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Abstract

Background: In spite of the emergence of populations of drug-resistant cyathostomines worldwide, little is known
of parasite species responsible for ‘early egg shedding’ in cohorts of horses subjected to treatment with widely
used anthelmintics, e.g. ivermectin (IVM). In this study, we determined the cyathostomine egg reappearance period
(ERP) after IVM treatment in a cohort of yearlings from a large Thoroughbred (TB) stud farm in the United Kingdom,
and identified species of cyathostomines with reduced ERP using a combination of fundamental parasitology
techniques coupled with advanced molecular tools.

Methods: Individual faecal samples were collected from TB yearlings with cyathostomine infection prior to IVM
treatment, as well as at 14, 21, 28, 35, 42 and 49 days post-treatment. Faecal egg counts (FEC) were performed for
each individual sample for determination of ERPs. In addition, individual larval cultures were performed and
representative numbers of third-stage larvae (L3s) harvested from each culture were subjected to molecular species
identification via PCR-Reverse Line Blot (RLB).

Results: Prior to IVM treatment, 11 cyathostomine species were detected in faecal samples from TB horses enrolled
in this study, i.e. Cyathostomum catinatum, Cylicostephanus longibursatus, Cylicostephanus goldi, Cylicocyclus nassatus,
Cylicostephanus calicatus, Cyathostomum pateratum, Cylicocyclus radiatus, Paraposteriostomum mettami, Coronocyclus
labratus, Cylicocyclus insigne and Cylicocyclus radiatus variant A. Of these, eggs of Cya. catinatum, Cys. longibursatus,
Cyc. nassatus and Cyc. radiatus could be detected at 28 days post-treatment, while from day 42 onwards,
cyathostomine species composition reflected data obtained pre-IVM treatment, with the exception of eggs of Cor.
labratus and Cyc. insigne which could no longer be detected post-IVM administration.

Conclusions: This study provides valuable data on the occurrence of IVM-resistance in cyathostomines in the UK.
Nevertheless, further investigations are needed to shed light on the prevalence and incidence of drug-resistance in
this country, as well as other areas of the world where equine trade is substantial.
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Background
Intestinal nematodes of the subfamily Cyathostominae
(family Strongylidae), also known as ‘cyathostomins’ or
‘small strongyles’ are ubiquitous parasites of equines,
with reported prevalences of up to 100% in many re-
gions of the world, including Europe and North America
[1–4]. The subfamily currently includes 52 recognised
species [5–7], characterised by a direct (oro-faecal), non-
migratory life-cycle. Adult males and females live in the
lumen of the large intestine, where the latter shed eggs
that are excreted in the environment with the host fae-
ces; under suitable conditions of temperature and hu-
midity, first-stage larvae (L1s) hatch from the eggs and
develop through to second- (L2s) and third-stage larvae
(L3s, the infective stages) [8]. These are ingested by sus-
ceptible equine hosts while grazing, and move to the
large intestine where they become encysted within the
mucosal layer and mature to fourth-stage larvae (L4s)
[9]. Alternatively, within the mucosa, L3s can undergo
hypobiosis and survive up to 2.5 years before resuming
their development [10]. Subsequently, L4s emerge from
the cysts and migrate to the intestinal lumen, where they
undergo their final development to adult males and fe-
males [11]. The pre-patent period ranges from 5 to
12 weeks depending on parasite species [12].
While infections by cyathostomines often remain sub-

clinical, clinical signs associated with heavy parasite bur-
dens may occur, particularly in young, geriatric and
immunocompromised equines [13, 14]. In particular, the
synchronous emergence of L4s into the intestinal lumen
may be accompanied by a protein losing enteropathy
characterized by a sudden onset of diarrhoea, weight loss
and dehydration (‘larval cyathostominosis’), that can
prove fatal in 50% of cases [15–17]. Additionally, non-
specific weight loss, non-strangulating infarction, tym-
panic colic and mild non-specific colic have been ob-
served in horses infected by large numbers of worms
[13, 18–23].
Traditionally, cyathostomine infections are controlled

via the regular administration of parasiticides, i.e. ‘an-
thelmintics.’ Currently licenced anthelmintics with effi-
cacy against cyathostomines include the benzimidazoles
(BZ), e.g. fenbendazole (FBZ) [24, 25], the tetrahydropyr-
imidines (THP), e.g. pyrantel pamoate (PYR) [26, 27]
and the macrocyclic lactones (ML), e.g. ivermectin
(IVM) and moxidectin (MOX) [28–30]. However, the
widespread and indiscriminate use of these chemothera-
peutics has led to the emergence of populations of
cyathostomines resistant to all of these drugs [31–34]. In
particular, anthelmintic resistance (AR) of cyathostomine
populations to BZs is widespread [35–40], whilst resist-
ance to PYR is common in some regions [37–39, 41–43].
Therefore, given that none of the novel anthelmintics used
in other veterinary species developed over the last decade

are licenced for use in horses [44], current deworming
programs aimed to control cyathostomine infections
rely upon ML compounds. Amongst these, IVM and
MOX are used interchangeably; nevertheless, the rela-
tive high cost of MOX compared to IVM [45], as well
as ongoing efforts to preserve its efficacy against
encysted larvae (by avoiding its excessive use) [36, 46],
make IVM the most widely used anthelmintic against
cyathostomine infections.
Regrettably, the widespread use of ML has been ac-

companied by reports of emerging AR in cyathostomine
populations globally, primarily evidenced by a reduction
in egg reappearance period (ERP) (i.e. the time between
administration of anthelmintics and the detection of
parasite eggs in faeces) [38, 42, 47–53]. Reduced ERPs
have been associated with the survival of luminal L4
stages, that reach sexual maturity before encysted L4s
and/or newly ingested L3s [54]. However, in spite of
these reports, little evidence of AR to IVM in cyathosto-
mine populations based on faecal egg count reduction
test (FECRT) analyses is available [47, 51, 52]. Further
investigations are therefore needed to better understand
the occurrence of AR to IVM in cyathostomine popula-
tions, and to design strategies to prevent and/or mitigate
its spread. In order to achieve this outcome, knowledge
of the fundamental biology of cyathostomines, and in
particular of species responsible for ‘early egg shedding’,
is necessary. Thus far, only four studies have provided
data on species of cyathostomines responsible for re-
duced ERPs after IVM and MOX treatment in Europe
[55, 56] and the USA [57, 58]. Although the findings
from these studies were largely similar, some differences
were observed, likely due to variations in cyathostomine
species epidemiology between geographical locations.
Additional studies conducted in a range of countries,
characterised by different epidemiologies of cyathosto-
mine infections, may help elucidate these issues. In par-
ticular, given the substantial contribution that the
Thoroughbred (TB) racehorse industry provides to the
economy of the United Kingdom, AR is of particular
concern. In this study, we determined the ERP after
IVM treatment in a cohort of yearlings from a large TB
stud farm in the UK and identified species of IVM-‘re-
sistant’ cyathostomines using a combination of funda-
mental parasitology techniques coupled with advanced
molecular tools.

Methods
Sample collection
Sample collection was performed between April and
June 2017. A cohort of 54 TB yearlings housed in a stud
farm in the south-east of England was initially screened
for this study. In particular, all yearlings had been treated
with FBZ (Panacur 18.75% FBZ, MSD, Milton Keynes,
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UK) and IVM (Eqvalan, 1.87% IVM, Merial, Harlow,
UK) approximately 10 weeks prior to the beginning of
the study, and with praziquantel (PZQ) (Equitape,
90 mg/g PZQ, Zoetis, Tadworth, UK) 3 weeks prior to
the start of the study, respectively. On Day 0 (D0),
freshly-voided faecal samples were collected from indi-
vidual horses and subsequently screened for infections
by parasitic nematodes using a centrifugal floatation fae-
cal egg count (FEC) technique sensitive to 1 egg per
gram (EPG) [59]. Samples were also screened for tape-
worm infections (by Anoplocephala spp.) using a stand-
ard double sugar flotation technique [60]. Immediately
after sampling, all animals were treated with 0.2 mg/kg
of IVM (Eqvalan®, Merial, Harlow, UK). Horses with
FEC > 75 strongyle EPG were selected for the study.
From these, additional faecal samples were collected
weekly up to 7 weeks post-IVM treatment and subjected
to faecal examination as described above.

Faecal egg count reduction test (FECRT) and
determination of egg reappearance period (ERP)
Arithmetic means of FEC values obtained from individual
faecal samples at D0 and Day 14 (D14) were used to esti-
mate faecal egg count reduction (FECR), using guidelines
established by the World Association for Advancement of
Veterinary Parasitology [61], according to the formula:

FECR% ¼ EPG pre‐treatmentð Þ � EPG post‐treatmentð Þ
EPG pre‐treatmentð Þ � 100

A FECR of < 95% with 95% lower confidence limits
(LCL) was considered to indicate potential AR, accord-
ing to previously published recommendations [62, 63].
In this study, the ERP was defined as the first time point
(post-IVM treatment) at which a mean FEC that
exceeded 10% of the mean FEC at D0 was observed [42,
64]. Statistical analyses were performed using Microsoft
Office Excel 2013.

Larval culture and harvest of cyathostomine larvae
In order to identify species of cyathostomines with re-
duced ERP post-IVM treatment, faecal samples contain-
ing cyathostomine eggs were subjected to larval culture
as described by van Doorn et al. [55]. Briefly, individual
faecal samples were placed in open trays at room
temperature for 14 days. Following incubation, L3s were
collected using the Baermann’s apparatus, washed three
times with distilled water, centrifuged at 14,000× rpm
for 5 min and re-suspended in 1 ml 100% ethanol before
storing at -20 °C.

Nucleic acid extraction and polymerase chain reaction-
reverse line blot (PCR-RLB)
From each faecal sample, four representative pools, each
containing 10 larvae, were prepared according to the

method described by Kooyman et al. [56]; this method
has been proven accurate for the semi-quantitative de-
termination of cyathostomine species composition in a
given sample [56]. Briefly, aliquots of L3s from each
sample were placed on individual Petri dishes and ob-
served under a stereomicroscope; for each of these, 40
larvae were picked using a wide orifice tip and trans-
ferred to four 1.5 ml centrifuge tubes (10 larvae in each
tube). 73 μl of proteinase K was added to 1 ml of Worm
Lysis Buffer (WLB) (50 mM KCl, 10 mM tris pH 8.3,
2.5 mM MgCl2, 0.45% NP-40, 0.45% tween-20 and 0.01%
gelatin; ThermoFisher Scientific, Waltham, MA, USA;
Sigma-Aldrich, St. Louis, MO, USA) [65] and 50 μl of Pro-
teinase K/WLB solution was added to each L3 pool. Pools
were incubated overnight at 56 °C. Proteinase K was then
inactivated by incubation at 95 °C for 15 min; lysates were
stored at -20 °C until further processing.
Identification of the species of cyathostomines present

in each pool was performed using an established PCR-
RLB hybridisation method [66] with slight modifications
[67]. Briefly, genomic DNA extracted from each pool of
L3s was subjected to nested-PCR amplification of the
intergenic spacer (IGS) region using biotin labelled
primers [66]. The PCR products were then incubated
with Biodyne C membrane bound specific DNA probes,
using a Miniblotter 45 (Bioworld), for 21 different
cyathostomine species and two conserved probes for the
genus Strongylus and the subfamily Cyathostominae [66,
67], incubated with extravidin peroxidase (Sigma-Al-
drich, St. Louis, MO, USA) and visualised using chemi-
luminescence detection.

Results
Of the 54 yearlings screened at D0, 11 had FEC > 75
EPG and were therefore enrolled in this study (Add-
itional file 1: Table S1). Strongyle FEC performed from
samples collected from individual horses at D0 (pre-
IVM treatment), and at D14, D28, D35, D42 and D49
post-IVM treatment, as well as corresponding means,
are shown in Additional file 1: Table S1 and Fig. 1. At
D14, a 100% FECR was observed in all 11 horses en-
rolled in the study, whereas the numbers of strongyle
eggs in individual faecal samples exceeded the set
threshold for ERP at D28 in Horse 8, D35 in Horses 1,
4, 6, 7, 9, and 11, D42 in Horses 3 and 10 and D49 in
Horses 2 and 5 (Additional file 1: Table S1 and Fig. 1).
Prior to IVM treatment, larval culture of individual

samples collected from horses enrolled in this study,
coupled with PCR-RLB for species identification, re-
vealed infections by 11 cyathostomine species. In de-
creasing order of frequency of detection per horse, these
were Cyathostomum catinatum, Cylicostephanus longibur-
satus, Cylicostephanus goldi, Cylicocyclus nassatus, Cylicos-
tephanus calicatus, Cyathostomum pateratum, Cylicocyclus
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radiatus, Paraposteriostomum mettami, Coronocyclus lab-
ratus, Cylicocyclus insigne and Cylicocyclus radiatus variant
A (Fig. 2). One additional species, Coronocyclus coronatus,
was detected post-IVM treatment at D35, D42 and D49
(Fig. 2). Species of cyathostomines detected in faecal sam-
ples from individual horses post-IVM treatment via RLB
are listed in Fig. 2. The first species detected post-
treatment, at D28, were Cya. catinatum (in five horses),
Cys. longibursatus (in five horses), Cyc. nassatus (in three
horses) and Cyc. radiatus (in one horse) (Fig. 2). At Day 35,
a total of 7 species were detected in a total of 8 horses, i.e.
those detected at D28 (except Cyc. radiatus variant A) to-
gether with Cys. calicatus, Cya. pateratum, P. mettami and
Cor. coronatus; in particular, the latter was not detected
amongst species identified pre-IVM treatment (Fig. 2). Eggs
of Cys. goldi reappeared in one horse from D42, while those
of Cor. labratus and Cyc. insigne were no longer detected
post-IVM treatment (Fig. 2). From D42 onwards, cyathos-
tomine species composition reflected data obtained pre-
IVM treatment (Fig. 2).

Discussion
The acquisition of comprehensive data on the occur-
rence and prevalence of potential drug-resistant species
of cyathostomine is the necessary basis on which to
build studies aimed to unravel the fundamental molecu-
lar biology of AR in this complex group of nematodes,
as well as to develop and test new chemotherapeutics
and/or alternative strategies for parasite control. In this
study, we aimed to determine the ERP of cyathostomines
following treatment with IVM, and to identify the spe-
cies responsible for ‘early egg shedding’. Specifically, the
ERP was defined as the earliest time point post-IVM

treatment in which the number of EPG obtained follow-
ing FEC analysis of samples collected from individual
horses was ≥ 10% of the corresponding number observed
pre-anthelmintic treatment [42, 64]. This definition was
selected to minimise errors associated with the sensitiv-
ity of the FEC technique used that, although reported to
be as low as 1 EPG [59], does not allow to unequivocally
rule-out false negative results.
Data obtained from the FECRT suggest that the ad-

ministration of IVM was effective in eliminating adult
populations of cyathostomines 14 days post-treatment;
nevertheless, the ERP was shorter than that originally re-
ported for an IVM-susceptible population of parasites
(i.e. 8–13 weeks) [68, 69]. Whilst 9 out of 11 horses had
detectable strongyle eggs at D28, FECs in all of these
horses but one were below 10% of the FEC recorded
pre-treatment, thus failing to reach the set threshold of
ERP at this time-point. In seven of these horses, FECs
above the ERP threshold were subsequently observed at
D35 post-IVM treatment. This is in agreement with the
majority of recent reports from Europe and the USA, in
which strongyle eggs were detected from 28 days post-
IVM treatment [52, 55, 57, 70, 71]. This data suggests
that populations of IVM-resistant cyathostomines are in-
deed developing in the TB stud farm where the investi-
gation was carried out, and that overt AR will likely
emerge in future, should the current regime of IVM ad-
ministration continue. Indeed, it must be pointed out
that, in the stud farm under consideration, IVM and
MOX are regularly administered (in rotation) to horses
with > 50 EPG. While aimed to provide ‘targeted’ treat-
ments to horses with relatively high infection intensity,
this practice may facilitate the emergence of AR by

Fig. 1 Mean faecal egg counts (FEC) recorded for each horse (H) enrolled in the study, prior to ivermectin administration (D0), as well as at D14,
D21, D28, D35, D42 and D49, following anthelmintic treatment
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preventing the development and maintenance of refu-
gia of susceptible parasites [72]. Thus, a threshold of
> 200 EPG for treatment administration, combined
with strategies of environmental control aimed to re-
duce the numbers of free-living larvae on the pasture
(e.g. by bi-weekly removal of faecal matter; cf. [73,
74]) may assist in slowing the process of developing
AR in these parasite populations [74, 75].
Prior to IVM-treatment, the most prevalent species of

cyathostomines in the TB population under investigation
were, in decreasing order of prevalence, Cya. catinatum,
Cys. longibursatus, Cys. goldi and Cyc. nassatus. With
the exception of Cys. goldi, whose eggs could not be de-
tected until D42 post-IVM treatment, eggs from these
species were observed at D28 in 10 out of 11 horses, al-
beit the corresponding FEC did not reach the set ERP
threshold. These findings are supported by data from
earlier studies that report cyathostomine species with a
relatively high prevalence pre-IVM and MOX adminis-
tration to display a reduced ERP of 4–5 weeks post-
IVM, 4 weeks post-MOX [57, 58, 76] and ‘anthelmintic
resistance’ [54]. One possible explanation is technical,
and linked to the high relative proportion of these spe-
cies in faecal samples from horses pre- and post-

anthelmintic treatment; indeed, given that species identi-
fication via the RLB technique used in this study relies
on a randomly selected (representative) sub-population
of L3s, the likelihood of eggs from a given species to be
successfully identified is directly correlated to its initial
prevalence in the sample under consideration. In con-
trast to this hypothesis, van Doorn et al. [55] reported
that, regardless of species prevalence prior to treatment,
eggs of Cylicocyclus spp. were consistently detected prior
to those of other species post-IVM treatment [55]. Inter-
estingly, in spite of the relatively high prevalence of Cys.
goldi in horses pre-treatment here (i.e. 6/11), eggs of this
species could not be detected in faecal samples until
D42 post-IVM treatment, thus indicating greater suscep-
tibility of this species to IVM. This observation contrasts
findings from Ionita et al. [57], that reported a (post-
IVM) ERP for Cys. goldi of 5 weeks. Given that the mo-
lecular events that determine the emergence of AR in
cyathostomines are, thus far, poorly understood (with
mutations of the α-subunit gene of a GluCl channel [77,
78], reduction in drug uptake [79, 80] and overexpres-
sion of parasite P-glycoproteins (P-gps) [81, 82], all pro-
posed as potential underlying mechanisms), the
identification of susceptible (e.g. Cys. goldi) and resistant

Fig. 2 Species of cyathostomine identified from larval cultures of horses enrolled in this study, prior to (D0) and following ivermectin
administration (D14, D21, D28, D35, D42 and D49, respectively). Bubble sizes correspond to the relative proportions of horses infected with the
corresponding species, while the exact number (out of a total of 11 horses enrolled in the study) is indicated within the circle/cell. Shades of
green indicate the percentage of larval pools (see Methods) from which the corresponding species was identified
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species of cyathostomines (e.g. Cya. catinatum, Cys.
longibursatus), may provide a suitable platform for fu-
ture studies aimed to investigate the molecular basis of
cyathostomine AR, at the DNA, mRNA and protein
level.
At D42 and D49 post-IVM treatment, the cyathostomine

species composition observed in faecal samples via RLB
largely reflected that of pre-IVM, with the exception of Cor.
labratus and Cyc. insigne, whose eggs were no longer de-
tected post-anthelmintic administration. In addition, at
D35, eggs of Cor. coronatus were detected in one horse; this
species had not been identified from samples pre-IVM. The
low prevalence of Cor. labratus and Cyc. insigne species
pre-IVM administration (1/11 horses), as well as the likely
low proportion of Cor. coronatus in samples pre-treatment,
may have led to L3s of these species not being selected
amongst those that underwent PCR-RLB screening (see
also [83]). Indeed, while this method represents a faster and
relatively inexpensive alternative to sequencing of DNA
amplicons from individual larvae (which is unfeasible under
natural conditions of infection, when hundreds to thou-
sands of larvae can develop in faecal samples from horses
with heavy parasite burdens), its intrinsic limitation consists
in the inability to unequivocally rule out the presence of
other, less represented species of cyathostomines in the ini-
tial faecal sample. Nevertheless, in the future, the study of
the ‘nemabiome’ (i.e. the characterisation of whole parasite
communities within a given sample via high-throughput
amplification and sequencing of nematode genetic loci
[84]) of faecal samples from horses prior to and post-
anthelmintic treatment, will provide the scientific commu-
nity with means to overcome this constraint.

Conclusions
While this study provides valuable data on the occur-
rence of IVM-resistance in the UK, further investigations
are needed to shed light on the prevalence and incidence
of drug-resistance in this country, as well as other areas
of the world where equine trade is substantial. Primarily,
it should be established whether our observation that
the most prevalent species of cyathostomines are re-
sponsible for shortened ERPs, are consistent across dif-
ferent geographical areas, or whether emergence of AR
is dependent on specific micro-climatic and/or epi-
demiological conditions. This information is indeed cru-
cial to inform future strategies aimed to mitigate the
occurrence and spread of AR.

Additional file

Additional file 1: Table S1. Raw faecal egg count (FEC) data collected
from individual horses enrolled in this study, prior to ivermectin (IVM)-
treatment, as well as at Day (D) 14, 21, 28, 35, 42 and 49 post-treatment.
(DOCX 25 kb)
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