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Abstract
Differences in cortical morphology—in particular, cortical volume, thickness and surface area—have been reported in
individuals with autism. However, it is unclear what aspects of genetic and transcriptomic variation are associated with these
differences. Here we investigate the genetic correlates of global cortical thickness differences (ΔCT) in children with autism.
We used Partial Least Squares Regression (PLSR) on structural MRI data from 548 children (166 with autism, 295
neurotypical children and 87 children with ADHD) and cortical gene expression data from the Allen Institute for Brain
Science to identify genetic correlates of ΔCT in autism. We identify that these genes are enriched for synaptic transmission
pathways and explain significant variation in ΔCT. These genes are also significantly enriched for genes dysregulated in the
autism post-mortem cortex (Odd Ratio (OR)= 1.11, Pcorrected 10−14), driven entirely by downregulated genes (OR= 1.87,
Pcorrected 10−15). We validated the enrichment for downregulated genes in two independent data sets: Validation 1 (OR=
1.44, Pcorrected= 0.004) and Validation 2 (OR= 1.30; Pcorrected= 0.001). We conclude that transcriptionally downregulated
genes implicated in autism are robustly associated with global changes in cortical thickness variability in children with
autism.

Introduction

Autism Spectrum Conditions (henceforth ‘autism’) are
characterized by difficulties in social communication
alongside unusually narrow interests and restrictive, repe-
titive behaviours, a resistance to unexpected change and
sensory hypersensitivity [1]. In addition to behavioural and
clinical differences, differences in cortical morphology
between individuals with autism compared to typical con-
trols have been reported [2–5]. While heterogeneous, recent
studies have reported increased cortical volumes in the first
years of life with autism compared to controls, with accel-
erated decline or arrest in growth in adolescents [3, 4].
Changes in cortical volume may be attributed to changes in
cortical thickness (CT), changes in surface area or both [3].
In support of this, studies have separately identified differ-
ences in both surface area [6] and CT [7] in children with
autism. For example, Smith et al. [7] show that the devel-
opmentally accelerated gain in grey matter volume in aut-
ism is largely driven by the lack of typical age-related CT
decrease (http://ajp.psychiatryonline.org/doi/abs/10.1176/a
ppi.ajp.2017.17010100?code=ajp-site). Furthermore, ear-
lier studies identified differential trajectories in CT
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development in autism [8] as well as CT differences in
autism in specific brain regions [9, 10]. In addition, Hardan
et al. [11] found areas of increased CT in children with
autism, predominantly in temporal and parietal lobules. In
contrast however, Hadjikhani et al. [12] report a pattern of
cortical thinning in adults with autism, mainly within the
mirror neuron system. Both these studies point towards
significant heterogeneity within findings that is at least
partially related to differences in age. Despite significant
heterogeneity in cortical morphology across autism imaging
studies [13], recent studies have also indicated alterations in
areas associated with higher cognition (e.g. language, social
perception and self-referential processing) [7, 14]. This
has been supported by observed differences in cortical
minicolumns in association areas in individuals with
autism [15].

It is unclear what contributes to these differences in
cortical morphology in individuals with autism. Genetic
factors play a major role in the development of brain net-
works and volumes in typically developing individuals [16–
18]. For instance, twin heritability of CT measures suggest
modest to high heritability for most regions of the brain
[19]. In parallel, the contribution of genetic factors for
autism has been estimated between 50–90% [20–22]. Dif-
ferent classes of genetic variation have been associated with
risk for autism. Several recent studies have identified a
significant contribution of rare, de novo putative loss-of-
function mutations for autism [23–27]. In addition, common
genetic variants, cumulatively, account for approximately
half of the total variance in risk for autism [20]. Studies
have also identified genes dysregulated in the autism post-
mortem cortex [28–30], enriched in processes such as
synaptic transmission and astrocyte and microglial genes.
These dysregulated genes may either represent causal
mechanisms for risk or compensatory mechanisms as a
result of upstream biological and cellular changes. Genes

dysregulated in the autism post-mortem cortex are also
enriched in specific gene co-expression modules identified
using both adult [28–30] and fetal [31] cortical post-mortem
samples.

Despite considerable progress in understanding neuroa-
natomical and genetic risk for autism, several questions
remain. Mechanistically, it is likely that genetic risk variants
alter neuroanatomical structural and functional properties,
contributing to behavioural and clinical phenotypes. Given
the heterogeneity in autism imaging findings [13], it is
pertinent to ask how genetic risk for autism is associated
with variability in cortical morphology observed in indivi-
duals with autism. Thus, the goal of the present study was to
identify molecular correlates of disease-related neuroa-
natomy irrespective of regional specific neuroanatomical
differences that may not replicate well across studies [13].
Here, focusing on CT, we ask 3 specific questions: (Q1)
Which genes and biological pathways are associated with in
CT variability (ΔCT) in children with autism? (Q2) What is
the spatial expression profile of genes associated with ΔCT?
and (Q3) Are these genes enriched for three different classes
of risk factors associated with autism: rare, de novo var-
iants, common genetic variants and/or dysregulated genes in
the post-mortem cortex? We address these questions by
combining analysis of ΔCT in autism, as measured with
MRI, with gene expression post-mortem data provided by
the Allen Institute for Brain Science (AIBS; [32, 33]).

Methods

Overview

We first assessed differences in CT (ΔCT) across 308
cortical regions in individuals with autism by extracting CT
estimates for 62 children with autism (cases) and 87

Table 1 Descriptive statistics for all four datasets

Discovery Validation 1 Validation 2 ADHD

Autism Controlsa Autism Controls Autism Controls ADHD Controlsa

n 62 87 48 54 56 154 69 87

(0 F) (0 F) (8 F) (27 F) (15 F) (56 F) (0 F) (0 F)

Age 10.07 10.04 10.98 10.43 10.32 10.34 9.99 10.04

(±1.11) (±1.13) (±1.53) (±1.71) (±1.51) (±1.20) (±1.17) (±1.13)

FIQ 108.86 110.98 118.68 122.04 103.42 114.4 107.95 110.98

(±16.94) (±10.39) (±15.01) (±13.27) (±15.99) (±10.55) (±14.18) (±10.39)

The Discovery cohort was obtained from ABIDE-I. The validation cohorts were obtained from the ABIDE-II (Validation 1: Georgetown
University, Validation 2: Kennedy Kreiger Institute). The n-row denotes the number of subjects with the number of females (F) provided in
parenthesis, FIQ denotes the full-scale IQ, with standard deviations in parenthesis below. Further details on the Discovery and ADHD datasets are
described elsewhere [34]
aIndicates that the same controls were used for both the Autism Discovery and the ADHD datasets.
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matched typically developing individuals (controls) from
the ABIDE-I (Table 1; Discovery dataset). Using median
gene expression of 20,737 genes from six post-mortem
cortical brain samples [32], we conduct a partial least
squares regression (PLSR), a data reduction and regression
technique, to identify significant genes and enriched path-
ways that contribute to ΔCT (Q1). We next quantified the
expression of the same significant genes in terms of their
spatial profile by comparing them across the different brain
regions and Von Economo classes [45], which provides a
way of assessing the hypothesis that there would be a global
differentiation between higher order cognitive processing
and more primary sensory processing (Q2). We tested any
significant genes for enrichment for classes of genetic and
transcriptomic variation associated with autism (Q3): (1)
Genes dysregulated in the autism post-mortem cortex; (2)
Adult cortical gene co-expression modules associated with
dysregulated genes in the autism post-mortem cortex; (3)
Fetal cortical gene co-expression modules associated with
dysregulated genes in the autism post-mortem cortex; (4)

Genes enriched for rare, de novo loss of function mutations
in autism; and (5) Common genetic variants associated with
autism. To assess the replicability of the findings, we vali-
date the results using two independent datasets from
ABIDE-II (Table 1). In parallel, we also used a second list
of genes dysregulated in autism identified using a partially
overlapping cortical gene expression data set of autism and
control post-mortem brain samples to validate the enrich-
ment analysis across all datasets. To assess specificity of our
results, we furthermore sought to answer these questions in
a matched MRI dataset of children with ADHD, another
childhood psychiatric condition. A schematic overview of
the study protocol is provided in Fig. 1.

Discovery dataset

Neuroimaging, gene expression and PLS regression

Discovery imaging data used in this study are described in
detail in the supplementary materials and elsewhere [34]. In

Fig. 1 Schematic overview of the methodology used to identify gene
contribution. Mean cortical thickness was extracted for both the autism
and the neurotypical groups across 308 cortical nodes (a). A difference
score in cortical thickness (ΔCT; autism—neurotypical) was calcu-
lated between these two groups (b). In parallel the median AIBS gene
expression profiles for 20,737 genes were calculated across the same
308 cortical nodes used in the imaging analysis (c). Both these streams
were included in a bootstrapped PLSR analysis that used the gene
expression profiles as predictors and the ΔCT as response variable (d).
The PLSR assigns weights to each gene in terms of its contribution to

the overall model in each component. Bootstrapped standard errors
were derived and the gene weights were Z-transformed and corrected
for multiple comparison using a FDR inverse quantile transform cor-
rection to account for winners curse (e; i= gene index number, z= z-
score for that gene’s association and q= FDR corrected z-score).
Genes that were significant after FDR correction (z-score >1.96) were
analysed in terms of their spatial expression as well as tested for
enrichment against three classes of risk for autism: dysregulated autism
genes in the postmortem cortex, genes harbouring rare de novo var-
iants and common genetic variants in autism (f)

Synaptic and transcriptionally downregulated genes are assoc…



short, structural T1-weighted MPRAGE images were
obtained from the ABIDE I database (http://fcon_1000.
projects.nitrc.org/indi/abide/, selecting participants in the
age range from 9 to 11, all males. All subjects were matched
on age, and IQ between groups (see Table 1; Discovery
Data) (see ref. [34] and Supplementary Materials for details
on matching and scanner site). CT estimates were extracted
using freesurfer and visually inspected for quality of seg-
mentation by two independent researchers. Only when there
was consensus between researchers were images included.
Next, images were parcellated into 308 cortical regions and
mean CT for these regions was extracted. In addition,
scanner site was regressed out from CT estimates and the
residuals were added to the group mean to allow for easier
interpretation. The final sample consisted of 62 children
with autism (cases) and 87 neurotypical individuals
(controls).

We used the transcriptomic dataset of the adult human
brain created by the Allen Institute for Brain Science (http://
human.brain-map.org) [32, 33]. The anatomical structure
associated to each tissue sample was determined using the
MRI data provided by the AIBS for each donor. The high-
resolution parcellation with 308 cortical regions, employed
in the neuroimaging dataset, was warped from the anato-
mical space of the average subject provided by FreeSurfer
(fsaverage) into the surface reconstruction of each AIBS
donor brain. After pre-processing regional gene expression
values were represented as a 308× 20,737 matrix that
contained the whole-genome expression data for the 308
MRI regions of interest [35]. Code used to determine
regional gene expression levels is available at (http://github.
com/RafaelRomeroGarcia/geneExpression_Repository) and
data used can be downloaded from Cambridge Data
Repository [36]. More details on tissue sample handling,
processing, batch correction and consistency of gene
expression data across donors are provided in the Supple-
mentary Materials. Cortical surface representations were
plotted using BrainsForPublication v0.2.1 (https://doi.org/
10.5281/zenodo.1069156).

We used PLSR to identify which genes were significantly
associated with ΔCT. After obtaining PLS weights for each
gene, these were z-transformed (based on standard errors
obtained from bootstrapping) and FDR-adjusted using a
FDR inverse quantile transformation correction to account
for winners curse bias [37]. Only genes that passed FDR
correction of p< 0.05 were included in enrichment analysis.
We used significant genes with both negative and positive
weights in our analysis. As our dependent variable, ΔCT,
had both positive and negative values, weight signs were not
informative about directionality in the analysis. A detailed
description of the PLSR regression and the detailed rationale
behind choosing the unsigned weights is provided in the
Supplementary Materials.

Genetic modules and enrichment analyses

We used Enrichr (http://amp.pharm.mssm.edu/Enrichr) [38,
39] to test for enrichment of significant PLSR genes for
each component against Gene Ontology Biological Pro-
cesses and report significant results after
Benjamini–Hochberg FDR correction (q< 0.05). Cell-type
specific enrichment was conducted for five broad classes of
cells: neurons, astrocytes, oligodendrocytes, microglia and
vascular cells [40]. We defined cell-type specific genes as
the top 500 genes with higher expression in the cell-type
compared to the remaining five genes. As these classes of
genes are largely distinct with minimal overlap, we used a
Bonferroni correction to correct for cell-type specific
enrichment.

We also investigated the enrichment in different classes
of risk genes for autism using logistic regression (more
detail on each class of genes can be found in the supple-
mentary materials):

1. Transcriptionally dysregulated genes (n= 1143, 584
upregulated and 558 downregulated in the autism
cortex) were identified from Parikshak et al. [28].

2. Adult gene co-expression modules [28].
3. Fetal gene co-expression modules [31].
4. Genes encriched for rare, de novo, putative loss of

function variants (rare, de novo genes, n= 65) were
identified from Sanders et al. [23].

5. Common genetic variants associated with autism were
downloaded from the latest data freeze from the
Psychiatric Genomics Consortium (5305 cases and
5305 pseudocontrols). Gene based P-values and Z
scores were obtained using MAGMA for each gene
[41].

Enrichment analyses for the different classes of autism
risk genes were done using logistic regression after
accounting for gene length as a covariate. Enrichments are
reported as significant if they had a Benjamini-Hochberg
FDR adjusted P-value< 0.05 [42] and if they have an
enrichment odds ratio (OR) >1. The supplementary material
provides further details about the gene sets and the methods
used.

Validation and specificity

We conducted extensive validation of our initial results
against two independent datasets and checked for specificity
of an autism effect against a matched ADHD dataset. There
are significant phenotypic and genetic correlations between
the two conditions, and we had access to MRI data from
children with ADHD [34], making this a suitable dataset for
testing specificity. Details on all these three datasets are
provided in the supplementary materials.
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Results

Autism discovery MRI dataset

PLSR analyses and characterization

Cross-validation using an initial 35 component analyses
identified that a 13-component model had the best fit (Sup-
plementary Table S1). Note that the number of components
chosen for the model does not affect the individual compo-
nent composition. Consequently, PLSR was run using a
13-component model. Four components (Components 1, 3, 4
and 6) explained more than 10% of the variance (Supple-
mentary Figure S1). However, variance in ΔCT explained by
PLS components was higher than expected by chance only
for the first component (P= 0.009, 10,000 permutations) but
not for the remaining components (P= 0.303, P= 0.693 and
P= 0.394, for components 3, 4 and 6, respectively). Thus,
only PLSR1 was used for subsequent analyses and we only
included genes that passed FDR correction (q< 0.05). Only
the GO term “Synaptic Transmission” in component 1
(PLSR1) survived FDR correction for multiple comparisons
(Pcorrected= 0.00006). PLSR1 was also significantly enriched
for 11 pathways (Table S2) in the Kyoto Encyclopedia of
Genes and Genomes (KEGG). There was a significant
positive correlation between ΔCT and the scores of PLSR1
(r= 0.32; P= 4.15× 10−9).

Cell-type specific analysis identified a significant enrich-
ment for neurons (OR= 1.1; Pcorrected= 3.19× 10−12), but
no enrichment for genes enriched in astrocytes (OR= 1;
Pcorrected= 1), oligodendrocytes (OR= 0.99; Pcorrected 1),
microglia (OR= 0.97; Pcorrected= 0.43) or vascular cells (OR
= 0.97; Pcorrected= 0.62).

Topographical enrichment analyses

Previous studies reported an association between CT and
cytoarchitectural cortical features [43] linked to specific
abnormalities in laminar thickness of supragranular lay-
ers of the cortex of schizophrenia patients [44]. Here, we
also conducted spatial characterization of PLSR1 across all
5 Von Economo classes [45] as well as an additional
2 subtype classes covering limbic regions and allocortex
(class 6) and insular cortex (class 7) [17, 46]. We expected a
potential differentiation between higher order cognitive
processing and more primary sensory processing. The genes
in PLSR1 were significantly over-expressed in secondary
sensory and association cortices (VE classes 2, 3 and 4: all
Pcorrected< 0.01) compared to a null distribution. In limbic
and insular regions, however these genes appeared to be
under-expressed (VE classes 6 and 7: all Pcorrected< 0.01).
However, they also appear to be over-expressed in granular
and primary motor cortices (VE Class 1). Figure 2 shows
the results from the spatial characterization of the first
component across all VE classes.

Gene enrichment analyses

We identified a significant enrichment for genes that are
dysregulated in the autism post-mortem cortex (OR= 1.21;
Pcorrected< 2.81× 10−15), driven entirely by genes down-
regulated in autism cortex (OR= 1.87; Pcorrected< 3.55×
10−16). In comparison, there was no enrichment for upre-
gulated genes (OR= 1.01; Pcorrected= 0.49). The down-
regulated genes have been previously reported to be
enriched for several GO terms including synaptic trans-
mission [28].

Fig. 2 Expression and Von Economo classification for PLSR1. The
heatmap in a shows the ΔCT distribution across all 308 cortical
regions. The barplot in b shows the z-scores of the mean distribution
across the different Von Economo Classes (Class 1: granular cortex,
primary motor cortex. Class 2: association cortex. Class 3: association
cortex. Class 4: dysgranular cortex, secondary sensory cortex. Class 5:

agranular cortex, primary sensory cortex. Class 6: limbic regions,
allocortex. Class 7: insular cortex.). All significant over- or under-
expression classes are marked with an asterisk. To determine sig-
nificance, we used permutation testing and an false discovery rate
corrected p-value< 0.025 to fully account for two-tailed testing

Synaptic and transcriptionally downregulated genes are assoc…



Fig. 3 Gene enrichment and dataset comparisons. a–c Show the cor-
relation between ΔCT in the three datasets. d–f Show the correlation
between the PLSR scores of all three datasets. g–i Show the correlation
between ΔCT and the PLSR scores in all three datasets (indicating that
increased scores are strongly correlated with increased ΔCT). j Shows

the odds ratios for the gene-enrichment analysis in the discovery
dataset. All significantly enriched modules were replicated in the
validation datasets (k and l) apart from module 4 of the adult
co-expression modules. Pearson correlation coefficient and P-values of
the correlations are provided in the top of the respective panels

R. Romero-Garcia et al.



Transcriptionally dysregulated genes can reflect several
different underlying processes. To provide better resolution
of the processes involved, we next investigated if this
enrichment was associated with six adult co-expression
modules associated with dysregulated autism genes [28].
Three of these were associated with genes downregulated in
the autism postmortem cortex (M4, M10, M16), and three
were enriched for genes upregulated in the autism post-
mortem cortex (M9, M19 and M20) compared to controls.
As we had identified a significant enrichment for down-
regulated autism genes but not for the upregulated autism
genes, we hypothesized that gene co-expression modules
associated with downregulated genes would also be enri-
ched for association with PLSR1 genes. Indeed, PLSR1 was
enriched for all three downregulated modules but none of
the 3 upregulated modules. See Fig. 3j, Table 2 and sup-
plementary Table S6.

We also investigated if the significant genes in PLSR1
were enriched in specific cortical developmental modules
[31]. The Mdev13, Mdev16 and the Mdev17 modules are
enriched for transcriptionally dysregulated genes in autism
postmortem frontal and temporal cortices [31]. The Mdev2
and the Mdev3 modules are enriched for rare variants
identified in autism [31]. Again, we identified significant
enrichment for three adult co-expression modules enriched
for transcriptionally dysregulated genes. For the two mod-
ules associated with rare, de novo variants, we identified
fewer PLSR1 genes than expected by chance. See Fig. 3j,
Table 2 and Supplementary Table S6. We did not identify a
significant enrichment for rare, de novo genes. We also did
not identify a significant enrichment for common variants

using MAGMA to collapse SNP based P-values to gene
based P-values (OR= 1.00; Pcorrected= 0.29). Results of the
gene enrichment analysis are provided in Fig. 3j, Table 2
and Supplementary Table S6.

Validation of initial findings

PLSR analyses and characterization

We validated all analyses using ΔCT from two independent
cohorts (Table 1). There was no correlation in ΔCT between
the discovery and the two validation datasets (Fig. 3a,b),
which is in line with recent large scale assessments of autism
neuroimaging studies [13]. This may be explained by factors
such as heterogeneity due to scanner sites in the discovery
dataset, age of onset of puberty and clinical conditions.
There was a significant positive correlation in ΔCT between
the two validation datasets (r= 0.476; P< 2.2× 10−16).
Heterogeneity in autism neuroimaging studies is well
documented and complex [13, 47], but it should be
emphasized that the present analysis focuses on the relation
between whole-brain variation in ΔCT and whole-brain
variation in gene expression, thus a lack of spatial overlap in
ΔCT does not affect the ΔCT—Gene relation.

Again, only the first component (PLSR1-validation1 and
PLSR1-validation2; see Fig. 4) (P< 10−14, 10,000 permu-
tations) (Supplementary Figure S2) explained a significant
amount of the variance. There was a significant positive
correlation between ΔCT and the gene expression
scores in both validation datasets (Fig. 3h,i). Further, PLSR1
was enriched for the GO term ‘Synaptic transmission’

Table 2 Gene enrichment

Category Dataset OR Upper CI (95%) Lower CI (95%) P Pcorrected

Autism transcription Dysregulated 1.21 1.23 1.19 1.76E−15 2.81E−15

Autism transcription Downregulated 1.87 1.94 1.8 2.00E−16 3.55E−16

Autism transcription Upregulated 1.01 1.02 1 4.99E−01 4.99E−01

Adult co-expression modules Mod4 1.08 1.08 1.07 2.00E−16 3.55E−16

Adult co-expression modules Mod10 1.07 1.08 1.07 2.00E−16 3.55E−16

Adult co-expression modules Mod16 1.08 1.08 1.07 2.00E−16 3.55E−16

Adult co-expression modules Mod9 0.93 0.94 0.92 2.01E−14 2.92E−14

Adult co-expression modules Mod19 0.93 0.94 0.92 2.00E−16 3.55E−16

Adult co-expression modules Mod20 0.97 0.97 0.96 6.22E−05 7.66E−05

Common variants Common variants 1 1.01 1 2.75E−01 2.93E−01

Rare variants Rare variants 0.96 0.99 0.93 2.42E−01 2.76E−01

Fetal co-expression modules Moddev2 0.97 0.97 0.96 1.28E−11 1.70E−11

Fetal co-expression modules Moddev3 0.96 0.97 0.96 2.00E−16 3.55E−16

Fetal co-expression modules Moddev13 1.04 1.04 1.04 2.00E−16 3.55E−16

Fetal co-expression modules Moddev16 1.06 1.06 1.05 2.00E−16 3.55E−16

Fetal co-expression modules Moddev17 1.04 1.05 1.04 2.00E−16 3.55E−16

Odds ratio scores, confidence intervals and significance of all major classes of gene enrichment investigated in the discovery dataset
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(Pcorrected= 1× 10−4 for both Validation 1 and Validation 2).
In addition, for Validation 2, the PSLR component was also
enriched for the GO term ‘Membrane depolarization’ (Pcor-

rected= 7× 10−4). KEGG pathway enrichment for both
datasets are provided in Supplementary Tables S3 and S4.
Further, we replicated the cell-type enrichment in genes
expressed in neurons (OR= 1.13; P= 2.01× 10−7 for
Validation 1 and OR= 1.06; P= 0.009 for Validation 2).

Given the lack of consistent correlations in ΔCT between
the original discovery dataset and both validation datasets
we also added another validation dataset to confirm the PLS
findings (Supplementary section 8, Figure S6). Results from
this dataset were in line with the two original validation
datasets and PLS weights were consistent across datasets.

Gene enrichment analyses

We replicated the significant enrichment of transcriptionally
downregulated genes in the autism post mortem cortex
(Validation 1: OR= 1.24; Pcorrected= 0.004; Validation 2:
OR= 1.3; Pcorrected= 0.001), providing confidence in the
robustness of our initial results (Fig. 3k,l and Supplemen-
tary Table S6). Mirroring the enrichment with the down-
regulated genes in the autism post-mortem cortex, we also
identified enrichment for the three adult gene co-expression
modules that are enriched for downregulated genes in
Validation 1 (M4, M10 and M16) and two of the three
(M10 and M16) adult gene co-expression modules for
Validation 2 (Fig. 3k,l, Supplementary Table S6). We also
replicated the enrichment for the three fetal gene co-
expression modules (Mdev13, Mdev16 and Mdev17)
in both validation datasets (Fig. 3k,l, Supplementary
Table S6).

To understand the genes involved in this process, we
focused on the top 200 genes (approximately 1%) based on
their gene weights in PLS1 across all the three datasets

(Supplementary Dataset). This identified several genes that
have been implicated in autism, synaptic processes and
neural development. For example, one of the genes identi-
fied is SCN1A, which encodes a voltage-gated sodium
channel, is one of the genes identified to be frequently
mutated in autism [48–50]. SLIT1 and SLIT3 are important
for regulating midline axon crossing in the developing
forebrain [51]. Focusing on just the top 1% in the two
validation datasets, given their high correlation, we identi-
fied several other genes that have been implicated in autism
and synaptic transmission including GABRA3, GABRA5 and
GABRB1, all of which encode subunits of the GABA
receptor. Mutations in PTCHD1, another gene identified in
the top 1%, have been implicated in autism and intellectual
disabilities and contributes to dysfunction of excitatory
synapses [52]. SYN2 and SYT17 encode synapsin2 and
synatotagmin17 respectively, which are present in the pre-
synaptic terminal and regulate neurotransmitter release.

Comparison with ADHD

PLSR analysis of ΔCT in ADHD data did not identify any
components that significantly explained the variance in
ΔCT (Supplementary Table S5). Thus, we did not consider
the ADHD dataset for further analyses. Details of the
number of components, the model fit and the variance
explained are provided in the supplementary materials.

Discussion

Here we report the association of transcriptionally down-
regulated genes in the autism post-mortem cortex with
global differences in CT in 166 children with autism and
295 neurotypical children. Using partial least squares
regression on a discovery dataset of 62 cases and 87

Fig. 4 PLSR1 scores for all autism datasets. a–c represent the
PLSR1 scores for the three autism datasets across 308 cortical regions.

a Represents the discovery dataset, b represents Validation 1 and c
represents Validation 2

R. Romero-Garcia et al.



controls, we identify one component (PLSR1) that explains
a significant proportion of variance in ΔCT and is enriched
for the GO term ‘Synaptic Transmission’ and for neuronal
genes. This component was enriched for genes down-
regulated in the autism post-mortem cortex and validated
using two independent datasets. We also find that PLSR1
genes are enriched for fetal and adult developmental cortical
modules that have been previously reported to be enriched
for transcriptionally dysregulated genes in the post-mortem
autism cortex and for genes involved in synaptic transmis-
sion [28, 31]. We were unable to identify genes associated
with ΔCT in ADHD, another childhood condition. Our
study provides robust evidence linking disease-related var-
iance in CT to synaptic genes and dysregulated genes in the
autism post-mortem cortex, linking molecular and macro-
scopic pathology.

Validation using two independent autism MRI datasets
suggests that the results are valid even using MRI data from
different cohorts that had different scanner settings. The
results were valid despite non-significant correlations in
global ΔCT between the discovery and the two validation
datasets and sex did not contribute to any of the observed
differences between datasets (see Supplementary material).
This suggests that the same sets of genes are associated with
ΔCT regardless of sex. Studies have identified differences
in cortical morphology between neurotypical males and
females and between males and females with autism [2, 53].
Here we identified a high correlation between a males-only
dataset and two males and females combined MRI datasets
for the gene weights and gene scores in the first PLS
component.

Changes in CT may be due to a host of factors such as
changes in myelination, synaptic pruning and dendritic
arborisation. Evidence from rare genetic variants [54, 55]
and transcriptionally dysregulated genes in autism have
highlighted a role for synaptic transmission in the aetiology
of autism [28, 29]. Transcriptional dysregulation may reflect
either a causative risk mechanism for autism, or a com-
pensatory consequence of genetic, hormonal and environ-
mental risk for autism. Here, we are unable to disentangle if
transcriptionally dysregulated genes causally contribute to
cortical morphology changes, or if they are both down-
stream of a common risk mechanism, or both. It is possible
that both CT variability and transcriptional dysregulation
are downstream processes of genetic variation implicated in
autism, and, as such the enrichment for transcriptionally
dysregulated genes need not be causative of cortical mor-
phological changes.

We did not identify enrichments for rare, de novo loss of
function genes or common variants implicated in autism.
The lack of enrichment with rare, de novo loss of function
genes may be due to both the relative low frequencies of
such variants and small proportion of variance in liability

explained by rare de novo variants [20]. In contrast, the lack
of enrichment with common variants may be explained by
the lack of statistical power of the largest available autism
GWAS dataset. Indeed, there is no enrichment for common
genetic variants associated with autism in co-expression
modules enriched for transcriptionally dysregulated genes
in autism [28]. In contrast, common variants for schizo-
phrenia are enriched in co-expression modules associated
with dysregulated genes in schizophrenia [56]. It is likely
that larger samples will better reveal the role of common
genetic variants in cortical morphology differences in aut-
ism. While we do not know the genetic make-up of the
cases and controls, our results likely represent common
downstream convergence of upstream genetic perturbations.

Animal studies have shown that several candidate genes
for autism risk are regulated by synaptic activity, leading to
the hypothesis that dysregulation in synaptic homeostasis is
a major risk for autism [55]. The effects of this can con-
tribute to both neural signal processing, and to more mor-
phological changes in neuroanatomy via processes such as
activity dependent synaptic pruning and dendritic arbor-
ization. Post-mortem studies of the brains of children and
adolescents with autism have identified deficits in synaptic
pruning [57]. Investigating the specific role of synaptic
genes in altering neural circuitry and cortical morphology
will help elucidate the precise molecular mechanisms
underlying CT differences seen in autism.

There are some caveats that need to be taken into con-
sideration while interpreting these results. Gene expression
data was derived from only six post-mortem adult brain
samples. Gene expression is known to vary with age [58, 59].
Unfortunately, we are restricted in using the adult gene
expression data from the AIBS for several reasons. First, this
is the most spatially detailed dataset of gene expression.
Second, the availability of MNI coordinates in the adult gene
expression datasets allows for mapping of gene expression in
distinct brain regions to CT differences extracted from MRI
scans. Third, gene expression changes with age are limited
and restricted to specific brain regions. A recent study
identified only 9 genes significantly altered globally across
the 10 regions investigated in post-mortem tissue samples
[60], largely driven by glial genes. Cell specific enrichment
in our dataset implicated neuronal genes only. Fourth, as
autism is a developmental condition, investigating differ-
ences in cortical morphology at an early age is important to
limit the role of environmental factors that contribute to
differences in cortical morphology later in life [8, 61]. Fifth,
enrichment for gene expression modules associated with
autism risk in the developing cortex provides further con-
fidence that the genes identified here are relevant across the
age-spectrum. We do acknowledge that investigating a pae-
diatric specific gene-expression dataset will help further
refine the analyses, once this data becomes available.
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Lastly, the present study used CT in contrast to other
morphological features such as cortical volume. It is known
that grey matter volume relies on the relationship between
two different morphometric parameters, CT and surface
area that are unrelated genetically [62] and associated with
different developmental trajectories1 [63]. The combination
of at least two different sources of genetic and maturational
influences on cortical volume would complicate meaningful
analysis of associated genetic weights.

To our knowledge, this is the first study linking different
genetic risk mechanisms in autism with changes in cortical
morphology. In sum, we have shown that genes that are
enriched for synaptic transmission and downregulated in
individuals with autism are significantly associated with
global changes in CT. We also show that these genes are
generally overexpressed in association cortices. We vali-
dated the results in multiple independent datasets but not in
a matched MRI dataset that included individuals with
ADHD, showing both replicability as well as selectivity.
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