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Linking slow dynamics and microscopic connectivity
in dense suspensions of charged colloids†
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The quest to unravel the nature of the glass transition, where the viscosity of a liquid increases
by many orders of magnitude, while its static structure remains largely unaffected, remains unre-
solved. While various structural and dynamical precursors to vitrification have been identified, a
predictive and quantitative description of how subtle changes at the microscopic scale give rise
to the steep growth in macroscopic viscosity is missing. It was recently proposed that the pres-
ence of long-lived bonded structures within the liquid may provide the long-sought connection
between local structure and global dynamics. Here we directly observe and quantify the con-
nectivity dynamics in liquids of charged colloids en-route to vitrification using three-dimensional
confocal microscopy. We determine the dynamic structure from the real-space van Hove correla-
tion function and from the particle trajectories, providing upper and lower bounds on connectivity
dynamics. Based on these data, we extend Dyre’s model for the glass transition to account for
particle-level structural dynamics; this results in a microscopic expression for the slowing down
of relaxations in the liquid that is in quantitative agreement with our experiments. These results
indicate how vitrification may be understood as a dynamical connectivity transition with features
that are strongly reminiscent of rigidity percolation scenarios.

1 Introduction
For fragile glasses, the super-exponential increase in viscosity
with small changes in temperature is often described by the phe-
nomenological Vogel-Fulcher-Tamman (VFT) relationship1. The
VFT form holds for a wide variety of fragile glass formers, rang-
ing from metallic2,3 and molecular glasses4,5 to those formed by
polymer chains6 or colloidal particles7. However, a microscopic
interpretation of this universal observation remains elusive. Sem-
inal frameworks for the glass transition, such as mode-coupling
theory (MCT), accurately predict the mechanism with which par-
ticle motion becomes localised from the static structure alone8,
but cannot recover the VFT law for the viscosity or relaxation
time. The case of charged particles interacting via long-ranged
Coulombic potentials has been explored by MCT with a predicted
vitrified phase as a result9. For several systems of charged col-
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loids, a glassy phase, or Wigner glass, has been identified, in-
cluding charged polystyrene particles10 and highly charged clay
platelets11–17. In all of these experiments, scattering methods
have been used to probe the often complex ensemble-averaged
sample dynamics. However, not much experimental data is avail-
able in these charged systems that resolve the structure and dy-
namics down to the single-particle level.

To understand and predict how structural relaxations slow
down in colloidal suspension upon increasing the particle concen-
tration, it has been suggested that the emergence of frequency-
dependent rigidity must be taken into account. The presence of
a finite shear modulus at low frequencies is predicted to under-
pin the slowing down of particle motion, and the concomittant
increase in the apparent viscosity, also at finite temperature18,19.
This finite-frequency rigidity cannot be understood solely from
snapshots of the static structure. Rather, rigidity emerges from
long-lived bonds between neighbouring particles20,21, which are
needed to suppress nonaffine motions characteristic of liquids. It
was recently proposed that the same long-lived structures govern
their thermodynamics such as their internal energy and specific
heat18. This implies that long-lived bonded structures may play
an important role in the liquid state. The hypothesized connec-
tion between such structures and the viscoelasticity of liquids has
been verified indirectly, for example for metallic alloys and poly-
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mer melts22,23. Interestingly, within this picture due to the mo-
bility and continuous restructuration of the liquid structure, rigid-
ity emerges only beyond a finite and critical frequency. Within
the approach of Frenkel, Trachenko and Brazhkin18,24, this im-
plies a continuous crossover from the liquid to the solid state, in
which only the characteristic time-scale at which rigidity emerges
becomes larger and larger; an idea recently proven experimen-
tally25. While detailed studies of structure and dynamics in glassy
liquids at the atomic or molecular scale are possible with a vari-
ety of scattering methods26,27, which have revealed much of our
current knowledge of glassy dynamics, these do not allow iden-
tification of bonds at the level of individual cages between single
particles. This type of information is however accessible in col-
loidal suspensions visualized using confocal microscopy.

In colloidal liquids, where dynamical slowing down can be
induced by changing the particle packing fraction, several mi-
crostructural and dynamical features have been identified to
emerge as the liquid relaxations slow down and the glassy state
is approached. While colloidal systems can by no means mimic
all of the richness in phenomena found in atomic and molecular
glasses, some crucial features can be observed and studied in col-
loidal systems as a proxy for these phenomena at much smaller
scales. These range from the emergence of spatiotemporally het-
erogeneous dynamics28–30 with features of criticality31, localised
"soft" vibrational modes32 to structural signs in the form of icosa-
hedral order33, topological clusters34,35 and persistent fractal
structures that are proposed to percolate at the liquid-solid tran-
sition36. Nonetheless, a key question remains: Is there a direct
and quantitative correlation between the microscopic dynamics
of long-lived bonded structures and the slowing down of liquids
en-route to kinetic arrest?

In this paper, we study suspensions of charged colloidal parti-
cles using three-dimensional confocal microscopy to identify and
evaluate the dynamics of long-lived structures in colloidal liquids.
We specifically chose colloids interacting through long-ranged
electrostatic repulsions as this pushes the liquid-solid transition
to lower volume fractions. This has the important advantage that
surface interactions, such as frictional contacts and the result-
ing jamming, which may appear in colloidal hard-spheres, can
be avoided possibly resulting in a cleaner view on the effects of
local geometry on the suspension dynamics. In this approach, we
have direct access to local structural dynamics at the single parti-
cle level. We directly obtain the dynamic coordination number in
these experiments from real-space analysis. Based on these exper-
iments, we reformulate Dyre’s elastic model for liquid relaxations.
To obtain a prediction for the global relaxation time, we use the
dynamics of local coordination number as input to describe the
finite-frequency shear modulus within the approach of marginal
spring networks. This yields a theoretical model based on micro-
scopic properties that is in agreement with the experimental data.
These results indicate how structural bonding dynamics at the
nearest-neighbor level govern the macroscopic viscosity of these
liquids of charged colloids.

Methods

As an experimental model for charged colloids in apolar media,
we use spherical particles, composed of poly(methyl methacry-
late), stabilised by a comb-polymer of polyhydroxystearic acid
grafts on a PMMA backbone at their surface. For details on the
synthesis and characterization we refer to the SI. We use parti-
cles with radii asmall = 710 nm and alarge = 975 nm as determined
by static light scattering, in a 1:1 ratio by volume. The particles
are suspended in a density-matching mixture of cis-decalin and
tetrachloroethylene containing 10 mM Aerosol OT as a charging
agent37. Density matching conditions are established by adjust-
ing the solvent mixture until we observe no visible sedimentation
after centrifugation at 2000 g for 1 hour. This solvent mixture
also has a similar refractive index to the particles, ensuring op-
tical transparency and minimizing scattering, thus enabling ob-
servation deep into the sample with confocal microscopy. We
load the suspension into glass sample chambers†(extended de-
scription of sample chamber construction in SI†), hermetically
sealed using Norland Optical Adhesive. We image the samples
using confocal fluorescence microscopy using a VT-Infinity3 con-
focal module from VisiTech International, mounted on a Nikon Ti-
U inverted microscope. Images are captured with a Hamamatsu
sCMOS ORCA-Flash4.0 camera. For most analysis we use three-
dimensional image stacks recorded in time; we capture 2500
three-dimensional xyz-image stacks at 2 Hz, with a field of view
of 205 x 205 x 75 voxels (voxel volume 0.25 x 0.25 x 0.33 µm3).
For the analysis of sample dynamics using the intermediate scat-
tering function Fs(q, t) we require a higher time resolution; to this
end we record 30,000 two-dimensional slices through our three-
dimensional system at a frequency of 20 Hz. From the raw confo-
cal images we extract the particle centroid positions with subpixel
resolution using established algorithms both for two- and three-
dimensional data38, and link these together into particle trajecto-
ries. Recent advances in particle locating have lead to the devel-
opment of locating algorithms which improve some weaknesses
in the standard algorithms, in particular for suspensions in which
the interparticle distance becomes comparable to the particle di-
ameter, by means of iterative locating39. We have compared our
data with results on the same data sets using these iterative algo-
rithms and find no difference. Thus, in our case, the use of these
enhanced algorithms does not lead to improvement in data. Due
to the charges on the particle surface, the interparticle separation
never approaches the particle diameter (Fig. S5 & S6†), such that
the tracking accuracy is not enhanced by iterative routines. All
other data analysis is performed using dedicated MATLAB scripts,
which are available upon request from the authors.

Results

We study colloidal particles of poly(methyl methacrylate), sta-
bilised by polyhydroxystearic acid, suspended in a density and
refractive index matching mixture of apolar solvents†(see SI†for
synthetic details). To suppress crystallization we use a binary mix-
ture of particles with radii asmall = 710 nm and alarge = 975 nm
as determined from light scattering. This gives a size ratio
asmall/alarge = 0.7, which is known to effectively suppress crys-
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Fig. 1 (A) Pair interaction potential determined in the dilute limit (φ ≈
0.008, symbols) and fitted to a Yukawa potential (line). (B) Pair correlation
functions g(r) for φ = 0.18, 0.28 and 0.35 (top to bottom), horizontally off-
set for clarity. (C) Static coordination number Z(τ = 0) with a cut-off at the
first neighbor distance r1, taken as the first maximum in g(r) (triangles),
as r2, the first minimum in g(r) (circles). (D) Nearest-neighbor distance r1
in g(r) as a function of particle volume fraction (E) Pair correlation func-
tions with a distance axis rescaled as rφ 1/3, for φ =0.35, 0.31, 0.28, 0.26,
0.22, and 0.18. (inset) Probability distribution of the bond-orientational
order parameter q̄6 showing a liquid structure and the absence of crys-
tallites for φ =0.35, 0.31, 0.28, 0.26, 0.22, and 0.18.

tallisation40. The addition of 10 mM of the surfactant AOT leads
to charging of the particles; in the apolar solvent this results in
long-ranged repulsive interactions37,41. We image the particles
in three dimensions and time using confocal fluorescence mi-
croscopy and determine their centre-of-mass positions with ∼ 30
nm accuracy.

Inversion of the three-dimensional pair correlation function
g(r) can be used to gain insight into the particle interactions in
the suspension. We use this approach in two different ways:
i) in dilute suspensions and using an inversion based on the
hypernetted-chain closure approximation to remove many-body
effects can yield the two-body pair interaction potential42? , ii) in
concentrated suspensions, simple inversion of the pair correlation
function gives access to the potential-of-mean-force which probes
the effective interactions between two particles in the presence of
many others, which thus includes all many-body effects.

First, we start by determining the pair interactions by measur-
ing the g(r) of a dilute suspension at φ ≈ 0.008, and invert this
using the hypernetted-chain closure approximation†(see SI†) to
obtain the pair interaction potential (symbols in Fig. 1A). The
experimental data are well-described by the Yukawa potential
U(r)/kBT = ε

exp(−κσ( r
σ
−1))

r/σ
(solid line in Fig. 1A) with σ = 1.66

µm , 1/κ = 1.0 µm the Debye screening length and ε/kBT = 30.5
the potential at contact.

At higher volume fractions φ , the instantaneous pair correla-
tion function g(r,τ = 0), from a three-dimensional static snapshot
of the sample, displays a liquid-like structure (Fig. 1B). As the vol-
ume fraction of particles is increased, the entire correlation func-
tion shifts monotonically to smaller values of r. This is shown by
the shift in the position of the first peak r1 as r1 ∝ φ−1/3, indica-
tive of isotropic compression of the structure (Fig. 1D). Indeed,
plotting the g(r) for all volume fractions as a function of the re-
scaled parameter rφ 1/3 places the positions of the structure peaks
in the curve onto a single rescaled length scale (Fig. 1E), sug-
gesting a almost homogeneous compression of the liquid struc-
ture, with little changes in its local geometry. This is corroborated
by the fact that the instantaneous average coordination number
Z(τ = 0) from snapshots of the liquid structure is virtually inde-
pendent of φ (Fig. 1C); both when counting neighbors within a
distance equal to the first maximum in g(r) at r1 and the first min-
imum in g(r) at r2. We note, as we will show below, that the shape
of the peaks in g(r), in particular the curvature of the peak at its
maximum, are very weakly but systematically dependent on vol-
ume fraction, such that we cannot strictly speak of a full collapse
of the g(r) by rescaling the distance axis.

While we observe almost no changes in the local structure upon
increasing the particle volume fraction, we find strong changes
in particle dynamics across the same range of φ . We compute
the intermediate scattering function Fs(q, t) directly from our mi-
croscopy data as Fs(q, t) = 〈exp(iq · [r(t)− r(0)])〉 where we choose
q = 2π/r1 as the scattering vector. We find two distinct decays
in the dynamic structure factors (Fig. 2A); at long lag times
a structural α-relaxation is observed, which is typically associ-
ated with cage breaking and structural relaxations. At short
times, the particles explore the confines of their geometric cages,
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Fig. 2 (A) Self-intermediate scattering function Fs(q, t) at q = 2π/r1 for
(top to bottom) φ = 0.49, 0.35, 0.28, 0.31, 0.26, 0.22, and 0.18; solid
lines are fits to a double stretched exponential decay as explained in the
text. (B) Relaxation times for α- (black circles), β -relaxation processes
(blue triangles), as extracted from Fs(q, t), and as determined from the
decay of the dynamical coordination number, Z(τ) (green squares). Solid
line is description for τα , from the reformulated theory of Dyre. Error bars
respresent the 95% confidence interval of the fit.

which results in a small β -decay at short times. These two pro-
cesses are characterised by the relaxation times τα and τβ , re-
spectively; we extract these two characteristic time scales by fit-
ting the experimental Fs(q, t) to a double stretched exponential7,

Fs(q, t) = Aexp
[
−(t/τβ )

δ

]
+(1−A)exp [−(t/τα )

γ ], with stretch ex-
ponents ∼ 0.5−0.9.

We note that due the inherent experimental constraints asso-
ciated with particle-level imaging, the range of time scales that
can be probed is limited. As a consequence, for the higher vol-
ume fractions the decay in Fs(q, t) is only partially observed. We
use these data nonetheless to extract a reasonable estimate for
the structural relaxation time, but note that the accuracy of these
values reduces as phi increases. Nonetheless, within experimen-
tal resolution we find a consistent trend in the growth of τα . For
the highest volume fraction explored, we find no significant decay
and hence this data set is not used for further analysis.

With increasing φ , the structural relaxation time grows as
the liquid viscosity increases. At much larger volume fractions,
φ > 0.40, we see a time-independent plateau in Fs(q, t) (black
squares Fig. 2A), which indicates full dynamic arrest on experi-
mental time scales. The β–relaxation time, extracted from Fs(q, t)
is virtually independent of φ and set by the in-cage particle diffu-
sion coefficient, whereas the structural α–relaxation time grows
steeply over more than 4 decades (Fig. 2B). Following previous
experimental studies of colloidal glasses7,43, we empirically iden-
tify the glass transition as the volume fraction where τα/τB = 105,
found at φg ≈ 0.35. We note that defining the exact point of vitri-
fication along the different approaches that have been developed,
such as mode-coupling theory44, the random first-order transi-
tion approach45 or the Adam-Gibbs theory46, is not the focus of
this paper. Hence we use the empirical criterion used more fre-
quently in experimental studies of colloidal systems.

By fitting the measured pair potential in the dilute limit
(Fig. 1A) we have determined that the Debye screening length un-
der dilute conditions is κ−1 = 1.0µm. We can define an effective
volume fraction, which takes the charge interactions into account,

as φeff =
4
3 π(ā+κ−1)3n = (ā+κ−1)3φ/ā3, with n the number den-

sity of particles and ā the geometric mean of particle radii, as we
work in a bidisperse system at a 1:1 number ratio. At the glass
transition φg = 0.35, the effective volume fraction is predicted to
be φeff = 0.77, which is well above where either vitrification or
jamming is expected to occur. This suggests that self-screening of
the interactions may be relevant at these particle concentrations.

The Debye screening length of an electrolyte solution is given

by κ−1 =
√

εrε0kBT
2NAe2I

47, in which, εr and ε0 are the dielectric con-
stant of the solvent and the dielectric permittivity of vacuum, re-
spectively, NA is Avogadro’s constant, e the elementary charge and
I the ionic strength in the solution. In a medium with very low
ionic strength, addition of charged colloids introduces additional
counterions which contribute to screening of their own interac-
tions. If we naively assume a homogeneous ion distribution, the
overall ionic strength I = Ib + Ic can be decomposed into that of
the background solvent Ib and the contribution due to counte-
rions of the particles Ic. We express the latter as a function of
the colloid valency z, particle size R and volume fraction φ as
Ic =

3φz
4π ā3(1−φ)NA

.

For our experimental system, the screening length of the back-
ground solvent at very low colloid concentrations is κ−1 = 1.0µm.
Knowing εr = 2.5, we deduce that the effective ionic strength of
the background equals Ib ≈ 3 µM. For the PMMA colloids we use,
in presence of the charging agent AOT, previous experiments have
shown that the particle valence z is low but can vary substan-
tially between different batches. For the sake of argument, and
to arrive at a qualitative understanding of the potential relevance
of self-screening, we choose z =100 charges/particle, which was
found to be a reasonable value for different batches by direct elec-
trophoretic measurements48. At the glass transition φc ≈ 0.35,
this naive approach predicts an increase in ionic strength due to
counterions of Ic ≈ 40 µM. As a consequence, the Debye screen-
ing length reduces to κ−1 ≈ 0.4 µm, at which the effective colloid
volume fraction becomes φe f f = 0.52, which is smaller than the
glass transition predicted by MCT to occur at φg = 0.59. The un-
derestimation of the effective volume fraction is most likely due to
ion correlations which will be significant in such underscreened
systems. While an in-depth analysis would be required to detail
these effects, this is not the purpose of this paper, but this naieve
analysis at-least illustrates how non-trivial charge effects play a
role. In our discussion we use the effective interactions from in-
version of the pair correlation function to deal with these effects
on a first-order phenomenological level.

The global dynamics could be influenced by local crystallinity
or clustering of either particle species; as a check to make sure
this is not the case we calculate the three dimensional bond-
orientational order parameters, q̄6, for our system using the ap-
proach of Lechner et al.49. These data show a complete absence
of any local crystalline structure, as indicated by the single peak
around q̄6 = 0.1. (Fig. 1E inset)49. We are furthermore unable
to find any ordered clusters of significant size for either particle
species (Fig. S3†).

We observe virtually no changes in the static coordination num-
ber, from snapshots of the liquid structure, as a function of parti-
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Fig. 3 The potential of mean force w(r), determined from inversion of the
g(r) at finite volume fractions φ = 0.31, 0.26, and 0.18. Inset Effective
spring constant k of the particle-particle bonds, as determined from the
curvature of w(r).

cle volume fraction, from the dilute liquid state to the kinetically
arrested state at φ > φg. Over the same range of volume fractions,
the particle diffusivity slows down by many orders-of-magnitude.
This is a characteristic feature of the glass transition and high-
lights, as is the main challenge in understanding how the dynam-
ical slowing down in liquids occurs, that the arrest of relaxations
in the liquid cannot be explained from the static structure alone.
It was recently proposed that the slowing down of relaxation
processes in liquids upon decreasing temperature, or increasing
density, may be understood by considering how visco-elasticity
emerges at finite frequency due to the formation of persistent
bonds between neighboring particles18,22,23. This approach thus
does not rely on the static structure, but rather takes the transient
nature of neighboring particle pairs into account, to evaluate their
significance in contributing to the actual local rigidity of the struc-
ture.

This concept assumes that particles are capable of forming
cohesive bonds. By contrast, our experimental system is com-
posed of particles interacting with a purely repulsive pair po-
tential (Fig. 1A), hence cohesion must be an emergent property
caused by many-body correlations. These bonds can be defined as
the presence of two particles in a close-enough proximity which
enables them to carry a mechanical load, and thus contribute to
the rigidity of the material. Despite the lack of cohesive forces,
colloidal suspensions can develop a shear modulus47 even when
the interactions are purely repulsive, due to the formation of these
effective ‘bonds’, or contacts which can carry a shear stress, when
the suspension is contained at a finite fixed pressure.

Inversion of the pair-correlation function at finite volume frac-
tions allows us to directly measure the potential-of-mean-force

Fig. 4 (A) Decay of the normalised coordination number Z(t)/Z(0) as cal-
culated from experimental particle trajectories, for different volume frac-
tions (left to right) φ = 0.18, 0.22, 0.26, 0.35, 0.28, and 0.31. We set
the neighbour cutoff distance rc to the first minimum of g(r), such that we
only take the particle inside the first coordination shell into account. Solid
lines are stretched exponential fits for the determination of τZ . (B) Typi-
cal decay time of Z(τ)/Z(0) as a function of neighbour cutoff distance rc.
Calculated from experimental trajectory data for φ = 0.31. Solid red line
is a power law fit with an exponent of two. (inset) Average coordination
number Z at the Brownian timescale τB as a function of volume fraction.
Calculated from the particle tracks (triangles) and Van Hove functions
(circles). Solid lines are power law fits to the data.

w(r) =− lng(r) between the particles. These exhibit a clear bond-
ing minimum at a distance that corresponds to the characteristic
nearest-neighbor distance r1. This illustrates how, even in purely
repulsive systems at a finite pressure, effective bonds emerge as a
many-body effect.

These same emergent bonds allow repulsive colloidal systems
to build up a finite elastic shear modulus, as demonstrated exten-
sively in the literature47. The spring constant k that characterises
the stiffness of these bonds, obtained by fitting the minimum in
w(r) to a harmonic well, increases slightly with increasing vol-
ume fraction; its absolute value of k =3.5-5.5 kBT/µm2 is of or-
der kBT/r2

1 as expected for a system governed by soft interactions
(Fig. 3). We note that while the rescaling of g(r) with rφ 1/3 yields
a collapse of the position of the curve, the width of the peaks
narrows by a small amount as the volume fraction is increased,
signifying a slight increase in the bond stiffness as expressed by
the increase in k with φ .

To ascertain the dynamics of these bonds that emerge in liq-
uids of repulsive particles, we aim to extract the dynamical co-
ordination number Z(τ) from our three-dimensional confocal mi-
croscopy data. This quantity probes how an initial set of nearest-
neighbours exchanges as time progresses; while the average co-
ordination number at any given snapshot may remain the same,
particle motion will reshape the cages around a reference parti-
cle by breaking existing bonds and reforming new ones such that
Z(τ)/Z(0)< 1. We note that other metrics for probing the restruc-
turing of confining cages exist, e.g. that proposed by Rabani et
al.50–52; here we choose specifically to use Z(t) which can be ob-
tained directly from our particle-level experimental data without
any arbitrary parameter choices and has been used successfully in
the past to probe nearest-neighbor bond relaxation36,53,54 and is
thus established as a reliable metric.

We can determine Z(τ) directly from the three-dimensional par-
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ticle trajectories, as was previously done for hard-sphere suspen-
sions and attractive colloidal systems21,36,54. For every particle,
at a given reference time, we identify its neighbors within a cut-
off distance rc, which we set equal to the first minimum in g(r), at
a lag time of τ = 0 to find Z(0). We then compute the time-trace
of the separation distance between a probe particle, i, and its
neighbours, j, as a fuction of lag times, di j(τ) = |ri(τ)− r j(τ)|. A
neighbor exchange, and thus a loss of the original configuration of
neighbors, is identified when d ≤ rc, for a given pair, allowing us
to construct Z(τ). To ensure sufficient statistics we perform time-
and ensemble averaging, yielding Z(τ) as shown in Figure 4A.

To test the effect of the length scale rc on the erosion of a
given bonding configuration, we determine the decay time τZ of
Z(τ)/Z(0), by fitting Z(τ)/Z(0) with a stretched exponential, as a
function of rc, for φ = 0.31 (symbols in Fig. 4B). We find τZ ∝ r2

c
(solid line Fig. 4B), indicating the diffusive nature of neighbour
exchange processes. The stretched exponential nature of these
connectivity relaxations is related to the stretched exponential
decay of self-relaxations as probed by the self-intermediate scat-
tering function and hints at heterogeneous dynamics, well estab-
lished to emerge in colloidal system upon approaching their glass
transition point28,29.

We emphasize that the nearest-neighbor exchange dynamics
probed by Z(τ) is a different measure for relaxations in the liquid
than the self-mobility probed in Fs(q, t), but rather is a collective
(or distinct) effect. The dynamical coordination number probes
how particles move with respect to its bonded neighbors. For
example, the sliding of two particles with respect to each other,
while remaining bonded, or the collective plug-like motion of a
cluster of particles in a shear-transformation zone, does not lead
to a reduction in Z but does lead to a decorrelation of Fs(q, t).
By contrast, cage rattling may break bonds such that Z(τ) decays
while it results in only very weak decay in the dynamic structure
factor. Indeed, the characteristic timescale for reconfiguration of
a coordination shell τZ is lower and grows less steeply than τα

obtained from fitting Fs(q, t) (Fig. 2B).
Of special interest is the change in of Z(τ) as a function of φ

as this provides a clue to the effect of local coordination dynam-
ics on the volume fraction induced quenching of relaxation pro-
cesses. At high frequencies, i.e. short τ, the scaling of Z with φ

is weak, as both dilute and denser liquids have most of their orig-
inal neighbors still in place (Fig. 4A). The differences between
fast and slowly relaxing liquids become increasingly pronounced
as the frequency is reduced, and concomitantly the steepness with
which Z grows with φ increases.

So far we considered only the ensemble-average coordination
number; however, a prototypical feature of liquids that slow down
and approach their glass transition is that their dynamics become
strongly heterogeneous28–30. To probe the spatial homogeneity
of coordination structures, we reconstruct our experimental data
by colour-coding particles according to their dynamical coordi-
nation number Z, taken both as the static structure Z(τ = 0), at
the Brownian timescale Z(t = τB ∼ 101s), and at long timescales
Z(τ = 250 s). Indeed, we observe not only how the average coor-
dination number at the Brownian timescale, Z(t = τB), decreases
as the volume fraction is reduced (Fig. 6 middle row), but also

how the distribution of coordination numbers is strongly hetero-
geneous in space (Fig. 5). From the reconstructions it is also clear
that the debonding events through which the sample loses rigid-
ity do not occur homogeneously throughout the sample; areas of
high connectivity stay connected while areas with low connectiv-
ity weaken rapidly. Due to the heterogeneity of local coordination
numbers, as observed in the reconstructed experimental data, the
distribution of static coordination numbers P(Z) for τ = 0 is broad.
However on average it is constant as a function of volume fraction
(top row in Fig. 6). As lag time increases and the liquid relaxes,
P(Z(τ = τB)) shifts to lower values and narrows with volume frac-
tion (middle row in Fig. 6). At long lag times, most of the original
neighbours have translated away and the liquid has fully relaxed
(bottom row in Fig. 6).

Discussion & Conclusion

We observe a marked increase in structural relaxation time over 4
orders-of-magnitude upon increasing φ during which the static
coordination number Z(0) remains virtually constant. This is
a well-established feature of most glassy systems and implies
that relaxation slowdown cannot be understood from consider-
ing static structures alone. It was recently proposed that, rather
than using the static structure as a starting point to explain the dy-
namical slow down, one should consider those bonds which are
sufficiently long-lived to contribute to rigidity at relevant frequen-
cies22, in other words, it is suggested that we need to consider the
structural dynamics of those neighbors that share load-bearing
bonds.

In order for local structure to contribute to rigidity, the cage
that surrounds a central particle, needs to be intact for a least as
long as the required time of escape. Bonds that break before the
attempted escape from a cage, do not contribute to the slowing
down of particle dynamics. The characteristic timescale of parti-
cle escape from a cage will be of the order of the Brownian time
scale τB = a2/D ∼ 101 s, with D the particle self-diffusion coeffi-
cient. Thus, bonds which live longer than τB can contribute to a
stable interconnected structure that provides the liquid with shear
rigidity at Brownian frequencies. The concept that long-lived
neighbors contribute to the formation of rigid structure in the liq-
uid, revolves around the idea that the transition from a liquid-like
to a solid-like response is signalled by the formation of an isostatic
structure of load-bearing bonds at a characteristic frequency. Note
that this is not the same as the zero-frequency liquid-solid tran-
sition, which is the focus of the jamming framework and which
signals the arrest of flow on all timescales. Rather, the location of
this frequency-dependent liquid-solid transition in these thermal
fluids will depend on the choice of frequency25; for the purposes
of this discussion we use the characteristic frequency ωB = 1/τB.

From the experimental data for Z(τ), we can measure the value
of the coordination number at τ = τB as a proxy for the amount of
bonds that could contribute to rigidity (inset Fig. 4B). We find that
Z(τB) grows as the particle volume fraction is increased, whereas
the static coordination number Z(τ = 0) remains constant over
the same range of volume fractions (Fig. 1C).

For the frequency of interest, ωB, a liquid-solid transition must
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Fig. 5 Computer-generated renderings of our experimental system, in which the particles are color-coded according to their actual coordination
number.(A): Z(τ = 0), (B): Z(τ = τB), and (C): Z(τ = 250 s). Dark blue particles have Z ≥ Zc, while particles with Z < 6 are colored in increasing shades
of yellow, shown for φ = 0.31.

Fig. 6 Probability distribution of coordination numbers. For (left to right) φ = 0.31, 0.28, 0.26, 0.22, and 0.18 we show the probability distribution
of coordination numbers P(Z). top row, Probability distributions of Z(τ = 0), the static coordination number. middle row Probability distributions of
Z(τ = τB). bottom row Probability distributions of Z(τ = 250 s).
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emerge at some critical volume fraction φc, where in accord with
the Maxwell criterion for isostaticity in three-dimensional central-
force lattices, Z(τB) = Zc = 6. To link the emergence of frequency-
dependent elasticity to the slowing down of particle dynamics,
we adopt the phenomenological model developed by Dyre. This
approach treats relaxation events, occurring at finite frequency,
as localized shear deformations of the surrounding medium; such
local shear transformations have been observed experimentally in
dense colloidal suspensions55. By combining thermally-activated
dynamics of the Eyring type with continuum mechanics, Dyre an-
alytically derived a relationship between the structural relaxation
time and the shear modulus G of the liquid56 as τα = τB exp

[
GVa
kBT

]
,

where Va is the activation volume. The term Ea = GVa represents
the elastic activation energy to expand the cage allowing an ir-
reversible rearrangement to take place. It is important to note
that in Dyre’s model, the local shear rigidity is described by the
high-frequency shear modulus, which is close to predictions from
affine elasticity.

A microscopic interpretation of the shear modulus is provided
by the framework for disordered bead-spring lattices57, which
gives the affine shear modulus as20; G = 1

5π

k(φ)
r1(φ)

φZ, with k the
effective spring constant of the interparticle bonds, which de-
pends on φ (inset Fig. 3) and r1 the average interparticle spac-
ing. We note that this formulation unites the models of Dyre and
Frenkel24,56, where the term GVa is the density of elastic poten-
tial energy, since the spring constant is the curvature of the min-
imum in the potential of mean force, multiplied by the number
of connections Z, divided by r1 gives us the total potential energy
density experienced by a particle within a parabolic approxima-
tion.

As discussed above, even though we work with repulsive col-
loidal particles, effective bonds emerge as a many-body phe-
nomenon (Fig. 3) whose spring constant k(φ) grows and aver-
age interparticle distance r1 shrinks slightly as φ increases (inset
Fig. 3 & Fig. 1D).

We estimate the activation volume Va as the cage volume Va =
4
3 πr1(φ)

3. We now obtain a version of Dyre’s elastic model in
terms of particle-level quantities:

τα = τB exp
[

4k(φ)r1(φ)
2Z(φ)φ

15kBT

]
(1)

in which the microscopic parameters can be directly extracted
from the experiments. To evaluate the local connectivity Z, we
must realise that rigidity in the liquid state only emerges above a
finite frequency18,24; this raises the question what the appropri-
ate frequency is to evaluate Z. Within the picture of Frenkel24,
the characteristic frequency at which rigidity should be evaluated
corresponds to the attempt frequency of particle escape from their
cage. In our case, the characteristic attempt frequency ω0 ∝ 1/τB,
such that we must take Z(τB) as the appropriate measure for local
connectivity (inset Fig. 4B). If we presume that the dependence
of Z(τB) with volume fraction obeys a scaling, Z(τB) = Zc(

φ

φc
)b,

we can identify a solid-liquid transition point at φc. However, our
experimental data does not span a large enough range of volume
fractions to draw a rigorous conclusion if this power-law scaling

is found. Thus, we assume it to hold, and find by comparing
the limited amount of experimental data to this form, b = 1.8
and φc ∼ 0.45 (inset Fig. 4B). A true test of the validity of this
rigidity collapse argument requires an in-depth study of the local
structure with volume fraction e.g. by means of extensive com-
puter simulations, which is beyond the scope of this paper. This
allows us to reformulate the equation in terms of directly observ-
able quantities alone:

τα = τB exp
[

4k(φ)r1(φ)
2Zcφ 1+bφ−b

c
15kBT

]
(2)

This model provides a reasonable agreement with experimen-
tally determined values for the relaxation time τα (solid line in
Fig. 2B). We note that this is a model based only on directly ob-
servable microstructural properties, which gives a predictive con-
nection between the liquid structure and the emergence of rigid-
ity at finite frequency. Thus, this form reconciles the approaches
of Dyre and Frenkel24,56.

The agreement between experimental data and this theory il-
lustrates how liquid viscosity at the global scale could possibly
be understood from the existence and dynamics of long-lived, or
persistent, emerging bonds between neighbouring particles. This
may also imply that the slowing down of liquid relaxation pro-
cesses, in analogy to those in metallic alloy melts or polymer
fluids22,23, is a dynamical connectivity transition leading to the
isostatic condition at a finite, relevant, frequency. This conclu-
sion is in direct agreement with the conceptual picture of flu-
idity and rigidity first proposed by Frenkel24, and expanded on
by Trachenko and Brazhkin18, in which vitrification is a contin-
uous transition in which the characteristic frequency at which
rigidity emerges shrinks as the solid state is approached. The
emergence of rigidity in liquids far away from any macroscopic
phase transition was recently evidenced also for molecular sys-
tems, further supporting our claims25. A more complete under-
standing of the link between connectivity and the slowing down
of relaxation processes, and its relation to the glass transition,
requires a more detailed theoretical analysis of the problem, in
which the frequency-dependence is treated explicitly and the spa-
tial inhomogeneity and heterogeneous dynamics are taken into
account58.
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