160.2 Gg in 2008 
and 193.7 Gg in 2010). The toluene were likely to be underestimated by Zheng EI, which was also indicated by 
the inverse modelling (131 Gg)13. Benzene, m/p-xylene and o-xylene emissions were well within the range of 
EI estimates (SI Table S1). Their emissions were in good agreement between different methods and also justi-
fied by space-based observations18. Species with minor emissions such as 3-ethyltoluene, 2-ethyltoluene, and 
1,3,5-trimethylbenzene were 3 times higher in Zheng EI, while 3-ethyltoluene was 6 times lower in MEIC. For 
C3-C5 alkanes, such as propane, i-butane, n-butane, i-pentane and n-pentane, their annual emissions were slightly 
higher in the box model (27.9 Gg–49.2 Gg), compared with VOC/CO ratio method (25.1 Gg–40.6 Gg) which has 
larger uncertainty in species emissions from non-combustion sources; however, the comparable EI estimates are 
much lower (3.9 Gg–37.5 Gg). These alkanes are major components of fuel evaporation27, and should be under 
priority scrutiny in EI due to difficulties in developing accurate activity and fuel use data of fugitive emissions. 
The emissions of ethene and propene were estimated to be 47.6 ± 27.6 Gg and 19.2 ± 10.7 Gg by box model, which 
were comparable with those in EI, but much larger than those (23.2 ± 13.7 Gg and 8.3 ± 4.8 Gg) by VOC/CO ratio 
method. Moreover, the emissions of trans-2-butene and cis-2-butene calculated by box model were 2–4 times 
higher than those from VOC/CO ratio method and EI. A main reason that VOC/CO ratio method would under-
estimate the alkenes with high reaction rate with OH radicals (Fig. 1) because of neglecting their chemical losses.

Comparing the EI for different years, it was shown that there were −56% to 260% differences between 
2006 Zheng EI and 2010 Zheng EI, while 0–50% increases for most species from 2008 MEIC to 2010 MEIC (SI 
Table S1). The total anthropogenic VOC (AVOC) emissions were 1174.0 Gg in 2010 Zheng EI, larger than 850.7 
Gg in 2006 Zheng EI. In contrast, sum of the 36 species emissions were lower in 2010 Zheng EI (621.0 Gg; 52.9% 
of total AVOC emissions) than 2006 Zheng EI (666.3 Gg; 78.3%). Sum of the species emissions accounted for 
about 55% of the total AVOC emissions for both 2008 MEIC (1156.6 Gg) and 2010 MEIC (1283.8 Gg). The main 
reasons for these changes were the upgrading of source profiles in Zheng EI, while increased economic activity 
and implementation of emission control measures in MEIC which used an identical source profile dataset.

Comparing the box model estimates (derived from 2008–2009 measurements) with bottom-up EI for a similar 
year (2010 Zheng EI and 2008 MEIC), discrepancies still exist. Most noticeable is the higher estimates (up to a 
factor of eight) of alkane emissions (such as propane, i-butane, n-butane) by box model. This suggests that VOC 
emissions estimated by the top-down and bottom-up methods could significantly differ from each other, which 
needs further examination using inter-complementary methods.

Uncertainty. The speciated emissions estimated by box model have an uncertainty of 60–100% (SI Figure S1). 
The contributions from VOC concentration uncertainty and the mixing layer height uncertainty were relatively 
constant for all species, together accounting for 70–80% of the total uncertainty. These are generally considered 
the main source of the uncertainty for species emissions estimated by box model. For the high reactive species 
such as isoprene and 1,2,3-trimethylbenzene, their uncertainty (with a value of approximately 100%) relates to 
the OH concentration; the uncertainty for less reactive species is more associated with the wind speed. The largest 
uncertainty is found for C4-C5 alkanes with a value of over 80–85%. For the species with moderate reactivity, the 
uncertainty is in the range of 60% to 80%.

Source contributions to total VOCs and key species. Source contribution to total VOC emissions.  
Table 1 compares the VOC source emissions and their contributions in the PRD derived from this study and 
emission inventories. Eight sources were identified by PMF with their source profiles and tracer species illus-
trated in SI Figure S2 and Table S2. The PMF-resolved sources included gasoline vehicle exhaust (25.9%), diesel 
vehicle exhaust (5.4%), gasoline evaporation (10.9%), industrial emissions (18.2%), solvent usage (23.2%), LPG 
evaporation (7.9%), stationary fuel combustion (5.7%), and biogenic emissions and background (2.8%), which 
were comparable to the results reported by Yuan et al.22. Since source classifications in PMF and EI differ from 
each other, source contributions in PMF and inventories were combined into similar categories for comparison 
(SI Tables S3 and S4).

The emissions of gasoline vehicle exhaust (GVE) were similar between box model results and 2010 Zheng EI, 
while much lower than those in 2006 Zheng EI. On the other hand, emissions of diesel vehicle exhaust (DVE) 
estimated in this study were close to 2006 Zheng EI, while much larger than those in 2010 Zheng EI. One reason 
for the smaller contribution of DVE in 2010 Zheng EI is because the on-road DVE was categorized into the GVE 

Category This study 2006 Zheng EI 2010 Zheng EI Category This study 2008 MEIC 2010 MEIC

Gasoline vehicle exhaust 231.1 344.4 228.9 Transportation 279.1 147.4 106.6

Diesel vehicle exhaust 48.0 28.6 4.3

Gasoline evaporation 97.8 20.8 16.8 Residential 70.7 34.0 36.7

LPG evaporation 70.7 2.2 —

Industrial emissions 162.6 6.6 90.6 Industry 467.4 460.1 588.6

Solvent usage 207 240.8 248.8

Stationary fuel combustion 51.2 22.8 31.6 Power 51.2 1.8 1.8

Sum of species emissions 868.4 666.3 621.0 Sum of species emissions 868.4 643.3 733.7

Table 1. Comparisons of source emissions (unit: Gg yr−1) and their contributions (%) in this study and 
emission inventories (EI).
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in 2010 Zheng EI (SI Table S3). The box model results of gasoline and LPG evaporation were 4–6 times of those 
in Zheng EI, suggesting that fugitive emissions was probably a problematic source in EI. Industrial emissions 
varied significantly between this study and Zheng EI. As PRD is known as the “world’s manufacturing capital”, 
industrial emissions were recommended to re-evaluate in Zheng EI, which might miss the activity data from the 
small factories in the PRD. Solvent usage and stationary fuel combustion emissions agreed reasonably between 
this study and Zheng EI, implying that their contributions are relatively well quantified. For the MEIC inventories, 
only four categories (transportation, industry, residential, and power) were available for comparison. The emis-
sions of transportation, residential, and power sectors in 2008 and 2010 MEIC were much less, while industry 
sector contributed much larger than those in this study. MEIC inventories have larger industry’s contributions in 
the PRD region, and less contributions from transportation, residential, and power sectors. Thus, the total overall 
estimates from previous EI are comparable, although the specifics of which sectors contribute how much show 
some significant differences.

Source contribution to key species emissions. Figure 2 compares the source contributions to key VOC species 
emissions between PMF results and available inventories (2010 Zheng EI and 2008 MEIC were used). The 10 key 
species had large emissions and represent different VOC categories. Obvious difference was observed for propane 
and n-butane (Fig. 2a). GVE and fuel evaporation were major sources in PMF while industrial emissions was the 
dominant in 2010 Zheng EI. Stationary fuel combustion was the major source for 1-butene in the PMF, whereas 
in Zheng EI it was found predominantly in GVE. Since GVE included fuel combustion in engines, the 1-butene 
in GVE were probably part of the combustion source in PMF. Regarding aromatics, solvent usage was the most 
important contributor to toluene and m,p-xylene in Zheng EI, but PMF results showed industrial emissions were 
also a significant source for toluene in PRD. The GVE dominated benzene emissions in PMF, while solvent usage 
and industrial emissions contributed most in 2010 Zheng EI. Benzene emissions should be further examined 
in EI which was strictly controlled in solvent and industrial manufacturing in China during the past few years.

In comparing the PMF results with the 2008 MEIC (Fig. 2b), significant differences were found for propane, 
ethane, ethyne and benzene. Industry was identified as the largest contributor of these compounds in 2008 MEIC 
while transportation was the most significant in PMF. Since these compounds are abundant species in the vehic-
ular source profiles28, the differences were attributed to lower estimates of transportation contribution in MEIC.

Spatial variations of VOC emissions. Total VOC and key species emissions. The spatial distributions of 
box model-estimated emissions for total VOCs and three key species (propane, ethene and toluene) are illustrated 
in Fig. 3. The total emissions estimated by box model were distributed into 84 grids based on the PMF modeling 
results. Here the spatial distributions of VOC emissions in PRD were assumed to be similar to those of VOC 
ambient concentrations. This assumption is reasonable for the highly reactive species such as 1,3-butadiene and 
trans-2-butene because their chemical lifetime (SI Table S5) were less than the transport time in each grid. The 
spatial characteristics of moderately reactive species were reasonable, given their uncertainty within several grids. 
For the less reactive species, the chemical lifetime was much longer than their transport time in each grid. This 
might result in large uncertainty of the spatial distribution.

Figure 2. Comparisons of source contributions to key species between the PMF results and 2010 Zheng EI and 
2008 MEIC.
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As shown in the Fig. 3a, two hotspots of total VOC emissions (sum of the species considered in this study) 
were found: one was at Zhongshan and Zhuhai located in the southwestern PRD; the other was at the junction 
of three cities (Guangzhou, Dongguan and Shenzhen), located near the Pearl River Estuary (Central PRD). The 
former was most likely attributable to various emissions from small manufacturing workshops scattered over the 
region of Zhongshan and the Gaolan Port of Zhuhai. The latter hotspot, around the Pearl River Estuary, is where 
large ports such as Nansha Port, Huangpu Port and Humen Port are busy working and still being expanded. 
This port activity can produce a large amount of VOCs from vessels and containers. Also, at Dongguan and 
Shenzhen, many industrial factories were present including printing, shoemaking, and electronic painting, which 
significantly contributed to local VOC emissions. A small hotspot was identified at Foshan, which was a highly 
urbanized and industrialized city with VOC emissions resulting from vehicular and industrial sources. Compared 
with the spatial patterns of Zheng EI and MEIC (SI Figures S3 and S4), significant emissions from populated 
and industrialized cities (i.e. Guangzhou-Dongguan-Shenzhen) were captured in both bottom-up and top-down 
methods, but strong emissions in the southwestern PRD (Zhongshan-Zhuhai) were identified only by box model. 
This study indicated that some unknown sources of VOC emissions might exist in Zhongshan and Zhuhai, but 
were not included in current inventories. Marine vessels might also contribute to VOC emissions around the 
Pearl River Estuary, but they had not been adequately documented in previous inventories5,23.

Spatial patterns of propane, ethene, and toluene emissions are shown in Fig. 3(b–d), respectively. Other key 
species are provided in SI Figure S5. Propane and ethene emission shared a similar spatial distribution, with 
southwestern PRD as their emission hotspot. In addition to Zhongshan-Zhuhai, Jiangmen was found to contrib-
ute significantly to propane and ethene. This is probably because of the LPG used for cooking and their fugitive 
losses in this area22. Three hotspots of toluene emissions were recognized. It is reasonable that Foshan, Dongguan, 
Shenzhen, and Zhongshan are the most industrialized cities in the PRD, and the higher toluene emissions at 
Zhuhai might come from the ship-painting and marine vessel emissions.

Source emissions. The spatial variations of the emissions from gasoline vehicle exhaust, solvent usage and fuel 
evaporation calculated by box model are shown in Fig. 4a,c and e. Their differences between this study and 2010 
Zheng EI are shown in Fig. 4b,d and f. Other sources are provided in SI Figure S6. Emissions from GVE mainly 
distributed in the center of PRD, connecting the major cities of Guangzhou, Foshan, Zhongshan and Dongguan 
(Fig. 4a). Not much difference in the spatial variation of GVE emissions was observed between this study and 
EI, implying that GVE emission distributions were relatively well predicted. For solvent usage, significant emis-
sions were identified in Zhongshan and the nearby areas of Dongguan and Shenzhen. (Fig. 4c). It is reasonable 

Figure 3. Contour maps of emissions of (a) sum of the VOC species, (b) propane, (c) ethane, and (d) toluene 
estimated by box model. (The maps were generated by ArcGIS Desktop version 10.0, ESRI, Redlands, CA, USA; 
URL, http://www.esri.com).

http://www.esri.com
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because many industrial factories are located in these areas. Compared with EI, the solvent usage emissions 
were calculated to be lower in the downtown area of Guangzhou and Shenzhen in this study (Fig. 4d), while 
they were higher in the northeastern and southwestern parts. Fuel evaporation emissions were higher in Foshan 
and port areas near the Pearl River Estuary. This probably due to the leakage of vehicular emissions and marine 
vessel emissions. A whole area of lower emissions from fuel evaporation was estimated in EI compared with the 
top-down method (Fig. 4f), suggesting the need for revising estimate for fuel evaporation emissions in the PRD.

Methods
VOC gridded measurement program. The gridded sampling programs were conducted between 2008 
and 2009. A square domain of approximately 200 km × 200 km, covering the major urban areas of the PRD, was 
divided into 100 square grid cells with sides 20 km in length. Eliminating the grids over water, a total of 84 
land sites were selected for VOC sampling. Sampling was conducted 3–42 m above ground, and away from local 
emission sources to avoid the influence of direct emissions from roadways and industrial sources. Sampling site 
locations were chosen to represent well-mixed air at each grid area. The site locations, sampling heights and their 
background information are shown in Figure S7 and Table S6. Whole-air samples were collected simultaneously 
at all sampling sites using 2-L stainless steel canisters with a duration of 2 minutes22,29. Four sampling days with 
calm weather conditions were selected in September, 2008, March, September, and December in 2009. On each 
sampling day, two samples were collected at 5 am and 10 am at each site, in order to capture VOC levels both 
during the nighttime and daytime.

Inter-comparisons of chemical analysis for CO, four halocarbons, and a total of 38 non-methane hydrocarbon 
(NMHC) species were conducted in laboratories of University of California, Irvine (UCI), Guangzhou Institute 
of Geochemistry (GIG) and Peking University (PKU)17,21,30. At PKU, air samples were concentrated using a 
three-stage cryofocusing pre-concentration system (Entech 7100, Entech Instruments, USA) and transferred 
into a gas chromatography–mass spectroscopy/flame ionization detector (GC-MS/FID) system for analysis (GC, 

Figure 4. Contour maps of VOC emissions estimated in this study from (a) gasoline vehicle exhaust, (c) solvent 
usage, and (e) fuel evaporation and their difference (b,d,f) from 2010 Zheng EI. (The maps were generated by 
ArcGIS Desktop version 10.0, ESRI, Redlands, CA, USA; URL, http://www.esri.com).

http://www.esri.com
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HP-7890A; MSD, HP-5975C). This system used a Dean Switch™ to introduce the effluent into a DB-624 column 
with an MSD to separate and analyze C4–C12 hydrocarbons and halocarbons and a PLOT (Al/KCl) column with 
a FID to measure C2–C4 hydrocarbons. Canisters were connected to another GC-FID for CO analysis. Technical 
details on the PKU laboratory and the gridded sampling program are described elsewhere31–34.

Emission estimates using top-down approaches. VOC emissions can be estimated using a steady-state 
zero-dimensional box-model, Q/S = (c − b) × uH/L + cH/τ, with assumptions that the pollutants are well-mixed 
inside the box, the mixing height is constant, and only the chemical reactions of VOC species with OH radicals are 
considered in the daytime35,36. A modified box model was adopted in this study, which considered vertical profiles 
of VOC concentrations. Based on the mass balance of species, the emissions can be calculated as Equation (1):

∫ τ
=






− ×
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where Q is the emission rate (unit: g s−1), u is the wind speed (m s−1), L is the length of the box (m), h is the height 
in vertical dimension (m). H is the box height (m), defined as the mixing layer height, S is the area of the box bot-
tom (m2), c (h) is the concentration of VOC species at h height (μg m−3), b (h) is the background concentration of 
VOC species at h height (μg m−3), τ is the lifetime of VOC species, determined as 1/(kOH [OH]) (kOH is reaction 
rate coefficient for the reaction of VOC species with OH and [OH] is the OH concentration).

The vertical structure was divided into 24 layers, which was retrieved from the MM5 model (SI Table S7). 
Since the reactive species have significant gradient in vertical distribution, the vertical profiles of these species 
were reconstructed using Equation (2), based on the vertical transport time and chemical lifetime of VOC species.
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2 2 z , σz is the vertical dispersion coefficient, Kz is the eddy diffusivity)37, τC is the chemical 
lifetime of VOC species, dhi is the thickness of the vertical layer i, H is the mixing layer height. The reconstructive 
vertical profiles of VOC species were compared with the measured vertical profiles38, as shown in SI Figure S8. 
The calculated profiles agreed reasonably with the measured profiles, particularly in the near-ground regions.

The whole domain of the sampling grids was treated as the bottom of the box, with a length (L) of 200 km and 
an area (S) of 200 × 200 km2. Mixing layer height (H) is 441 m–538 m at nighttime, and 513 m–1174 m in the day-
time, retrieved from the Global Data Assimilation System (GDAS) of the US National Center for Environmental 
Prediction (NCEP) (ftp://arlftp.arlhq.noaa.gov/pub/archives/gdas1). The VOC concentrations (c) at 5:00 am and 
10:00 am were used for nighttime and daytime calculations, respectively. Note that the concentration measured 
at 5:00 am and 10:00 might biase the results. However, the uncertainty was assumed to be within the uncertainty 
of average concentration of the four sampling events. The background concentrations (b) were assumed as the 
minimum concentrations at all sampling sites in each campaign. Wind speeds (u) were 2–4 m s−1 according to 
the sampling records. OH concentrations were taken as 2–5 × 106 molecule cm−3 in daytime, estimated from 
OH observations in 2006 Program of Regional Integrated Experiments of Air Quality over Pearl River Delta 
(2006 PRIDE-PRD)39. The chemical reactions between VOCs and OH were neglected at nighttime. As only VOC 
emissions of the whole PRD region are available in emission inventories, speciated VOC emissions calculated by 
box model, covering an area of 3.4 × 104 km2 (eliminating the grids at sea), should be converted to the emissions 
of the whole PRD (5.5 × 104 km2) for comparison. For anthropogenic source-dominated species, their emissions 
determined from box model were scaled by the gross domestic product (GDP) ratio of the box domain to the 
whole PRD area, which is 0.8240. For biogenic VOCs, represented by isoprene, emission estimates were divided by 
the forest coverage ratio between above two area, which is 0.5741. The summer time is relatively long in PRD and 
usually overlaps the autumn time. Therefore, VOC emissions for summer and autumn (June–November) were 
derived from the average value of sampling campaigns in September, 2008 and 2009. The spring time (March–
May) and winter time (December–February) emissions were based on sampling campaigns in March, 2009 and 
December, 2009, respectively.

The annual emissions estimated by box model were determined to be the average emissions for the years of 
2008 and 2009.

The total uncertainty from the input parameters in box model was calculated using the error propagation 
formula in Equation (3):

= + + +s s s s s (3)i c H u OH
2 2 2

[ ]
2

where si is the total uncertainty of species i, sc, sH, su, and s[OH] are the standard deviations of estimated emissions 
by applying the uncertainties of measured concentration c, mixing layer height H, wind speed u, and OH con-
centration [OH], respectively. The uncertainties of these parameters were determined by the standard deviations 
of values in the four sampling campaigns. Uncertainties of measured concentrations of different VOC species 
among the campaigns were determined to be in the range of 20–120%, wind speed within 25%, mixing layer 
height within 50%, and OH concentration within 50%. We noted that the uncertainties in the box model esti-
mates also arose from other aspects such as small sampling size and sampling representativeness. Quantitatively 
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determination of these uncertainties are difficult and high spatial and temporal resolution of measurements are 
needed to reduce the uncertainty.

The emissions ratio (ER) method using CO as a reference tracer (referred as “VOC/CO ratio method”) has 
been widely applied to estimates of VOC emissions in China15–17. The basic principle is that if the ratio of VOC 
enhancement to CO enhancement above background level is determined, VOC emissions are derived by mul-
tiplying VOC/CO and CO emissions. Limitations of this method were mentioned in previous studies15,42 and 
details about the emission ratio method can be found in SI. In this work, the VOC/CO method was used as a 
supplement of VOC estimates for the purpose of comparing the results derived from box models.

Source apportionment by PMF. The U.S Environmental Protection Agency’s (EPA) PMF 5.0 model was 
applied to allocate the source contributions to total VOC emissions43–45. All the data from eight campaign events 
were integrated into a sufficiently large dataset to ensure stable and reliable source identification in PMF. A total 
of 30 species were selected for the PMF applications, all readily detectable in the atmosphere and often viewed 
as tracers in source identifications (SI Table S8). Detailed introduction of the PMF principle and discussions of 
applying multiple-site dataset to PMF can be found in SI, Yuan et al.22 and Dumanoglu et al.46.
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