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Abstract

Containers are an emerging technology that hold promise for improving productiv-
ity and code portability in scientific computing. We examine Linux container tech-
nology for the distribution of a non-trivial scientific computing software stack and its
execution on a spectrum of platforms from laptop computers through to high perfor-
mance computing (HPC) systems. We show on a workstation and a leadership-class
HPC system that when deployed appropriately there are no performance penalties
running scientific programs inside containers. For Python code run on large parallel
computers, the run time is reduced inside a container due to faster library imports.
The software distribution approach and data that we present will help developers
and users decide on whether container technology is appropriate for them. We also
provide guidance for the vendors of HPC systems that rely on proprietary libraries
for performance on what they can do to make containers work seamlessly and with-
out performance penalty.

1 Introduction

Traditionally, scientific and engineering software libraries had few dependencies and
were developed by small groups in a stable and well-established language, such as For-
tran 77 or C. In contrast, many modern scientific libraries have numerous dependencies
and are developed by multiple groups and developers in various (and increasingly of-
ten multiple) languages, e.g. C++, C, Fortran, Python, R. In modern scientific software
libraries, key tasks are commonly delegated to specialised, high-performance libraries,
and these form the dependencies of higher-level libraries. These lower-level libraries
will in turn themselves typically have dependencies. The introduction of dependencies,
which usually differ in their level of maintenance, standards compliance and build sys-
tem quality, brings significant challenges for users installing scientific libraries, and for
portability of scientific libraries to different platforms.

Introducing high-quality, specialised software dependencies into a library can allow
small research teams to produce novel, sophisticated and high performance programs
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with fewer errors and reduced development time, and without being expert in the im-
plementation of all underlying operations. However, effective distribution of complex
software packages and their dependencies, both within a research group and to the wider
community, is challenging and time consuming. It is difficult to justify the researcher time
required to support the deployment of software on esoteric, wide-ranging and some-
times poorly maintained platforms, from laptops to high performance computing facili-
ties, through to cloud computing infrastructures. Moreover, the necessary expertise and
range of test systems is not generally available in research teams for actively supporting
a wide range of platforms.

Motivated by the difficulties in distributing modern high performance software to a
wide range of users and developers, we address the use of Linux containers as an ap-
proach to portable deployment of scientific software libraries, from laptop computer to
supercomputer, with no noticeable performance penalty. We describe a container-based
approach that we have developed for both users and developers of a collection of widely
used scientific libraries from the FEniCS Project (https://fenicsproject.org), an open-
source finite element method (FEM) toolkit for solving partial differential equations. We
use a common image for the FEniCS libraries in tutorials for new users (running on their
own computers) through to high performance, parallel simulations. The focus of this
work is the ease and simplicity with which containers can be used to dependably share
and deploy scientific software stacks, without performance penalty, across a range of
platforms. We want to share our experiences to aid the developers of other scientific
libraries in deciding whether to adopt containers to support the distribution of their soft-
ware.

To demonstrate the performance characteristics of container-based approaches for sci-
entific applications, we present a range of performance data on different systems com-
paring native and containerised performance. In particular, we address running on HPC
systems that require system-specific vendor libraries for performance. We also touch
upon what steps vendors of HPC systems, which often depend on proprietary libraries
for performance (most notably Message Passing Interface (MPI) libraries), can take to
support the deployment of container technologies on HPC systems.

Containers have already received some attention in the academic literature. Boettiger
[9] focused on scientific reproducibility by using containers as a stable framework to
propagate software stacks between generations and teams of researchers. Apaolaza et al.
[7] used Docker [2] to package and execute a complex video processing workflow, with
an accompanying blog post by Haines and Jay [14] containing specifics on using Zen-
odo (https://zenodo.org) to archive software with a permanent Digital Object Identifier
(DOI). Di Tommaso et al. [10] and Gerlach et al. [13] examined the use of containers to
ease the portability challenge of complex data analysis workflows, where multiple con-
tainers (each containing its own complex software environment) are chained together.
Di Tommaso et al. [10] also compared the performance of some commonly used genet-
ics analysis software running natively and inside a container. Seo et al. [24] compared
the performance of containers and virtual machines for non-scientific software stacks
deployed in the cloud. Macdonnell and Lu [19] benchmarked the performance of the
VMWare virtualisation platform for a variety of common scientific computing tasks. The
overhead for compute-intensive tasks was around 6% and for IO tasks around 9%. Fel-
ter et al. [12] also looked at the performance differential of non-scientific software within
virtualised and containerised environments. The performance studies published in the
literature [10, 12, 24] found negligible differences between container and native perfor-
mance, as long as the container is setup and used appropriately, e.g. using data mounts
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for I/O intensive tasks [12] and not setting up many containers for individual tasks with
run times on the order of container setup time (typically fractions of a second) [10].

The focus of this paper differs from previous studies in two ways. Firstly, instead of
concentrating on how containers aid scientific reproducibility [7, 9, 14], we consider how
containers can be used to ease the difficulty of sharing and distributing scientific code
to developers and end-users on a wide range of computing platforms. Secondly, unlike
previous studies [10, 12, 24] that showed performance parity between containerised and
native shared memory parallel software, we consider performance of software using dis-
tributed memory parallel programming models (e.g. MPI). MPI forms the backbone of
modern HPC systems and modern scientific computing codes in the physical sciences,
so for containers to be accepted by the community the performance characteristics on
distributed memory machines must be demonstrated.

2 Background: Linux containers

We give a brief overview of containers by comparison with traditional virtual-machine
based virtualisation, a technology which many researchers in the scientific computing
community are already familiar with, an we provide a simple example of configuring a
container. Our objective is not to provide an in-depth review of the technology behind
Linux containers; we refer the reader to the white-paper [11] for a detailed discussion of
a container runtime and security model.

2.1 Technology

Containers are, on the surface at least, similar to traditional virtualisation technologies,
e.g. VMWare, QEMU, Hyper-V, Xen, in that they allow multiple isolated applications
to run on a single host computer. Traditional virtualisation involves running an entire
guest operating system (OS) within an isolated environment, with the kernel of the guest
OS communicating with the host via a complete set of virtualised devices (CPU, disk,
memory, etc.). In contrast, Linux containers share the underlying kernel of the host and
isolate the processes running within it from all other processes running on the underlying
host operating system. Instead of virtualising the hardware, containers virtualise the
operating system itself [20].

While the end effect of both traditional virtualisation and containers are similar, namely,
an isolated, distinct and portable computing environment, the means by which they
achieve this results in a very different experience for the end-user. Traditional virtual
machines load an entire guest operating system into memory. Each guest OS might take
up gigabytes of storage space on the host, and require a significant fraction of system re-
sources just to run, even before doing any work. Furthermore, starting up each guest OS
usually takes on the order of minutes. Because containers share the existing host kernel,
they can utilise most of the dependencies and features of the host. If a container does not
execute anything, it uses little to no system resources. Running thousands of containers
on one host is possible. To start a new container, the host just has to start new processes
that are suitably isolated from its own. This means that startup times are similar to that
of a native application.

We wish to note the distinction between an image and a container. An image is an im-
mutable file that contains a description of a complete computing environment (libraries,
executables, default networking configuration, default initialisation, and more) that can
be used by a runtime (e.g., Docker) to create a container. A container is a runtime in-
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stantiation of a particular image. It is possible to have many containers based on the
same image. Each new container can re-use the data stored in an image without dupli-
cation, just storing the differences in a layered file system. We want to emphasise that
the image format and container runtime are mutually exclusive entities. Currently, by
far the most popular container runtime is Docker [2]. However, we show performance
results in this paper using the Docker, rkt [4] and Shifter [5] runtimes, each of which uses
a different approach to instantiate containers from the same image. The recently formed
Open Container Initiative [3] seeks to standardise image formats and container runtimes
across vendors so that images and containers are portable between the different runtime
platforms.

In summary, containers can initially be viewed as a lightweight counterpart to tradi-
tional virtualisation technology. Traditional virtualisation still has some advantages over
containers, such as a time-proven security model. Containers, by virtue of sharing the
host OS kernel directly, cannot run images designed for another OS. So if a user wishes
to run Linux images in a container on macOS, then they must still use a virtual machine
to host an OS with a Linux kernel.

2.2 Elementary demonstration

To provide an simple exposition of the use of images and containers with the Docker
runtime, we show how to write a Dockerfile, build an image from it, and finally how to
launch a container from the created image.

Simply put, a Dockerfile file is a sequence of some Docker-specific directives and
shell script commands that prescribe the entire build process and runtime configuration
of a software environment. An attractive feature of Dockerfile files is that they unam-
biguously describe the configuration and build process behind an image.

An example of a simple Dockerfile that builds an Ubuntu 16.04-based image with
with SciPy installed from the system package manager might be:

FROM ubuntu:16.04
USER root
RUN apt-get -y update && \

apt-get -y upgrade && \
apt-get -y install python-scipy && \
rm -rf /var/lib/apt/lists/* /tmp/* /var/tmp/*

Running docker build . in the same directory as the Dockerfile will build and package
the result into an image with a unique mathematical hash, e.g. d366b85a7fdb. The image
can be given an easy to remember name using docker tag d366b85a7fdb scipy-image.
Using

docker run -ti scipy-image python

an interactive Python terminal session will appear and the SciPy module will be avail-
able. The above methodology can be extended to package and distribute complex sci-
entific software stacks with the benefit of working with a well-defined environment. We
have only shown three Dockerfile directives (FROM, USER and RUN) in the above example,
many more are discussed in the Docker documentation at https://docker.com.

A strength of both the Open Container Initiative and Docker image formats is the
layered file system. Taking the above Dockerfile as an example, the directive FROM
ubuntu:16.04 instructs the build to start with the official Ubuntu Docker image as the
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first layer. This first layer is often called a base image. Many other base images are
available in registries, for example at Dockerhub (https://hub.docker.com) and Quay
(https://quay.io). Every subsequent directive (here, USER and RUN) creates a new layer
that only stores the difference between itself and the previous layer. Each layer is asso-
ciated with a unique mathematical hash. This simple but elegant construct has multiple
beneficial effects. First, if we build stages of a software pipeline in separate images with
each FROM the same base image (e.g. ubuntu:16.04), the end-user only needs to download
the base image once and storage of the complete pipeline can be very compact. Secondly,
on calling docker run to run the image in a new container, a new empty filesystem layer
is created to store runtime changes made by the user. This operation is very lightweight,
taking up only a few kilobytes of disk space in addition to the storage space required by
the modification, and typically takes fractions of a second to run.

3 Distributing, sharing and reproducibility with scientific soft-
ware

We now discuss some issues that open-source scientific software projects face when dis-
tributing code and supporting user installation, and how container runtimes and stan-
dardised image formats can help address these issues. Much of what we present is in-
fluenced by our first-hand experiences as developers of the open-source FEniCS Project
([18], http://fenicsproject.org).

3.1 Installation and complex software dependency trees

Users of scientific software run on a broad range of platforms, including Windows, macOS
and a variety of Linux distributions, with their installations maintained to varying de-
grees. Moreover, users have different needs; from beginners wishing to run their first
analysis, to advanced users wanting a specific version of a library or wanting to run
on high-performance computing clusters, through to developers adding new features.
The complex chain of dependencies that characterises many modern, user-level scien-
tific libraries compounds the difficulties in supporting robust and appropriately config-
ured installations. Supporting installation on all user platforms and meeting the needs
of all users is beyond the resources of the vast majority of open-source scientific software
projects.

Up until early 2015 the FEniCS Project supported an automated installation system
called ‘Dorsal’. Now deprecated, Dorsal was a somewhat successful attempt to build
an entire FEniCS environment automatically on a variety of Unix-like operating systems.
Notably absent was Windows support. As much as possible, Dorsal used binary software
dependencies from distributions (packages), and then compiled (and where necessary
patched) various other dependencies and FEniCS itself from source on the end-user’s
machine. In practice, this approach has a number of issues. There are a wide variety of
Linux distributions and each is subtly different, which in practice means supporting even
a small number of distributions reliably is a significant task requiring time and a range
of test systems. Furthermore, even small customisations by a user to their underlying
environment, like having a different version of a library or application in their PATH,
could lead to a failure of the build.

Container runtimes, such as Docker, rkt and Shifter, largely abstract away the differ-
ences between the many operating systems that users run. The same image runs iden-
tically inside a container on almost any platform. Using container images, we now dis-

5

https://hub.docker.com
https://quay.io
http://fenicsproject.org


tribute an entire FEniCS environment that has proven to be reliable, and is simple and
quick to run on wide variety of systems. The environment is reproducible, in that every
image is associated with a mathematical hash that is unique to every specific realisation
of a build. This has greatly simplified development and testing processes, and improved
user experience. FEniCS users of the images have required very little support, and when
support has been required is has become easier to provide as the environment in which
a user is working is well-defined.

Containers complement, rather than replace, packaging and build systems such as
apt, pip and EasyBuild. We make heavy use of both apt and pip when building the
FEniCS images, with only judicious use of builds directly from source. The advantage
of using these existing systems within a container environment is that the build system
is completely isolated from the user’s underlying system. In our experience, this leads
to significantly fewer build failures. In addition, developers can choose the best build
systems for the job at hand, rather than being limited by what system administrators
have installed or what end-users are comfortable with.

3.2 Ease of launching a runtime environment

We want every new user of FEniCS to be able to reliably run it on almost any platform
with a minimal number of commands. Once users have installed Docker on their plat-
forms, they can start using FEniCS with the command:

docker run -ti quay.io/fenicsproject/stable

To share files from the host into the container environment the user can add the -v flag:

docker run -ti -v $(pwd):/home/fenics/shared quay.io/fenicsproject/stable

While the above commands are straightforward, many users and developers will
want more control over the environment, e.g. persistent state and the ability to re-launch
a container. However, the command line interface (CLI) to the Docker runtime has been
designed with technical users in mind. Moving beyond the simplest interactions, the CLI
is too low-level for typical scientific software users and developers, and especially for
beginners. For example, launching an interactive Jupyter notebook [21] session requires
knowledge of the docker command’s networking features:

docker run -w /home/fenics/shared -v $(pwd):/home/fenics/shared -d \
-p 127.0.0.1:8888:8888 quay.io/fenicsproject/stable \
‘jupyter-notebook --ip=0.0.0.0’

To make the use of the containers as easy as possible for users following typical work-
flows we have developed a lightweight wrapper script fenicsproject that sets up some
common workflows, such as starting a Jupyter notebook session as described above:

fenicsproject notebook my-project
fenicsproject start my-project

This script has been used successfully for a number of FEniCS tutorials, with participants
using the FEniCS Python interface via Jupyter notebooks on their own laptop computers.
FEniCS developers are also using this script to quickly setup and build development
branches of FEniCS in lightweight isolated environments.

For users who want to develop their own FEniCS container workflows using the
docker command we provide extensive documentation [1] that targets common scien-
tific computing use cases.
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3.3 Deployment on high performance computing systems

One of the most appealing features of containers is the possibility of running the same
image on a wide range of computing platforms, including HPC systems. However, a
recurring challenge when moving to a new HPC machine is configuring and compiling a
library with all its dependencies. A characteristic of HPC systems is that each is unique
and the software environment changes over time as compilers and libraries are updated.
Moreover, users and developers will typically work infrequently on HPC systems, with
development and testing typically taking place on user machines before occasional ex-
ecution of large-scale simulations on HPC systems. It is our experience that there are
serious productivity barriers when moving from local development machines to HPC
systems. We find that, particularly with infrequent HPC use, there is a high time cost in
updating and rebuilding libraries, even for experienced developers. Due to the differ-
ences between HPC systems, there is also a significant time cost associated with moving
from one HPC system to another. For experienced users, these issues lower productivity;
the time to update a software stack on a HPC system can dwarf the wall clock run time.
For less experienced users, these issues can seriously hamper accessibility. The appeal
of containers is that a user’s familiar local development environment can be reproduced
with minimal effort and time on a HPC system.

Shifter [16] is a new open-source project at the National Energy Research Scientific
Computing Centre (NERSC) that provides a runtime for container images, and is specif-
ically suited to the security and performance challenges of HPC workflows. The Docker
image format is one of a number of image formats supported by Shifter. Images are
pulled ahead of running a job, by issuing the shifterimg pull command, which pulls
an image from an image registry. The practical task of running a container using Shifter
is then straightforward. For example:

shifter --image=docker:quay.io/fenicsproject/stable:2016.1.0r1 \
./demo_poisson

will run the command ./demo_poisson inside a FEniCS container. In contrast to the
Docker runtime, the Shifter images are run in read-only mode and the user’s environment
and home directory are automatically passed through to the container. When using the
Docker runtime, users can store data inside a container using the layered file system,
whereas with Shifter any user generated objects, e.g. executable files, must be stored
outside of the container on the host system. We refer to Jacobsen and Canon [16] for
further details.

When executing a program in parallel, MPI is typically used to communicate (pass
messages) between processes. The MPI libraries included in the FEniCS image work
adequately if a parallel job is run on a single compute node because modern MPI libraries
do not use the network to pass messages when memory is shared. However, when a job
is distributed across more than one compute node, communication takes place across
a network and the standard MPI libraries in the container will not take advantage of
the specialised high-performance networking hardware that characterises modern HPC
systems. Thanks to the MPICH application binary interface (ABI) initiative [22], we can
distribute an image linked against the Ubuntu MPICH library package, and change the
linking of the libraries to the host ABI-compatible MPI implementation at runtime. We
discuss this in more detail in the run time performance section.
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Figure 1: An image is defined by a Dockerfile, and is built locally or by a cloud-based
service such as https://quay.io. The latter can also also act as a registry. An image
is pulled from the registry and run on different platforms, for example solving smaller
problems on a laptop, to large-scale problems on an HPC machine.

3.4 Provisioning and maintenance of images

To build the entire FEniCS software stack we maintain a collection of Dockerfile files un-
der version control at https://bitbucket.org/fenics-project/docker. If a user wants
to install their own pieces of software alongside FEniCS, they can create their own simple
Dockerfile that begins with FROM quay.io/fenicsproject/stable. We also provision
the images with scripts for users to update and build specific libraries within a container.

We use a cloud-based service (https://quay.io) to build and distribute FEniCS im-
ages. We have developed a hierarchy of images that allow re-use between various end-
user containers, e.g. stable user, debug and developer images. On a commit to the repos-
itory where we store the Dockerfile files, a build command is executed automatically.
When the build is finished, the images, in both Docker and Open Container Initiative-
compatible formats, are ready and available publicly. We have found this workflow very
reliable and requiring very little developer intervention. Making small configuration
changes requires changing just one file and the steps used to build the container are au-
tomatic and transparent. The process from Dockerfile to deployment of an image on
different systems is illustrated in Fig. 1.

4 Runtime performance studies

Performance is a critical factor in deciding whether or not containers are viable for sci-
entific software. We address this point by presenting performance data for a range of
representative simulations on a typical workstation, and tests and benchmarks on a lead-
ership class HPC system. We pay special attention to use of system MPI libraries on the
HPC system.

All necessary instructions, scripts and images, along with the raw data and plotting
scripts from our own tests, are available in the supporting material [15].
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4.1 FEniCS workstation performance

We compare the performance of a selection of tests running inside the FEniCS Project
stable image, hosted at quay.io/fenicsproject/stable:2016.1.0r1, running within the
Docker [2] and rkt [4] runtimes to a nearly identical version of FEniCS running on the
same machine natively. In addition, we also run the same image with the Docker runtime
inside a virtual machine (VM), which reflects the experience of macOS and Windows
users where a lightweight Linux distribution must be virtualised to host Docker. The
Docker virtual machine setup on macOS and Windows is transparent to the user and
their experience is nearly identical to that of Docker users on Linux.

As far as possible, we create identical software stacks within the image and natively
on the host. We use the Ubuntu 16.04 LTS Linux distribution as the base in both cases,
and use as many core libraries from the distribution packages (e.g., MPICH, OpenBLAS,
LAPACK) as possible. The test system is a 16-core Intel Xeon-based workstation (2 ×
E5-2670 (Sandy Bridge)) with 128GB of RAM. The relative differences in performance
between each of the environments are of interest.

Within each environment we run a selection of single-process finite element method
performance tests, that is, without using MPI. We briefly summarise these tests here:
‘Poisson LU’ solves a two-dimensional Poisson equation using LU decomposition, ‘Pois-
son AMG’ solves a three-dimensional Poisson equation using the conjugate gradient
method preconditioned by algebraic multigrid, ‘IO’ reads in a large mesh file from the
host and writes a solution back to a file on the host, and finally ‘elasticity’ solves a three-
dimensional elasticity problem using the conjugate gradient method with an algebraic
multigrid preconditioner. These tests are slightly modified versions of demos distributed
with the FEniCS Project and are representative of the types of simulations that users
might run. The test programs are implemented using the Python interface of FEniCS.
FEniCS uses just-in-time (JIT) compilation from Python to generate loadable shared ob-
jects at runtime for operations that are model-specific, and these shared object libraries
are cached as files. The run times reported below do not include the JIT compilation time,
which is only incurred on the first run.

Figure 2 shows the run times for the four tests in the four environments. The Docker,
rkt and native platforms provide nearly identical performance. This is no surprise given
that the container runtimes leverage the same Linux kernel functionality. However, it
does highlight that there are a variety of runtime systems to choose from, and choices can
be made to suit particular system policies. The VM platform has up to a 15% performance
penalty, slightly worse that the results of Macdonnell and Lu [19]. Other virtualisation
environments may provide better results than the VirtualBox software we used in this
work. We conclude that for these tests that there is no performance penalty when running
inside a container.

4.2 FEniCS HPC performance tests using the Shifter runtime

FEniCS supports distributed memory parallelism (using MPI), and has been shown to
scale to over 20,000 processes on HPC machines [23]. We have prepared a simple FEn-
iCS test program which solves the Poisson equation using the conjugate gradient method
with an algebraic multigrid preconditioner, and which also involves distributed mesh re-
finement and I/O. We use this to compare native and containerised performance. The
test program is fairly representative of a typical user program. This test program is im-
plemented in both the C++ and Python interfaces of FEniCS.

The tests in this section have been performed on Edison, a Cray XC30 system at
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Figure 2: Performance of Docker, rkt, native and VM platforms running four different
benchmark problems on a workstation. Shorter bars are better. Docker, rkt and native are
very close, with performance differentials less than 1%. The extra overhead introduced
by the VM virtualisation leads to a performance drop of around 15%. The error bars for
five runs are shown in black.

NERSC. Edison has 24 cores per compute node (2 × E5-2695v2 (Ivy Bridge)). To use
the system MPI libraries, we need the containerised application to load the Cray MPI
libraries. We do this, as shown by Bahls [8], by adjusting the LD_LIBRARY_PATH environ-
ment variable on job submission and copying the required system libraries to a path that
is accessible from within the container. This hinges on ABI compatibility of the container
and system MPI libraries. The command

srun -n 192 shifter env LD_LIBRARY_PATH=$SCRATCH/hpc-mpich/lib \
--image=docker:quay.io/fenicsproject/stable:2016.1.0r1 ./demo_poisson

uses the SLURM submission system MPI launcher to launch Shifter on 192 cores and adds
the appropriate library path to the environment. The required libraries for using the sys-
tem MPI are copied into $SCRATCH/hpc-mpich/lib, a location that is visible from within
a running container. All other libraries are provided by the container, and are identical
to those that we distribute to end-users for running on laptops and workstations. Note
that with Shifter we execute the MPI srun command on the host and each process is a
container.

To test performance we compare a native build of the FEniCS library and test applica-
tion to a container build. The native build uses the Cray system modules as much as pos-
sible (gcc/4.9.3, cray-mpich/7.2.5, libsci/16.07.1, cray-tpsl/16.03.1, cray-petsc/3.6.1.0).
The only FEniCS dependency compiled from source was SWIG, which is required when
using the Python interface. For the C++ version of the container test, the test code was
compiled inside the container on Edison by invoking an interactive Shifter session. For
the Python version of the test, the JIT cache of shared objects was pre-generated and the
reported run times do not include the JIT compilation time.

Wall clock run times for the C++ version of the test program on Edison are shown in
Fig. 3 for between 24 and 192 processes. Performance inside the container when using
the system MPI library (case (b) in Fig. 3) is comparable to or better than the native per-
formance (case (a) in Fig. 3). When using the container MPICH library (case (c) in Fig. 3),
the solver time increases dramatically for higher MPI process counts, highlighting the
importance of loading the system MPI library for container programs.

Python has become increasingly popular in HPC, in particular as a ‘driver’ for pro-
grams written in compiled languages. There is however a serious performance problem
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Figure 3: C++ FEniCS benchmark run times on Edison when: (a) run natively without
containers; (b) run in Shifter with Cray MPI libraries; and (c) run in Shifter with the
container MPI libraries. Tests were performed with with 24, 48, 96 and 192 MPI processes,
with one MPI process per CPU core. Shorter bars are better. The x-axis is truncated for
the 192(c) result. In each case, the time is shown for various compute operations. There
is little difference between the run times for cases (a) and (b), which both use the system
MPI library. Performance for (c) deteriorates rapidly when computing across compute
nodes (Edison has 24 cores per compute node). Error bars for three runs are shown in
black.

on HPC systems, which is often referred to as the ‘Python import problem’, see [17]. The
Python import statement appears early in a Python program, and each process imports
(loads) Python modules/code from disk into memory. Each imported module will itself
typically import/load modules from disk. HPC filesystems are optimised for access to a
few large files by many processes, but can be extremely slow when many processes ac-
cess many small files, as happens when Python imports modules on each process. When
running with 1000 processes we have observed on some systems that it can take over 30
minutes to import the Python modules required by the Python interface of FEniCS. Con-
tainers bypass this problem as the Python modules are included in the filesystem of the
container image, which is mounted on each node as a single large file [16]. A small price
is paid in memory usage per node.

To examine the improvement in Python import performance, Fig. 4 shows the run
times for native and containerised (using the system MPI library) executions of the Python
version of the test program. The key observation here is the large difference in total run
time between the native (case (a)) and container (case (b)) executions of the program,
with run time for the native case being significantly greater than the container case. This
is due to the Python import time. Additionally, the native run time shows more varia-
tion, which is probably due to unpredictable contention on the file system. We also note
that containers have an advantage for Python programs that employ just-in-time compi-
lation since we can be sure that the necessary compilers and libraries are available on the
compute nodes.
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Figure 4: Python benchmark run times on Edison when: (a) run natively without contain-
ers; and (b) run inside Shifter with the system MPI library. Tests were performed with
with 24, 48 and 96 MPI processes, with one MPI process per CPU core. Shorter bars are
better. Each compute operation takes comparable time in each case, but the total run time
is significantly greater and more variable when running natively because of the Python
module import time. Error bars for three runs shown in black.

4.3 High-Performance Geometric Multigrid (HPGMG-FE) benchmark

HPGMG-FE is a new benchmark for ranking supercomputers [6]. It aims to provide a
balanced measure of system performance characteristics that are important for modern
scientific software on HPC systems. It is a useful test for container performance due its
highly tuned implementation; any weakness in configuration or container performance
issues become acute and immediately obvious. For optimal performance, the benchmark
requires exploitation of a CPU-specific instruction set, namely the Advanced Vector Ex-
tensions (AVX).

In the same way as our C++ benchmarks above, we have compiled HPGMG-FE both
natively and in a container. In both cases, it is important to compile for the host architec-
ture and to use the best optimisation flags available for the C compiler. Thus we ensure
that features of the host CPU, such as the AVX instruction set, are activated. We make
use of OpenBLAS, which dynamically selects at runtime the implementation that is ap-
propriate for the CPU type. For workstation tests we execute the MPI mpirun command
inside a container, whereas on Edison the MPI srun command is executed from outside
the containers.

The performance results for the HPGMG-FE benchmark are shown in Fig. 5 using 16
cores on the Xeon workstation (Fig. 5a) and using 192 cores on Edison (Fig. 5b). On the
workstation, the native compile outperforms the Docker and rkt containers by around
3%, while on Edison the Shifter container essentially matches the native performance at
larger problem sizes. Both performance margins are in our view small enough to claim
that the containers match the native performance of both systems.

This benchmark is an example of where a precompiled program or library inside a
container might not be able to exploit hardware instructions that are specific to the host
architecture and which may be critical for performance (vectorisation in this case). In
such cases a container can be provisioned with the necessary scripts to build performance
critical binaries on the host system. Such scripts are straightforward to develop and sup-
port as they are run inside the well-defined and controlled environment of the container.

12



0 10 20 30 40 50 60
gigaflops

8x8x12

16x16x24

32x32x48

64x64x96

128x128x192

192x256x256

gr
id

 s
iz

e

Docker
rkt
native

(a) A 16-core Xeon workstation with the Docker, rkt and native platforms.
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(b) Edison Cray-XC30 using 192 cores with the native and Shifter platforms.

Figure 5: HPGMG-FE performance on (a) Intel Xeon and (b) Cray XC30. Longer bars are
better. This difference between the native and containerised performance is small. Error
bars for five runs.
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5 Conclusions

We have discussed some of the challenges in distributing scientific software and the role
that containers can fulfil in addressing this issue. Images can provide a complete, stable,
and consistent environment that can be easily distributed to end users, thereby avoiding
the difficulties that end-users commonly face with deep dependency trees. Containers
have the further advantage of largely abstracting away the host system, making it pos-
sible to deliver a common and consistent environment on many different platforms, be
it laptop, workstation, cloud instance or supercomputer. We have shown through a se-
lection of test problems (both representative and benchmark) using a common image
that containers introduce no performance penalty; on the contrary it is our anecdotal
experience that optimised images generally outperform native user installations as the
container environment can be suitably optimised by the developers of a library. A pro-
duction or development environment can be moved with ease and efficiency between
platforms. This will improve productivity in the use of different systems for scientific
computing.

We have shown performance data including tests on a Cray XC30 HPC system. The
test data underlines the importance of using the native MPI library on HPC platforms to
fully exploit the specialised interconnect. Loading the Cray MPI library from a container
was made straightforward by the ABI compatibility between the Cray MPI library and
the open-source MPICH library. We hope that our results will strengthen arguments
for vendors to make their proprietary and specialised system libraries ABI compatible
with open-source libraries, and to devise simple approaches to switching dynamically
linked libraries. This will enhance the usability of HPC systems via containers without
compromising performance. We also showed that containers provide a portable solution
on HPC systems to the problem with languages that load a large number of small files
on each process (the ‘Python import problem’). Images also provide a robust solution
to just-in-time compilation on HPC systems by encapsulating the necessary libraries and
compilers, which are sometimes not available on HPC compute nodes.

We hope that the discussion and performance data in this work will assist researchers
in scientific computing who are contemplating an investment in container technology.
We believe that container technology can improve productivity and sharing in the scien-
tific computing community, and in particular can dramatically improve the accessibility
and usability of HPC systems.

Supplementary material

Supporting instructions, data, images and scripts are archived at [15].
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