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1 Introduction

Safety is of paramount importance in the handling, processing and storage of explosives. Mechanical insults
resulting from low-speed impact, that crush and pinch an explosive, have been identified as a possible
ignition source. However, modelling such an ignition mechanism numerically with hydrocodes proves to
offer some considerable challenges. Here we develop a model for the pinching of an explosive cylinder
between two flat plates which accounts for the effects of friction at the contact between the plates and the
explosive. An ad hoc analytical method of the axial pinching of an explosive cylinder by two flat plates
moving at constant speed is developed and discussed in [1]. In this formulation it is assumed that as the
material is compressed it is in perfect plastic flow under adiabatic conditions. The explosive reaction is
modelled using a simple Arrhenius Law. The heating of the explosive due to mechanical heating and self
heating due to the reaction are calculated. In the analysis presented there is no treatment of friction at the
contact region between the plate and explosive. As a result of this simplification the dissipation calculated is
constant throughout the sample. This is contrast with experiments conducted at AWE in which non-uniform
heating is observed [2]. Sherwood and Durban [3] investigated the squeezing of a non-reactive viscoplastic
solid in the presence of friction. It is suggested that their paper may form a strong basis to explore frictional
effects in the configuration posed in [1]. Here we adopt the approach taken in [3] to describe the mechanical
behaviour of an explosive sample subject to axial compression, and then introduce a simple Arrhenius Law,
as in [1], to model the reaction. The work presented allows us to investigate the effects of frictional heating
during compression and arrive at an improved model of the so called Pinch Test [1].

2 Mathematical Model

We study the Pinch Test, depicted in Figure 1. A cylinder of explosive material with radius R(z, t) is placed
between two parallel plates. The plates at z = ±h/2, approach one another with constant velocities ∓V .
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Figure 1: Configuration for the axial pinching of an explosive cylinder between two parallel plates.

The axis of the cylinder coincides with the the z-axis and the full height of the sample at time t is h(t). The
radial and axial velocity components are u(r, z, t) and w(r, z, t) respectively. We consider the explosive
sample to behave as a rigid plastic, and impose a boundary condition on the shear stress at the plates which
models the effects of friction [3]. In practice the sample height is typically much smaller than the sample
radius, which provides a small parameter suitable for asymptotic analysis. A solution is obtained in the form
of an expansion in h/r, where r is the radial coordinate.

We assume that the rigid plastic solid has yield stress in shear k = 3−
1
2Y , where Y is the compressive yield

strength of the material. It is further assumed that the shear stress σrz at the plates is a fixed fraction m
of this yield stress, i.e. σrz = ∓mk on z = ±h/2. The analysis is similar to Prandtl’s cycloid solution
for the plane two-dimensional compression of a rigid-plastic block between rough plates (see [4] p. 232).
We impose the same friction coefficient m at both plates, so that the problem is symmetric about the centre
plane z = 0. However, it is noted that the analysis can be extended in a straightforward manner to plates
with differing friction coefficients. It is assumed that radial symmetry is maintained throughout.

3 Model Equations

Note that in the following we work in non-dimensional variables. The scalings for lengths, velocity compo-
nents and stress components are the initial sample height h0, plate velocity V , and compressive yield stress
Y , respectively. A typical time scale for the problem is given by h0/V . The temperature is scaled by a
typical temperature difference ∆T .

In the absence of body forces, the non-dimensional equations for axially symmetric equilibrium read
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where (σrr, σθθ, σzz) are the normal components of the stress tensor, σrz is the only active shear stress, ρ
is the material density and u and w are the radial and axial velocity components. Note that (1) implies that
σrr = σθθ on the axis r = 0. For the materials studied herein it is found that the ratio of inertial forces to
yield stress is typically small for low-speed compression (V < 50 m s−1). For example, for a sample of
PETN with impact speed V = 50 m s−1 we find ρV 2/Y ∼ O(10−2).
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The strain rate εij is related to the deviatoric stress sij = σij − 1
3δijσkk by the coaxiality relation

εij = λsij , (3)

and the von-Mises yield criterion for plastic flow holds

(σrr − σθθ)
2 + (σθθ − σzz)

2 + (σzz − σrr)
2 + 6σ2rz = 2. (4)

The coaxiality relation (3), along with the yield criterion (4), gives

λ =

√
3

2
(εijεij)

1/2, (5)

meaning that the factor λ will be a local function of the flow field between the plates.

To account for the effects of friction at the upper and lower plates we prescribe the shear stress to be a
fraction of the yield stress, i.e.

σrz = ∓3−1/2m on z = ±h
2
, (6)

where the friction factor m varies from m = 0 (perfectly smooth) to m = 1 (perfectly rough). Analyses
of plastic deformation often use a boundary condition of this form, and the advantages of employing the
friction factor m in plastic and viscoplastic flow problems have been demonstrated in several articles [5, 6].
It can been seen from (4) that m cannot be greater than 1.

As in [1], it is assumed that the heating of the explosive by mechanical dissipation and by self-heating
as a result of chemical reaction takes place under adiabatic conditions. The initial temperature T0 of the
explosive is specified and the temperature T (r, z, t) increases as a result of the heating from the reaction
and by mechanical dissipation. The chemical reaction is modelled as a single step Arrhenius reaction,
expressed in terms of the (dimensionless) mass fraction α of gaseous products by

∂α

∂t
= A(1 − α)exp

(
−E
T

)
, (7)

whereA is the pre-exponential factor andE is the activation energy. It is well known that multiple reactions,
some endothermic, some exothermic are actually proceeding in parallel, but the one-step Arrhenius reaction
serves as a preliminary model. The temperature growth is governed by the equation of conservation of
energy, that is

DT
Dt

=
V 2/(cv ∆T )

ρV 2/Y
Φ + Ω

∂α

∂t
, (8)

where cv is the specific heat at constant volume, Ω is the non-dimensional specific heat of the reaction
described by (7) and Φ = εijσij is the rate of mechanical dissipation. The effects of diffusion are neglected.
This is justified by the small coefficient of the temperature diffusion term, which for the parameter values
used in this study is found to be O(10−8).

4 Results

In the absence of inertial stresses and friction at the plates, the equilibrium equations are satisfied by a
uniform straining motion (u,w) = (r/h,−2z/h), with σzz = 1 the only non-zero component of stress.
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To satisfy the boundary condition (6) we seek a correction to the uniform straining motion. As in [3], we
expand the velocity components as
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h
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+ · · · , (10)

where the prime represents the derivative of a function of only one variable, and the corrections wi(z) are
to be determined as part of the solution.

Substitution of the expansions (9) and (10) into the governing equations and application of the appropriate
boundary conditions and von-Mises yield criterion gives radial and axial velocity components
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This allows for computation of the mechanical dissipation in the sample:
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where w1(z) is known, but omitted here for brevity. We observe that for m = 0 (free-slip boundary) the
mechanical dissipation is uniform throughout the sample. However, for non-zero m the mechanical heating
is spatially dependent. Figure 2 shows the first order correction to the radial velocity component, and the
mechanical dissipation in the sample, both as a function of z for several values of m. We see that as m
increases, i.e. as we approach a no-slip condition at the plates, the heating due to mechanical dissipation
increases near the boundary. The prediction of increased heating near boundaries is consistent with drop
weight experiments, and with numerical numerical simulations of pinch [7].

The asymptotic results for the mechanics of the problem are substituted into the energy equation (8), which is
then integrated in time using a Crank-Nicolson scheme. Figure 3 shows the rise of the maximum temperature
of (a) HMX and (b) PETN with time for varying values of friction factor: m = 0; m = 0.1; m = 0.5; and
m = 0.9. It is clear by inspection to determine the time at which thermal runaway commences. We
observe that an increase in friction factor m (i.e. more friction between the plates and the explosive sample)
causes thermal runaway to commence at an earlier time. This is due to the spatially dependent mechanical
dissipation (13), which causes the temperature in localised regions to increase at a faster rate than the bulk
temperature in the sample.

The relative sensitivities of the two materials studied is well captured by the model. For PETN we find that
runaway commences at around 390 microseconds with m = 0.1 compared with around 220 microseconds
with m = 0.9. Clearly we see a remarkable decrease in the time to runaway for PETN when m is large.
This is contrasted with HMX, where we find that thermal runaway has not yet fully commenced when the
sample becomes fully pinched at t = 509 microseconds, which is consistent with experimental results [1].
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Figure 2: Left: Non-dimensional correction to the radial component of velocity for several values of m.
Note that m = 0 gives zero correction, i.e. radial velocity independent of z. Right: Non-dimensional
mechanical dissipation rate as a function of z for several values of m. For m = 0 the dissipation in uniform
throughout the sample.
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Figure 3: Rise of the maximum temperature of the sample of HMX (left) and PETN (right) during the Pinch
Test with an impact speed V = 50 ms−1 and an initial temperature T0 = 298K. Here we have used the
values m = 0 (- -); m = 0.1 (..); m = 0.5 (-.); m = 0.9 (–). The curves for m = 0 and m = 0.1 virtually
coincide.
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5 Conclusion

An extension to the ad hoc model developed by Curtis [1] has been presented which allows for the inclusion
of friction at the walls. This permits a solution in the form of an expansion in the ratio of the sample
height-to-radius, h/r. The results presented indicate that friction at the plates induces shear, which in turn
gives rise to higher temperatures and ultimately leads to thermal runway commencing more quickly after
the initial insult. The model predicts localised heating at the contact region between the plates and explosive
sample, which is consistent with findings in experiments conducted at AWE [2]. It should be emphasised
that the additional heating discussed here is due to changes to the deformation which result from the partial
slip boundary condition, and that further heating due to friction at the plates is not included.

The application of asymptotic methods to solve for the velocity components, and thus mechanical dissipa-
tion, is novel to the explosives safety problem considered here, and demonstrates that such methods may be
of use in other configurations. For given material properties and experimental parameters the model pre-
sented may be used to calculate the spatial dependence of heating due to mechanical dissipation, and make
qualitative predictions about key outcomes such as time to runaway. Current work is continuing to exploit
the simple geometry of the Pinch Test to study other hot spot mechanisms. For example, one could consider
the effect of allowing small variations in the initial temperature or in various material properties. This may
give rise to localised hot spots within the sample and cause thermal runaway to commence before the bulk
temperature is high enough for reaction. Such a mechanism may be particularly important in the case where
the constitutive behaviour of the material is greatly influenced by temperature.

Acknowledgments

This work was supported by an EPSRC industrial CASE partnership with AWE [grant number EP/L505729/1].
The authors would like to thank colleagues at AWE for useful scientific discussions.

References

[1] Curtis, J.P. (2012). A Model of Explosive Ignition due to Pinch. In 38th International Pyrotechnics
Society Seminar, Denver, Colorado, USA, pp 207-216. ISBN: 978-0-9851037-0-5.

[2] AWE (2007). Unpublished AWE report. AWE 116-07.

[3] Sherwood, J.D. and Durban, D. (1996). Squeeze flow of a power-law viscoplastic solid. J. Non-
Newtonian Fluid Mech., 62(1):35-54.

[4] Hill, R. (1950). The Mathematical Theory of Plasticity, Oxford University Press.

[5] Durban, D. (1980). Drawing of tubes. J. Appl. Mech., 47:736-740.

[6] Durban, D. and Budiansky, B. (1979) Plane-strain radial flow of plastic materials. J. Mech. Phys.
Solids, 26:303-324.

[7] Curtis, J.P. and Reaugh, J.E. (2016). Modelling the Ignition of Explosives by Pinch with the HERMES
Model. In 42nd International Pyrotechnics Society Seminar, Grand Junction, Colorado, USA, pp 380-
390. ISBN: 978-0-9851037-7-4.

26th ICDERS – July 30th–August 4th, 2017 – Boston, MA 6


	Introduction
	Mathematical Model
	Model Equations
	Results
	Conclusion

